
RESEARCH ARTICLE

Molecular characterization of Cryptosporidium

spp. from humans in Ethiopia

Ambachew W. HailuID
1*, Abraham Degarege2, Haileeyesus Adamu3, Damien CostaID

4,

Venceslas VillierID
4, Abdelmounaim MouhajirID

4, Loic Favennec4,

Romy Razakandrainibe4, Beyene Petros1

1 Department of Microbial Cellular and Molecular Biology, Biomedical Sciences Stream Addis Ababa

University, Addis Ababa, Ethiopia, 2 Department of Epidemiology, University of Nebraska Medical Center

College of Public Health, Omaha, Nebraska, United States of America, 3 Institute of Biotechnology, Addis

Ababa University, Addis Ababa, Ethiopia, 4 Université de Rouen Normandie, EA7510 ESCAPE, CNR
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Abstract

Data on the distribution and genotype of Cryptosporidium species is limited in Ethiopia. This

study examined the presence and genetic diversity of Cryptosporidium species circulating in

Ethiopian human population. Stool samples collected from patients who visited rural (n = 94)

and urban (n = 93) health centers in Wurgissa and Hawassa district, respectively, were

examined for the presence of Cryptosporidium spp. using microscopy, nested PCR and

real-time PCR. To detect infection with PCR, analysis of 18S ribosomal RNA was per-

formed. Subtyping was performed by sequencing a fragment of GP60 gene. The overall

prevalence of infection was 46% (n = 86) by microscope and PCR. When 48 (out of 86) PCR

positive samples were genotyped, two species were identified: C. parvum (n = 40) and C.

hominis (n = 8). When 15 of the 40 C. parvum isolates were subtyped, zoonotic subtypes of

IIaA14G1R1 (n = 1), IIaA15G2R1 (n = 1), IIaA16G1R1 (n = 2), IIaA16G3R1 (n = 2),

IIaA17G1R1 (n = 1), IIaA19G1R1 (n = 1), IIaA20G1R1 (n = 3), IIaA22G1R1 (n = 1),

IIaA22G2R1 (n = 1), IIdA23G1 (n = 1) and IIdA24G1 (n = 1) were identified. When 6 of the 8

C. hominis isolates were subtyped, subtypes IaA20 (n = 5), and IdA21(n = 1) were identified.

This study suggests that C. parvum and C. hominis are causes of cryptosporidiosis in

human in the Wurgissa district and Hawassa in Ethiopia. Zoonotic transmission might be the

main route of transmission.

1. Introduction

Cryptosporidium species are Apicomplexan protozoan that are recognized as one of the most

important diarrheal pathogens affecting people worldwide, particularly in Africa [1]. The two

most common circulating Cryptosporidium species are Cryptosporidium hominis and Crypto-
sporidium parvum [2]. C.hominis is commonly associated with human infection while C.par-
vum is linked with infection in animals, especially young ruminants [3,4].
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Water, residential surfaces, and food contaminated by Cryptosporidium spp. may serve as

sources of infection, [5,6]. The prevailing risk factors to infection and the severity of the disease

include young age, undernutrition, and impaired immunity [5]. Given the frequent and close

contact between animals and human in rural areas with a possible zoonotic exposure [7–9],

reports showed cryptosporidiosis is the leading cause of pediatric mortality and morbidity

with anthroponotic transmission [3].

The existing routine diagnostic methods utilized for detecting Cryptosporidium parasites

are the microscopic analysis of stool smears through staining methods such as Ziehl-Nelson

[10,11]. The identification of species and subtypes of Cryptosporidium is dependent on molec-

ular techniques [12]. In many parts of Africa, the infrastructure for molecular characterization

is not yet evolved [3] and consequently studies on the distribution of Cryptosporidium species,

genotypes, and transmission routes are scanty in the region.

Ethiopian’s population is growing rapidly (approximately 3% annually). The mixed crop-

livestock system of Ethiopia carries more than 70% of the cattle population, which may

increase anthroponotic and zoonotic transmission of Cryptosporidium [13]. In addition, dairy

operations in densely populated urban and peri-urban settings, poor hygienic and sanitation

conditions could create hot spots for zoonotic transmission. Indeed, a study reported Crypto-
sporidium parvum among 35 (87.5%) pre-weaned calves specimens examined in central Ethio-

pia [14]. However, due to the paucity of routine screening for Cryptosporidium spp., and

absence of systematic investigation of cases by the health system, the prevalence of Cryptospo-
ridium infection and genetic diversity of the parasite in human population in Ethiopia remain

uncertain. To our knowledge, there is only one study that reported genetic diversity of Crypto-
sporidium spp., (C.hominis and C.parvum) among HIV/AIDS patients in Ethiopia [15]. The

prevalence and genetic characterization of Cryptosporidium spp. in the general population

remain uncertain. The objective of this study was to determine the prevalence of Cryptosporid-
ium infection and identify genetic diversity of the parasite circulating in human population liv-

ing in Wurgissa district and Hawassa in Ethiopia.

2. Materials and methods

2.1. Study areas

The study was conducted in health centers located in Wurgissa and Hawassa districts from

January to September 2018. Wurgessa district is located in the rural area of the Amhara region

in northeast Ethiopia. Hawassa district is an urban city located in the Southern Nations,

Nationalities, and Peoples’ Region.

2.2. Specimen collection and transport

Single fecal samples were collected from volunteer patients who visited Wurgessa Health Cen-

ter (WHC) and Hawassa Health Center (HHC). Fresh stool samples were collected from 94

individuals at WHC and from 93 at HHC. The inclusion criterion for patients in this study

was contact with domestic or wild animals. A questionnaire was administered to collect data

on other potential risk factors for Cryptosporidium infection, such as diarrhea in other mem-

bers of the household, HIV serostatus, presence of animals within the house, defecation sites,

education, and drinking water supply sources. Approximately 2g of fecal sample was trans-

ported to the biomedical science laboratory of Addis Ababa University (AAU) for microscopy

analysis. About 1 g of fecal material was placed in an 8 mL aliquot of 2.5% (w/v) potassium

dichromate, thoroughly mixed, and transported to the Centre National de Reference Crypto-

sporidiosis (French National Reference Centre for Cryptosporidiosis) at Charles Nicole
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University Hospital, Rouen (France) for characterization. Samples were kept at 4˚C before

DNA isolation.

2.3. Microscopic detection of Cryptosporidium spp. oocysts in fecal

samples

After removal of the preservative through washing, the specimens were concentrated via for-

malin–ethyl acetate sedimentation [16], and a thin fecal smear was examined for each speci-

men after staining with modified Ziehl–Neelsen technique [17]. Briefly, slides were stained

with carbol fuchsin and differentiated in 1% hydrochloric acid–alcohol (70%) for 1 min before

counterstaining with 1% methylene blue for 1 min. The stained slides were examined using an

oil immersion lens at 100× magnification, where oocysts stained pink to red or deep purple

against a blue background. The presence or absence of Cryptosporidium was recorded for each

stool sample examined.

2.4. DNA extraction, molecular detection, and subtyping

Nucleic acid was extracted from all fecal specimens using the QIAamp Power fecal DNA kit (Qia-

gen, France) following the manufacturer’s protocol. To enable the rapid detection and identifica-

tion of C. hominis and C. parvum, two major species that are associated with human

cryptosporidiosis, samples were screened using 18S ribosomal RNA (rRNA) nested PCR and real-

time PCR as described elsewhere [18]. Briefly, PCR was carried out in duplicate and consisted of

two duplex reactions: a genus-specific PCR amplifying 300 bp of the Cryptosporidium 18S rRNA
gene, duplexed (i) with a C. parvum-specific PCR amplifying 166 bp of the LIB13 locus, and (ii)

with a C. hominis-specific PCR amplifying 169 bp of the LIB13 locus. Thermocycling conditions

were as follows: 95˚C for 10 min, followed by 55 cycles of 95˚C for 15 s and 60˚C for 60 s. Data

were collected from each probe channel during each 60˚C annealing/extension phase.

To correctly identify other species infecting human and to confirm results from the real-

time PCR, genomic DNA extracts were subjected to a nested PCR-based sequencing protocol,

targeting the 18S ribosomal RNA (rRNA) gene, as described elsewhere [19]. For the primary

PCR, the cycling protocol was as follows: 94˚C for 5 min; followed by 40 cycles of 94˚C for 30

s, 58˚C for 45 s, and 72˚C for 1 min; with a final extension of 72˚C for 5 min. For the secondary

PCR, the protocol was as follows: 94˚C for 5 min; followed by 40 cycles of 94˚C for 30 s, 58˚C

for 45 s, and 72˚C for 45 s; with a final extension of 72˚C for 5 min. Products were visualized

in 2% agarose gels using ethidium bromide staining. Positive samples were further subtyped

by DNA sequencing of the GP60 gene.

Subtyping was performed by sequencing a fragment of the GP60 gene. Each sample was

amplified at least three times by nested PCR. Primers AL3531 and AL3533 were used in pri-

mary PCR, and primers AL3532 and LX0029 were used in secondary PCR [20]. Reaction mix-

tures were prepared using 5 μL 10× DreamTaq Buffer, 0.2 mM of each deoxynucleoside

triphosphate, 100 nM of each primer, 2.5 U DreamTaq polymerase, and 5 μL DNA template.

Additionally, 1.25 μL of dimethyl sulfoxide was added to the mixture. Cycle conditions were as

follows: one cycle of 94˚C for 3 min; 39 cycles of a denaturation step at 94˚C for 45 s, an

annealing step at 54˚C (for both the first and the second rounds) for 45 s, and an extension

step at 72˚C for 1 min; with a final extension for 10 min at 72˚C.

Each amplification run included a negative control (PCR water) and two positive controls

(genomic DNA from C. parvum oocysts purchased from INRAE Centre Val de Loire-Nouzilly

France, and C. hominis genomic DNA from a fecal specimen collected at Rouen University

Hospital). Products were visualized in 2% agarose gels using ethidium bromide staining, and

sequencing was used for identification and subtype confirmation. PCR amplicons were
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purified using exonuclease I/shrimp alkaline phosphatase (Exo-SAP-IT) (USB Corporation,

Cleveland, Ohio, USA). They were sequenced in both directions using the same PCR primers

at 3.2 uM in 10 μL reactions with Big Dye™ chemistry in an ABI 3500 sequence analyzer

(Applied 229 Biosystems, California, USA). Sequence chromatograms of each strand were

examined with 4Peaks software and compared with published sequences in the GenBank data-

base using the Basic Local Alignment Search Tool (BLAST; www.ncbi.nlm.nih.gov/BLAST).

2.5. Consent and ethical approval

This study was approved by the ethical clearance committee of the College of Science at Addis

Ababa University. All participants were briefed about the aims of the study protocol and verbal

consent obtained prior to sampling. As the procedure for obtaining stool sample from the

study participants had minimal effect, the IRB approved verbal consent. Assent of the children

and consent of their parent or guardian was sought.

2.6. Statistical analysis

SPSS Statistics (version 26) was used for the analysis. Prevalence of infection was compared

across sociodemographic groups using chi-square or fisher exact test (when the count for at

least one cell was less than 5). The combined results based on microscope, nested PCR and real

time PCR was used as a ‘gold standard’ (True result) to calculate the sensitivity, specificity, and

predictive values of the three tests in detecting Cryptosporidium spp. infection. Multiple logis-

tic regression analysis was used to identify factors associated with Cryptosporidium spp. infec-

tions. Kappa value was used to examine the agreement between the tests in detecting the

presence of Cryptosporidium spp. infections. A kappa value greater than 0.81 was considered

perfect agreement, and kappa value that fall between 0.61 and 0.80 were considered substantial

agreement, while a value ranges between 0.41 and 0.60 was a moderate kappa agreement [21].

P-values less than 0.05 and 95% confidence intervals were considered statistically significant

associations between sociodemographic factors and infection.

3. Results

3.1. Sociodemographic description of study participants

Of the 187 study participants, 108 (57.8%) were male, 94 (50.3%) lived in rural areas and 123

(65.8%) were illiterate. The mean age of the study participants was 31.7 years (range: 6–66 years).

A total of 25 (13.4%) were children or adolescents and 162 (86.6%) were adults. Of the adults,

55.1% reported gastrointestinal symptoms with diarrhea perior to visiting the health center.

From the children, 80% had a recent history of clinical signs related to the gastrointestinal tract.

3.2. Prevalence of Cryptosporidium infection

Based on the combined results applying microscope, nested PCR and real-time PCR, the prev-

alence Cryptosporidium spp. infections among the study participants was 46.0%. Cryptosporid-
ium was more prevalent in patients with no formal education and those living with HIV

(Table 1). The prevalence of infection was comparable between males and females. The differ-

ence in the prevalence of infection was also not significant across different age groups.

3.3. Performance of the nested PCR, real time PCR and microscope in

detecting Cryptosporidium spp. infections

The prevalence of Cryptosporidium spp. infections was 17.1% (32/187), 24.6% (46/187) and

41.7% (78/187) using microscopy, nested PCR and real-time PCR, respectively. There was a
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statistically significant difference in the prevalence of Cryptosporidium spp. infection detected

using microscopic, nested PCR and real-time PCR (p<0.01).

All samples detected positive for Cryptosporidium spp. infections by microscopy were

also positive with the nested PCR and real-time PCR. However, 25 individuals detected as

positive by the nested PCR and 46 samples detected positive by real time PCR were nega-

tive by microscopy. A total of 40 samples determined positive by the real time PCR were

negative by the nested PCR and 8 samples detected positive by nested PCR were negative

by real time PCR.

Using the combined results based on the three methods as a ‘true result’, sensitivity of the

microscopy, nested PCR and real-time PCR in detecting Cryptosporidium infection was 38.6%,

51.8% and 94.0% (Table 2). The corresponding negative predictive values for these tests were

67.1%, 71.6%, and 95.4%. The specificity and positive predictive values for nested PCR were

97.1% and 93.5%, respectively. However, the specificity and positive predictive values were

100% for microscope and real time PCR. The agreement between the microscope and the com-

bined results using the three tests to detect infection was moderate (k = 0.41). The agreement

between Nested PCR and the combined results using the three tests in detecting infection was

also moderate (0.51) agreement. The agreement between real time PCR and the combined

results was almost perfect (k = 0.95).

Table 1. Prevalence of Cryptosporidium infection.

Chracterstics Categories Number examined Microscope Real time PCR Nested PCR Combined micrscope, nested PCR and real time PCR

Age 0–9 4 25.0% 25.0% - 25.0%

10–19 21 9.5% 52.4% 42.9% 57.1%

20–30 78 15.4% 35.9% 16.7% 41.0%

31–40 43 11.6% 39.5% 18.6% 39.5%

41–50 24 29.2% 50.0% 37.5% 58.3%

�51 17 29.4% 47.1% 41.2% 58.8%

p-value 0.27 0.53 0.02 0.32

Gender Female 79 15.2% 40.5% 20.3% 45.6%

Male 108 18.5% 42.6% 27.8% 46.3%

p-value 0.70 0.88 0.30 1.00

Education level No formal Education 123 18.7% 51.2% 29.26% 56.10%

Formal Education 64 14.06% 23.43% 15.62% 26.56%

p-value 0.42 0.04 0.001 0.001

Location Wurgissa 94 16.0% 40.4% 20.2% 45.7%

Hawasa 93 18.3% 43.0% 29.0% 46.2%

p-value 0.70 0.76 0.18 0.99

HIV sero status Positive 41 39.0% 80.5% 53.7% 87.8%

Negative 95 5.3% 20.0% 6.3% 24.2%

Unknown 51 21.6% 51.0% 35.3% 52.9%

p-value <0.001 <0.001 <0.001 <0.001

https://doi.org/10.1371/journal.pone.0253186.t001

Table 2. Comparison of the performance of the nested PCR, real time PCR and microscope in detecting Cryptosporidium spp. infections.

Diagnostic methods Prevalence of infection Sensitivity Specificity Negative predictive value Positive predictive value Accuracy Kappa

Microscope 17.1% 38.6% 100% 67.1% 100% 72.7 0.41

Nested PCR 24.6% 51.8% 97.1% 71.6% 93.5% 77.0 0.51

Real time PCR 41.7 94.0% 100% 95.4% 100 97.3 0.95

https://doi.org/10.1371/journal.pone.0253186.t002
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3.4. Cryptosporidium spp. and subtypes

Genotype data for Cryptosporidium spp. were obtained in 48 of 86 positive PCR samples.

Among those genotyped, C. parvum (n = 40) was frequently detected. C. hominis was detected

in 8 samples. Subtype analysis was successfully carried out for 15 of 40 infections with C. par-
vum and 6 of 8 infections with C. hominis. Infections with C. parvum belonged to zoonotic

subtype families IIa and IId. When 15 of the 40 C. parvum isolates were subtyped, zoonotic

subtypes of IIaA14G1R1 (n = 1), IIaA15G2R1 (n = 1), IIaA16G1R1 (n = 2), IIaA16G3R1

(n = 2), IIaA17G1R1 (n = 1), IIaA19G1R1 (n = 1), IIaA20G1R1 (n = 3), IIaA22G1R1 (n = 1),

IIaA22G2R1 (n = 1), IIdA23G1 (n = 1), and IIdA24G1 (n = 1) were identified. Two subtype

families were identified within C. hominis (Ia and Id). When 6 of the 8 C. hominis isolates were

subtyped, subtypes IaA20 (n = 5), and IdA21 (n = 1) were identified. Representative sequences

were deposited in the NCBI database under accession numbers MW037825–MW037836.

3.5 Risk factors for Cryptosporidiosis

The occurrence of diarrhea in other members of their households (adjusted odds ratio (AOR)

= 34.17, p<0.01) and the household size (AOR = 21.17, p<0.01) were positive factors for Cryp-
tosporidium infection (Table 3). A total of 131 (70.5%) patients had close contact with cattle,

which were mainly cows and calves in both urban and rural households. In this context, the

presence of animals was a positive predictor of Cryptosporidium infection (AOR = 12.13, p

<0.01). many of the participants also had multifaceted contact with a non-human primate and

this contact was a positive predictor of Cryptosporidium infection (AOR = 36.26, p<0.01). In

addition, Urban recreational location (AOR = 4.53, p<0.05) and HIV seropositivity

(AOR = 168.22, p < 0.01) were significant factors in Cryptosporidium infection.

4. Discussion

In the present survey, the PCR based prevalence of cryptosporidiosis was 46% (86/187), which

is comparable to earlier findings among HIV/AIDS patients in the northern part of Ethiopia

(43.6%) [22]. However, this prevalence is considerably higher than that reported among

patients with gastrointestinal symptoms (1.1%) [23], those living with HIV in southern Ethio-

pia (13.2%) [24], or schoolchildren in northwest Ethiopia (4.6%) [25]. The lower prevalence of

cryptosporidiosis reported in the aforementioned studies in Ethiopia could be due to the less

sensitivity of the microscopy procedures used for diagnosing Cryptospordium infection [26].

On the other hand, the high prevalence infection observed in the present study could be due to

increased animal contact, overcroweded living conditions, household diarrhea, open defeca-

tion and lack access to clean water which are significant risk factor for cryptosporidiosis infec-

tion [27]. Such condition might lead to a repeated exposure of the population to

Cryptosporidium oocysts and the development of an immunity state and less symptoms of the

infection [28]. In other study asymptomatic oocyst shedding has been noted in apparently

healthy individuals [29] which can explain a passive transfer of oocysts in human digestive sys-

tem. However, the perevalence of Cryptosporidium determined using a microscope was signifi-

cantly lower than the estimate based on PCR. A microscope may miss oocysts when the

intensity of infection is low [30]. In addition, through microscope, the oocysts my appear col-

orless, smooth, and spherical bodies increasing the chance of missing the infection [31].

Of the isolates of infected samples that were genotyped, C. parvum (n = 40) and C. hominis
(n = 8) were the only detected species. C. parvum isolates demonstrated 15 subtypes belonging

to two subtype families (IIa and IId) and C. hominis showed six subtypes that belong to two

subtype families (Ia and Id). The most common detected C. parvum subtype was IIaA20G1R1.

Reports of subtype IIaA20G1R1 in humans are rare. However, the IIaA20G1R1 subtype was
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seen in water buffalo in Brazil [32] and in cattle in Serbia and Montenegro [33], Sweden [34],

and Brazil [35]. The second most common subtpes of C. parvum identified in this study were

IIaA16G1R1 and IIaA16G3R1. The IIaA16G1R1 subtype was reported in lamb, calves, and

humans, as well as water sources in Romania [36], Estonia [37], and Slovakia [38]. The

IIaA16G3R1 subtype was also seen in calves and goats in Spain, England and wild ponies on

the Iberian Peninsula [39–41]. A study also reported a high prevalence of C. parvum subtypes

that belong to the IIa and IId families in sheep and claves from Italy [42,43]. IId subtypes have

also been identified in human samples from Egypt, Ethiopia, and Malaysia [15,44–46] and a

range of animal hosts from China, such as horses and donkeys, rodents, golden takins, yaks,

sheep, and goats [47,48]. Altogether, these findings may suggest human and animals as reser-

voirs for the C. parvum [49,50]. Thus, an integrated, transdisciplinary and multilevel one

health approach strategies/intervention that target humans, animals and their shared environ-

ment/transmission routes would be necessarily to effectively control cryptosporidiosis in

Table 3. Factors associated with Cryptosporidium infection characteristics.

Attribute Categories Unadjusted OR [95% CI] Adjusted OR [95% CI]

Age 0–9 - -

10–19 4.00 [0.35–45.10] 9.45 [0.002–32960]

20–30 2.08 [0.20–20.97] 6.44 [0.002–19199]

31–40 1.96 [0.18–20.45] 5.96 [0.017–20261]

41–50 4.19 [0.38–46.50] 1.99 [0.0005–7293]

> = 51 4.28 [0.37–50.19], 29.52 [0.006–132218]

Gender Male - -

Female 0.97 [0.54–1.73] 0.75 [0.22–2.59]

Location Wurgissa - -

Hawassa 1.02 [0.57–1.81] 4.53 [1.00–20.52]

Education level No Formal education - -

Formal education 0.28 [0.14–0.55] 0.47 [0.13–1.60]

Family size �4 - -

>4 8.48 [3.32–21.64] 21.17 [2.89–155.12]

Contact with diarrhea patient No -

Yes 8.07 [3.74–17.35] 34.17 [7.07–165.1]

Contact with apes No - -

Yes 9.44 [4.27–20.88] 36.26 [6.02–218.3]

Source of drinking Water Tap water - -

Open well water 1.57 [0.58–4.20] 0.43 [0.03-.4.97]

Stream water 1.26 [0.50–3.20] 0.45 [0.026–7.78]

Defecation habit Toilet facility - -

Open field 0.80 [0.30–2.19] 3.36 [0.21–53.6]

Near To the river 2.10 [0.86–5.13] 8.13 [0.59–1104]

Handwashing habit No - -

Yes 1.10 [0.62–1.96] 0.70 [0.22–2.24]

Presence of animals at home No

Yes 5.47 [2.60–11.5] 12.13 [2.34–62.93]

Presence of diarrhea No - -

Yes 2.35 [1.29–4.26] 1.92 [0.57–6.40]

HIV Serostatus Negative - -

Positive 22.54 [7.91–64.19] 168.22 [16.19–1747]

Unknown 3.52 [1.70–7.25] 4.53 [2.89–155.12]

https://doi.org/10.1371/journal.pone.0253186.t003
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regions endemic for C. parvum infection [51]. An integerated research involving veterinary,

public health and environmental fields would help better understand the burden, risk factors,

transmission routes of the zoonotic C. parvum infection and plan collaborative one health

approach to treat or prevent infection in animals and humans, reduce environmental conta-

maination and block transmission in endemic regions [51].

In this study, two subtypes of C. hominis were recorded: IaA20 (5/6) and IdA21 (1/6). The

latter were previously recorded in travelers in the United Kingdom (UK) returning from

Africa [52,53], with no prior identification in African studies. This may suggest that C. homi-

nis IaA20 is the most widespread subtype for the study area. There could be potential for zoo-

notic or anthroponotic transmission in the region. Further molecular studies from different

hosts will be crucial to better understanding the epidemiology of cryptosporidiosis in Ethiopia.

In the present study, HIV infection, contact with animals, contact with non-human pri-

mates, household size (>4), and contact with diarrheal person were significantly associated

with Cryptosporidium infection. The close proximity between human and non-human pri-

mates was found to be a positive predictor for Cryptosporidium infection. Though there is a

dearth of epidemiological information on the association between humans and non-human

primates (NHPs), studies in Uganda showed higher prevalence of Cryptosporidium spp. in

human adapted NHPs [54] and similar subtypes recorded both in the community and NHPs

[55]. In fact, wild animals (such as NHPs) are a potential source of infection as they can spread

parasites to humans via direct contact or through contamination of drinking and recreational

water, farms, and edible fruits and vegetables [56].

This study provides data on the genetic characterization of Cryptosporidium spp. in the gen-

eral human population in rural and urban regions of Ethiopia where there is limited data. To

our knowledge there is only one study that reported data on the genetic diversity of Cryptospo-
ridium spp in human samples, focusing on HIV patients in Ethiopia [15]. However, the sample

size for this study may not have enough power to test correlation of different sociodemo-

graphic factors and health condition with the risk of getting infection with Cryptosporidium.

In addition, as genotyping was performed for small human samples, confirmation of zoonotic

transmission was limited in this study.

5. Conclusions

This study suggests that C. parvum and C. hominis are causes of cryptosporidiosis in humans

in the Wurgessa district and Hawassa in Ethiopia. The identification of the subtype IId family

with high zoonotic potential in various hosts suggests that zoonotic transmission might be the

main route of transmission in the study area. Studies with larger sample sizes, including ani-

mals, would be important to verify the current finding and understand the Cryptosporidium
subtypes and possible routes of transmission in Ethiopia.
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