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Deep models for cell detection have demonstrated utility in bone marrow cytology, showing impressive results in
terms of accuracy and computational efficiency. However, these models have yet to be implemented in the clinical di-
agnostic workflow. Additionally, the metrics used to evaluate cell detection models are not necessarily aligned with
clinical goals and targets. In order to address these issues, we introduce novel, automatically generated visual summa-
ries of bone marrow aspirate specimens called cell projection plots (CPPs). Encompassing relevant biological patterns
such as neutrophil maturation, CPPs provide a compact summary of bone marrow aspirate cytology. To gauge clinical
relevance, CPPs were inspected by 3 hematopathologists, who decided whether corresponding diagnostic synopses
matched with generated CPPs. Pathologists were able to match CPPs to the correct synopsis with a matching degree
of 85%. Our finding suggests CPPs can represent clinically relevant information from bonemarrow aspirate specimens
and may be used to efficiently summarize bone marrow cytology to pathologists. CPPs could be a step toward human-
centered implementation of artificial intelligence (AI) in hematopathology, and a basis for a diagnostic-support tool for
digital pathology workflows.
Introduction

Artificial intelligence (AI), particularly deep networks, has shownprom-
ise in digital pathology.1,2 AI models assist with information extraction
from digital whole slide images (WSIs) of pathology specimens, supporting
and automating various aspects of pathology diagnostic workflows.3

However, AI models have not yet been widely implemented in diagnostic
hematopathology workflows.4 In cytopathology, a number of AI models
have been trained on bonemarrow aspirate (BMA) images for cell detection
and classification, including one from our group.5–10 Thesemodels often re-
turn a nucleated differential count (NDC) as their output, wheremany types
of individual bone marrow cells are classified and counted based on subtle
morphological features.11While important for a number of clinical decision
points in hematology, the NDC has limited value in some hematological
diagnoses such as myelodysplastic syndrome (MDS), as it ignores the
morphological complexities of BMA.12 Additionally, such models do not
relieve pathologists of the laborious task of viewing a large WSI to analyze
thousands of cells. Therefore, in many cases, cell counts alone do not pro-
vide a summary of the complex information present in WSI needed to
make a primary hematology diagnosis from BMA.
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In digital pathology, AI models are often evaluated bymeasures such as
accuracy, F1-score, and mean average precision (mAP)13; these are neither
easy to interpret nor necessarily aligned with clinical problems and expec-
tations in the medical field. Clinically meaningful evaluation of AI remains
one of the challenges of its implementation in pathology.14 Therefore, im-
pressive performance in terms of computer sciencemetrics does necessarily
translate into a model’s clinical utility. In pathology practice, the ultimate
goal of cytopathology examination is not to find the most accurate
bounding boxes in cell detection, but rather to glean biologically relevant
information from a specimen to make a diagnosis that predicts biology, or
patient outcomes. The necessity of clinical evaluation of medical AI has
been well-emphasized.15

In the context of these limitations in practical utility and clinically rele-
vant evaluations, we present a novel method to visualize cytological deep
features extracted from BMA images to hematopathologists. We combined
deep feature extraction and dimensionality reduction to create a compact
visual summary of BMA slides, called a cell projection plot (CPP). Deep fea-
tures are real-valued vectors generated by deep networks, which have
been extensively used for image representation in both cytology and
histopathology.16–20 Dimensionality reduction has an established usage in
n, ON L6R 3J7, Canada.
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visual analytics.21 Therefore, a combination of deep feature extraction and
dimensionality reduction is an intuitive approach to represent BMAs to pa-
thologists in a user-friendly and interpretable way. Although dimensional-
ity reduction has been used in the field of hematopathology for deep
feature evaluation,22,23 its potential for developing clinical tools has yet
to be explored.

In our previouswork,we have described a system for detection and clas-
sification of BMA cells.6 In this work, we develop CPPs by: (a) re-purposing
our published cell detection and classification model to serve as a feature
extractor; (b) applying dimensionality reduction to visualize detected
cells on a 2D plane; (c) evaluating the descriptive quality of CPPs by pathol-
ogists. Fig. 1 shows an overview of the approach implemented in this study.
Our results suggest CPP can serve as an automatically generated visual sum-
mary of BMA cytology, capturing biologically and diagnostically relevant
information. Therefore, CPPs provide additional insight into bone marrow
cytology beyond NDC, and may eventually contribute to the development
of AI-based compact representations for primary diagnosis in digital
hematopathology workflows.

Materials and methods

The College of American Pathologists (CAP) has published guidelines for
validating digital imaging workflows for diagnostic purposes.24 In this
study, we adopted these guidelines for evaluating CPP as a means for
workflow augmentation in hematopathology. Accordingly, we had 3
hematopathologists evaluate CPP samples of 20 patients each; 60 BMA
samples in total.

Data acquisition, slides, and patients

Sixty May–Grünwald–Giemsa-stained bone marrow aspiration WSIs
were used in this study. These WSIs were scanned at 40× and stored in
TIFF file format under Hamilton Research Ethics Board (HIREB) study pro-
tocol 7766-C. A custom software was developed to allow pathologists to
view and evaluate WSIs and CPPs.
Fig. 1.Overviewof CPP construction. First, bonemarrow aspirateWSI tileswere analyze
feature vectors were embedded in a 2-dimensional space, and cells were visualized at th
(20 each), in order to assess whether CPPs provide diagnostically relevant information.
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Cell detection and feature extraction

A pre-trained YOLO object detection model for bone marrow cell detec-
tion was used in this study.6 YOLO detects and classifies bone marrow cells
from bone marrow aspiration digital WSI. This model is composed of 3
parts: backbone, neck, and head. Feature extraction takes place in the back-
bone with its first output being used to produce deep feature vectors to rep-
resent each detected cell. Since detected cells are of different sizes, average
poolingwas applied to the corresponding regions to create a linear vector of
size 256. This process is schematically depicted in Fig. 2.

Dimensionality reduction

The Uniform Manifold Approximation and Projection (UMAP) is a dimen-
sionality reduction technique that preserves more of the global structure of
the data compared to another popular dimensionality reduction algorithm,
namely t-SNE.25 UMAP was used to embed cell-specific deep feature
vectors into 2 dimensions for visualization.

Cell projection plots

Although the pre-trained YOLOdetectionmodel detects 19 classes, only
the following cells were included in this study: “blasts”, “promyelocytes”,
“myelocytes”, “metamyelocytes”, “neutrophils”, “erythroblasts”, “lympho-
cytes”, “monocytes”, “plasma cells”, “eosinophils”, “basophils”, and “mega-
karyocytes”. Tissue tiles were sampled from digital bonemarrow slides; the
YOLOmodel was applied to tissue tiles to detect and classify cells, using the
same pipeline described in our previous work.6 500 cells were sampled out
of the detected cells in proportion to each cell type’s prevalence. “Megakar-
yocytes” were gathered by a modified method. Since megakaryocytes are
not as abundant as other cell types and are often found in thick regions not
useful for the NDC, more tissue tiles are needed to find megakaryocytes.
Therefore, all tissue tiles in a WSI were used to detect an adequate number
of megakaryocytes. The same YOLO model was used for this purpose.
d by a deep network (i.e., YOLO) for cell detection and feature extraction. Then, deep
eir corresponding coordinates, to create CPPs. Three pathologists evaluated 60 CPPs



Fig. 2.Overview of the feature extraction process. Tissue tiles were analyzed by a YOLOmodel to detect cells and extract deep features. A deep feature vector was produced
for each detected cell from the corresponding region on the feature map, i.e., the first output of the model’s backbone. Average pooling was applied on the corresponding
region to construct a deep feature vector of size 256 for each detected cell. These deep feature vectors represent cells.
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Fig. 3. Four UMAPplots showing thematuration of neutrophils: (a) orderly neutrophil maturation in a normal bonemarrow aspirateWSI. The distribution of neutrophils and
their precursors is in accordance with the expected biological maturation pattern, which suggests that the embeddings can be used to present semantically and clinically
relevant patterns; (b) from an acute myeloid leukemia aspirate WSI where the blasts dominate the plot; (c) from a myelodysplastic syndrome aspirate WSI; (d) from a
chronic myelogenous leukemia aspirate WSI, where there are abundant intermediate myeloid precursors. Of note, UMAP x and y coordinate values are arbitrary.
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Particles
We designed an algorithm to find particles fromWSI thumbnail images.

We started by converting each thumbnail to a single-channel grayscale pic-
ture, which facilitates proper thresholding. We used Gaussian blurring to
decrease the noise in this grayscale picture. After that, we employed
thresholding to convert all pixels to binary (black and white) emphasizing
the objects of interest, i.e., particles, for the contour-detection approach.
To process this binary image, we also usedmathematical morphology oper-
ation erosion to eliminate artifacts. Finally, we used OpenCV’s26

findContours function to determine the estimated contours of the particle.
With particle contours in the thumbnail, we extracted particles from high-
power images by coordinate conversion. Particles were shown to the pa-
thologists so that theywould have an estimate of the specimen’s cellularity.
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Fig. 4. Four sample Cell Projection Plots (CPP). CPPs were evaluated by pathologists: (a)
proportionally increased number of blasts and eosinophils; (c) from an MDS case (dyspla
detection model misclassified lymphocytes as blasts.
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Cell projection plot evaluation design

Experiments were designed to solely evaluate the usability of CPPs. In
order to prevent confirmation bias, the process was slightly gamified. 60
CPPs were shown to 3 pathologists; each pathologist reviewed 20 CPPs.
For each CPP, either the real synopsis reported or a randomly sampled re-
port was shown to the pathologists. To check CPP’s descriptive quality, pa-
thologists were asked to decide whether a displayed synopsis report was in
concordance with their visual inspection of the corresponding CPP. Soft-
ware was developed where pathologists could view and zoom in and out
of CPPs. Prior to the evaluation, participating pathologists were informed
about the process of CPP production. However, they had not experimented
with CPP before the start of the evaluation process.
10

8

6

4

2 Neutrophil

Metamyelocyte

Myelocyte

Promyelocyte

Blast

Erythroblast

Lymphocyte

Monocyte
2

Plasma_cell

Eosinophil

Basophil

4 2 0 2 4 6 8 10
UMAP 1

b) Acute Myeloid Leukemia, Increased Eosinophils in 
one marrow

0 2 4 UMAP 1 8 10 12

(d) Chronic Lymphocytic Leukemia

Neutrophil
Metamyelocyte
Myelocyte
Promyelocyte
Blast
Erythroblast
Lymphocyte
Monocyte
Plasma_cell
Eosinophil
Basophil

U
M

A
P

2
U

M
A

P 
2

0

from a normal BMA indicating an orderly distribution of cells; (b) an AML case with
stic erythropoiesis and granulopoiesis can be seen); (d) a CLL case where the object
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Fig. 5. Two sample CPPs for megakaryocytes. CPPs were evaluated by pathologists:
(a) from a normal BMA; (b) a bone marrow aspirate labeled as MDS with atypically
lobulated megakaryocytes, including hyper- and hypolobulated forms.
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Results

Cell projection plots

The goal of dimensionality reduction is to shrink the high-
dimensional feature space so that it can be visualized while preserving
the semantic relationship between individual embeddings, i.e., cells.
To assess the quality of the YOLO embeddings (representing cells) used
for CPPs, we assessed a well-described biological process in hematopoi-
esis: granulocytic (neutrophil) maturation. To this end, we used UMAP
in cases of BMA WSI labeled as normal, acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), and chronic myeloid leuke-
mia. These example cases represent different expected biological states
in terms of granulocytic maturation. A typical example of normal matu-
ration is shown in Fig. 3a. This plot indicates a clear, continuous, and or-
derly granulocytic maturation pattern, with discernible neutrophil
precursors subsets in expected biological proportion (blasts,
promyelocytes, myelocytes, metamyelocytes, and neutrophils).

The plot in Fig. 3b is from a WSI labeled as AML, where one could see
that blasts dominate the plot, indicating maturation arrest. Fig. 3c and d
are generated from WSIs labeled as MDS and CML, respectively. In these
cases, there is continuous granulocytic maturation, with varying propor-
tions of blasts (MDS) and intermediate myeloid precursors (CML) as ex-
pected in these disease states. These observations suggested that
generation and inspection of such visualizations—based on YOLO embed-
dings—could be useful for assessing semantically relevant patterns in
BMA cytology.

More importantly, these experiments indicated that visualizing deep
cell embeddings by dimensionality reduction is biologically and clinically
relevant.

Next, we extended this concept to the entire cell population in a BMA,
excluding megakaryocytes. CPPs are generated by adding individual cell
images to the dimensionality reduction plots, thereby forming a compact
representation of a BMA for visual assessment. Fig. 4a shows a typical
CPP of a normal BMA, aswell as a variety of typical hematopoietic diseases.
In the normal CPP, for example, it can be seen that granulopoiesis and
erythropoiesis are present, with granulopoiesis showing continuous matu-
ration. Granulopoiesis is a distinct population moving from the bottom
left to the top left with maturation, while erythropoiesis is a distinct popu-
lation to the middle right of the CPP.

Fig. 4b shows a CPP of acute myeloid leukemia and increased eosino-
phils in BMA. The proportional increase in the number of blasts and eosin-
ophils is evident. A CPP from MDS shows an expansion of erythropoiesis
and dysplastic myelopoiesis, as would be expected (Fig. 4c), and a CPP
for a chronic lymphocytic leukemia patient shows an expansion of abnor-
mal lymphocytes (Fig. 4d). Although themodelmisclassified large lympho-
cytes as blasts in this case, this could be recognized and intercepted by
hematopathologists. Therefore, these findings suggested that pathologists
can quickly review these CPPs as a compact representation of BMA cytol-
ogy, and also, as an interpretable implementation of AI in BMA cytology.

Megakaryocytes were shown to hematopathologists in a CPP that did
not include other cell types, due to their larger size and unique biological
significance. Fig. 5a shows a megakaryocyte CPP from a normal BMA,
and Fig. 5b is from anMDS patient, where hyposegmentedmegakaryocytes
can be seen.

Subjective evaluation

Next, we sought to assess whether pathologists may use a CPP as a tool
in BMA cytology. Hematopathologists were asked to decide whether a
shown synopsis belongs to the corresponding CPP. Among all 60 slides,
the real synopsis report was shown in 26 cases (43.33%). In 46 out of 60
cases (76.67%), pathologists correctly decided whether the CPP matches
the shown synopsis or not, as shown in the confusion matrix shown in
Fig. 6. It is important to note that pathological evaluation is a subjective
task, particularly BMA cytology, that expectedly suffers from inter- and
5

intraobserver variability. Additionally, randomly selected synopses were
considered to be negative cases. Therefore, some of those randomly se-
lected synopses might have been semantically similar to the real synopsis.
Upon examination of the 5 false-positive cases (random but deemed
match), it was found that in all those cases, the shown synopsis was similar
to the real synopsis. Consequently, the accuracy could be adjusted to 85%
with no false-positive cases.

Discussion

In this work, we presented CPPs, a new visualization scheme to ef-
ficiently and compactly represent the information gathered by an ob-
jection detection model from BMA WSI. The usability of CPPs was
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Fig. 6. The confusion matrix for the synopsis matching experience. Pathologists
were asked to decide whether a displayed synopsis is for the shown CPP or not.
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evaluated by hematopathologists through synopsis-matching experi-
ments. This evaluation took place in a medically relevant setting. How-
ever, we did not provide any additional patient information to the
pathologist other than the CPP itself (as a summary of the WSI). This
limited amount of information makes diagnosis particularly difficult.
In real-world clinical practice, pathology, especially
hematopathology, is multimodel, where significant ancillary data,
such as clinical history, flow cytometry, and molecular data are re-
quired to make a final diagnosis.27 However, our evaluating patholo-
gists did not have access to data beyond morphology in this type of
controlled evaluation. Additionally, the task of BMA reporting is sub-
jective in nature. Thus, 2 pathologists could have different
Granulopoiesis: “INCREASED AND DYS
NEUTROPHILS. BLASTS REPRESENT 10

Fig. 7. Pathologist could annotate their findings on CPPs wh

6

interpretations of the same BMA slide. Therefore, even if both the dig-
itization process and the AI model were perfect, it would not be ex-
pected that the evaluating pathologist to completely agree on a slide
synopsis, which was deemed as ground truth in this study. However,
at the same time, pathologists would not be expected to differ signifi-
cantly. Additionally, in our study, there were 5 randomly selected syn-
opses that were falsely deemed matching to the CPP. However, upon
examining these shown synopses with the actual ones, we found that
the shown and actual synopses were quite similar, with a similar pri-
mary diagnosis. Therefore, it can be said that they are true-positive
cases rather than false-positive cases, which could increase the synop-
sis matching accuracy to 85%.

AI’s lack of explainability and interpretability is an obstacle to its accep-
tance for clinical use.28–30 It is argued that the current post-hoc
explainability approaches might be useful at patient-level decision-
making.31 Therefore, explainability could be addressed while designing
the AI workflow implementation. Using CPPs, pathologists were able to as-
sess the quality and clinical relevance of information presented by an AI
model. Consequently, AI’s lack of explainability could be circumvented by
letting pathologists make the final decision using the information gathered
by AI. Therefore, such implementation of AI ismore explainable as opposed
to anAImodelmaking a diagnostic prediction per se. Furthermore, through
the evaluation of cells labeled by the object detection model, pathologists
could intercept and prevent misclassified cells from interfering with the di-
agnostic decision. For example, the object detection model used in this
study in some cases classified abnormal lymphocytes as blasts,6 however,
this could be intercepted by pathologists using CPP. Additionally, one of
the common concerns among pathologists is the possibility of their jobs
being replaced by AI.32 CPPs are pathologist-centric requiring physicians
involved in the model’s decision-making process, potentially acting as a
clinical decision-support tool.
PLASTIC. MANY HYPOGRANULAR 
% OF NUCLEATED CELLS.” 

ich are more transferable than multigigabyte-sized WSIs.
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In summary, the CPP approach could be a useful tool to provide pa-
thologists with the information obtained from object detection models
in cytology. Additionally, CPPs coupled with reliable object detection
models provide automatically generated supplementary information
that could potentially augment the current diagnostic workflow. CPPs
can be considered a preliminary step towards human-centered AI in cy-
topathology. CPP may also be used to make cytology reports more un-
derstandable for clinical stakeholders other than pathologists. As CPPs
are more transferable than WSIs, pathologists could annotate their
findings on CPPs and share them with other medical professionals, as
shown in Fig. 7. Further investigation is required to measure the im-
pact of CPPs if being used as a tool alongside WSIs to augment the dig-
ital cytology workflow. In this preliminary study, we aimed to explore
CPP’s potential to serve as a visual summary of bone marrow cytology,
which was done through the synopsis matching experience. We ac-
knowledge that this experiment has significant limitations. For in-
stance, CPPs’ performance in detection of different hematologic
disorders such as MDS, AML, and MPN has not been investigated. For
reference, we include a table of diagnostic labels/keywords for each
synopsis assigned by one of the participating hematopathologists (sup-
plemental tables 1–4),providing a broad overview of the diagnostic
classification for each synopsis/CPP. Additionally, the synopsis
matching accuracy provides limited information about CPPs’ perfor-
mance. We plan to address this shortcoming on a larger sample of
WSIs in future studies.
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