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1  | INTRODUC TION: INCRE A SING 
THRE ATS TO COR AL REEF ECOSYSTEMS

Coral reefs are extremely diverse and valuable ecosystems, provid-
ing habitat for a third of marine species in just 0.2% of the ocean 
(Pandolfi, Connolly, Marshall, & Cohen, 2011). They provide im-
portant ecosystem services to over 450 million people living within 
100 km of them (Crabbe, 2008; Pandolfi et al., 2011), including fish-
eries, tourism, building materials, and protection from storm waves 

and coastal erosion. As such, they are valued at US$350,000 per 
year for an “average” hectare of coral reef (De Groot et al., 2012).

Yet, coral reefs are under severe threat. Because they exist in 
coastal waters, they are vulnerable to the effects of human activ-
ities, with very few pristine reefs left (Bellwood, Hughes, Folke, & 
Nyström, 2004; Graham, Cinner, Norstrom, & Nystrom, 2014). An 
estimated two- thirds of coral reef fish have been lost compared to 
historical baselines (Edgar et al., 2014), with fish biomass decreas-
ing closer to major markets (Cinner, Graham, Huchery, & Macneil, 
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2013; Cinner, Huchery, et al., 2016). Besides local pressures, coral 
reefs are facing additional threats from anthropogenic carbon 
emissions.

The amount of carbon dioxide (CO2) in the atmosphere has 
increased from 280 to ~405 ppm since the industrial revolution 
(Dlugokencky & Tans, 2017), despite a third of all emissions hav-
ing been absorbed by the oceans (Feely, Doney, & Cooley, 2009). 
There are two overarching effects of CO2 and other greenhouse 
gas emissions on marine systems. First, upper oceans have already 
been warmed by 0.11°C per decade between 1971 and 2010 (Rhein 
et al., 2013), and by 2100 the average temperature is predicted to 
have increased by 12°C (Scott, 2016). There are likely to be more 
frequent extreme high- temperature events, such as those associ-
ated with El Niño- southern oscillation (ENSO) (Frieler et al., 2012). 
Second, increased emissions have caused lower ocean pH, de-
creased carbonate ion concentrations and reduced the saturation 
state of aragonite (Ωa)—together known as “ocean acidification” 
(OA) (Doney, Fabry, Feely, & Kleypas, 2009; Orr et al., 2005). pH has 
already declined by 0.1 units (Doney et al., 2009; Orr et al., 2005; 
Yeakel et al., 2015), with a further reduction of 0.3–0.4 units pre-
dicted by 2,100 (Feely et al., 2009; Orr et al., 2005). Furthermore, 
on a more localised scale, tropical storms are predicted to increase 
in frequency and intensity due to climate change. Such storms can 
cause devastating damage to coral reefs, for example accounting 
for 42% of the coral loss in the Great Barrier Reef (GBR) from 1985 
to 2012 (De’ath, Fabricius, Sweatman, & Puotinen, 2012; Emanuel, 
2013).

In 2016, record high temperatures caused the third global- 
scale mass coral bleaching event—a key consequence of climate 
change-affecting 93% of reefs in the GBR, one of the most 
recognised and well- managed ecosystems on the planet (ARC 
Centre of Excellence for Coral Reef Studies, 2016). Corals were 
hit again by bleaching in 2017, altogether severely affecting two- 
thirds of the reef in consecutive years (ARC Centre of Excellence 
for Coral Reef Studies, 2017) and making this the most extreme 
bleaching event ever recorded globally. While local managers 
cannot address the global impacts of ocean warming and acidifi-
cation, research has sought to provide ways to mitigate against 
them.

We review recent advances in our understanding of the im-
pacts of ocean warming, acidification and other anthropogenic 
pressures on coral reef ecosystems, including organism and com-
munity responses to their changing environments. We argue the 
need to integrate ecosystem- based management and resilience 
thinking, and then review management and governance strategies 
for coral reefs under future environmental change. These include 
the need for climate- ready marine protected areas (MPAs), alter-
native mechanisms for reducing local anthropogenic stressors, 
active management, participatory conservation strategies and 
marine spatial planning (MSP). We provide an overview of the 
huge conservation effort necessary to preserve coral reefs and 
their ecosystem services, and support the communities depen-
dent upon them.

2  | CLIMATE CHANGE IMPAC TS ON 
COR AL REEF ORGANISMS

Combined, ocean warming and acidification act together to erode 
the resilience of corals and other reef organisms. These negative 
impacts thus act from individual to ecosystem levels by reducing 
survival, recruitment, growth and reproduction, and therefore the 
potential of corals and reef dwellers to recover from disturbances 
(Anthony et al., 2011; Ateweberhan et al., 2013).

2.1 | Climate change impacts on individual 
performance

Tropical marine organisms generally have narrower ranges of 
thermal tolerance and exist nearer their upper thermal limits than 
temperate species (Rummer & Munday, 2017). Temperatures ap-
proaching thermal limits have physiological implications for organ-
isms, including increased metabolic rates and reduced aerobic scope, 
development and growth (Doney et al., 2012; Harvey, Gwynn- Jones, 
& Moore, 2013; Ohlberger, 2013). In fish, warming may lead to re-
duced swimming performance and reproductive capacity (Rummer 
& Munday, 2017).

The coral–zooxanthellae symbiosis is particularly vulnerable to 
higher temperatures, which result in the expulsion of the symbiotic 
algae causing coral bleaching (Carilli, Donner, & Hartmann, 2012; 
Crabbe, 2008; Hoegh- Guldberg et al., 2007; Knowlton & Jackson, 
2008). Bleaching occurs when temperatures reach 1–2°C above 
summer maximum temperatures (Hoegh- Guldberg et al., 2007; 
Hughes et al., 2003; Jackson, 2010), and can be temporary, leading 
to decreased coral growth, or prolonged, resulting in mass mortality 
(Crabbe, 2008; Doney et al., 2012; Veron et al., 2009). Wide- scale 
bleaching events have occurred since the 1980s (Baker, Glynn, & 
Riegl, 2008), but are increasing in frequency and severity, and are 
expected to become annual events by 2040 (Frieler et al., 2012; 
Grottoli et al., 2014; Hoegh- Guldberg et al., 2007; Veron et al., 
2009), which would threaten over 90% of reefs (Grottoli et al., 2014).

Ocean acidification impacts corals and reef organisms through 
different mechanisms than warming. Corals themselves are vulner-
able to OA because they require carbonate ions in aragonite form 
to build their calcium carbonate skeletons; as availability of ara-
gonite decreases so do calcification and growth rates, leading to 
fragile structures (Doney et al., 2009; Fabry, Seibel, Feely, & Orr, 
2008; Pandolfi et al., 2011; Veron et al., 2009). A laboratory study 
has shown that in addition to reducing calcification, a pH of 7.7 also 
deformed the skeletal structures of juvenile corals (Foster, Falter, 
McCulloch, & Clode, 2016). A large decline in calcification by 14.2% 
in the GBR overall since 1990 has been reported (De’ath, Lough, & 
Fabricius, 2009), possibly influenced by the mass bleaching events; 
from 1947 to 2008 inner reefs on the GBR calcification have de-
clined steadily by 0.6% per decade (D’Olivo, McCulloch, & Judd, 
2013).

By 2050, reefs are predicted to erode at a faster rate than they 
can be built, causing net reef dissolution (Silverman, Lazar, Cao, 
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Caldeira, & Erez, 2009). OA reduces coral larvae growth rates lead-
ing to higher mortality and lower recruitment (Doropoulos, Ward, 
Marshell, Diaz- Pulido, & Mumby, 2012; Munday et al., 2009). The 
coralline algae on which coral larvae preferentially settle are sensi-
tive to low pH (Doney et al., 2009; Doropoulos, Ward, Diaz- Pulido, 
Hoegh- Guldberg, & Mumby, 2012), and there is evidence that the 
cues by which coral and fish larvae identify settlement sites are 
disrupted, suggesting further negative impacts on recruitment 
(Doropoulos, Ward, Diaz- Pulido, et al., 2012; Munday et al., 2009).

It is possible that increased temperatures may mitigate some-
what against the reduced growth and calcification caused by 
acidification (Foster, Gilmour, Chua, Falter, & McCulloch, 2015; 
Foster et al., 2016). However, overall the combined effects of 
warming and acidification are likely to be damaging (Hoegh- 
Guldberg, Poloczanska, Skirving, & Dove, 2017). Calcification and 
growth rates are decreased further by extreme temperatures, 
coral bleaching and disease; reduced calcification in turn makes 
corals more susceptible to bleaching and disease (Anthony, Kline, 
Diaz- Pulido, Dove, & Hoegh- Guldberg, 2008; Chauvin, Denis, & 
Cuet, 2011; De’ath et al., 2009; Grottoli et al., 2014; Rodrigues & 
Grottoli, 2006; Veron et al., 2009). One study found that high CO2 
dosing (~pH 7.65) led to a two-  to threefold increase in bleaching, 
a reduction in productivity to near zero, and 130%–190% decrease 
in calcification relative to controls, in three coral species (Anthony 
et al., 2008). Coral diseases are exacerbated by bleaching, ele-
vated temperatures and acidification; they also make corals more 
susceptible to bleaching, and can delay recovery from it (Baker 
et al., 2008; Bruno et al., 2007; Harvell, 2002).

Skeletal damage from reduced calcification and growth can make 
corals more sensitive to the structural damage caused by bioeroders 
and storms (Anthony, 2016; Baker et al., 2008; Veron et al., 2009), 
which models predict will also increase in intensity by 45% and 
frequency by 10%–40% under climate change (Emanuel, 2013). In 
the Caribbean, 177 sites experienced an average 17% reduction in 
coral cover in the year after a hurricane (Gardner, Côté, Gill, Grant, & 
Watkinson, 2005), although storms could mitigate against bleaching 
by mixing and cooling waters on a large scale (Carrigan & Puotinen, 
2014).

The combined effects of ocean acidification and warming dif-
ferentially affect species and their life stages, with early life stages 
generally more susceptible. For example, a meta- analysis has shown 
larvae of multiple taxa have higher warming- induced mortality than 
adults (Harvey et al., 2013). Understanding how individual- level re-
sponses to warming and OA influence population, community and 
ecosystem structure and dynamics is a key research area in both 
terrestrial (Nadeau, Urban, & Bridle, 2017) and marine ecology 
(Ohlberger, 2013).

2.2 | Reef responses to climate change

Coral reef organisms may adapt, acclimate or disperse to mitigate 
the impacts of climate change (Hoegh- Guldberg, 2014; see Figure 1). 
Coral reefs are found under variable environmental conditions 

(Carilli et al., 2012; Freeman, Kleypas, & Miller, 2013) and can thrive 
in some areas with high temperatures and acidity (Fabricius et al., 
2011; Oliver & Palumbi, 2011; Shamberger et al., 2014), suggest-
ing adaptive potential. Furthermore, corals previously exposed to 
higher or more variable temperatures are more resistant to bleach-
ing in both field and laboratory studies (Carilli et al., 2012; Crabbe, 
2008; Middlebrook, Hoegh- Guldberg, & Leggat, 2008; Silverstein, 
Cunning, & Baker, 2015). Transgenerational acclimation, whereby 
offspring of parents exposed to altered environmental conditions 
are better suited to those conditions, has been observed in both fish 
and coral species, although the mechanisms by which this happens 
and the degree to which it could enable coral reef species to sur-
vive future environmental conditions, remain uncertain (Rummer & 
Munday, 2017; Torda et al., 2017).

One method of acclimation is a change in the coral–algae symbi-
osis to more heat- resistant algae (Parmesan, 2006). Experimentally 
bleached corals recovered with a higher proportion (>90%) of stress- 
tolerant symbiotic algae, reducing damage in subsequent bleaching 
events (Silverstein et al., 2015). It is unknown however whether this 
is enough to support coral survival under highly stressful condi-
tions, or whether the unprecedented rate of environmental change 
is too rapid to enable successful adaptation or acclimation (Hoegh- 
Guldberg, 2014; van Oppen, Oliver, Putnam, & Gates, 2015). A re-
cent review by Hoegh- Guldberg et al. (2017) suggests that there is 
little evidence to show corals can adapt fast enough, especially con-
sidering their long generation times.

An alternative to adaptive responses to environmental change 
is dispersal to maintain suitable conditions (Doney et al., 2012; 
Freeman et al., 2013; Jackson, 2010; Simpson, Blanchard, & 
Genner, 2013). Large numbers of tropical marine species are pre-
dicted to move to higher latitudes, (Cheung et al., 2009) and some 
coral reef species’ ranges have already shifted (Baird, Sommer, & 
Madin, 2012; Graham et al., 2014; Precht & Aronson, 2004), in-
cluding four coral species rapidly expanding their northern ranges 
by 14 km per year in Japan (Yamano, Sugihara, & Nomura, 2011). 
However, generally the range of suitable coral reef habitat will 
shrink due to limiting factors such as temperature, light availabil-
ity and aragonite saturation state (Freeman et al., 2013). Indeed, 
temperature and acidification have opposite latitudinal gradients, 
so coral reef ecosystems cannot shift to escape the effects of both 
(Van Hooidonk, Maynard, Manzello, & Planes, 2014). In tropical 
and subtropical coral reefs in Japan, suitable coral habitat will 
disappear by the 2040s under future projected temperature and 
acidification changes (Yara et al., 2012). Overall, while some in-
dividual species may disperse, it is unlikely that whole coral reef 
ecosystems will be able to shift to escape the effects of climate 
change (Hoegh- Guldberg et al., 2017). Understanding and predict-
ing climate- change driven range shifts is a key area of research in 
both terrestrial and marine ecosystems (Bonebrake et al., 2017).

Climate change also impacts on coral reef ecosystems through 
the interactions of individuals, populations and communities (see 
Figure 1). Corals are ecosystem engineers upon which the entire reef 
community depend: they build the ecosystem framework, providing 
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habitat for other organisms (Wild et al., 2011). The loss of habitat 
structural complexity due to coral reef dissolution and frequent 
bleaching can reduce the prevalence of other groups of organisms 
(Fabricius, De’ath, Noonan, & Uthicke, 2014), reduce fish biomass 
and abundance by threefold (Rogers, Blanchard, & Mumby, 2014) 
and change reef functioning (Wild et al., 2011).

Organism responses to climate change such as reduced repro-
ductive capacity in fish due to warming can have population- level 
consequences (Rummer & Munday, 2017), while species- specific 
responses to climate change such as differential adaptation and 
dispersal potential result in altered biotic interactions, trophic cas-
cades, loss of key species and disruption of metapopulation dynam-
ics, impacting on populations and communities (Doney et al., 2012; 

Graham et al., 2014; see Figure 1). For example, a Caribbean coral 
(Porites astreoides) unable to acclimate had 14%–61% lower en-
ergy reserve concentrations than corals which did acclimate after 
a repeat bleaching event: corals unable to acclimate are more sus-
ceptible to local extinction in the future, reducing overall reef bio-
diversity (Grottoli et al., 2014). Climate change also influences biotic 
interactions with negative consequences for coral: OA accelerated 
bioerosion of coral by a sponge (Cliona orientalis) by 61% under lower 
pH conditions in one study (Wisshak, Schonberg, Form, & Friewald, 
2012), while increasing temperatures by 2°C promoted 4.2–4.9 
times higher recruitment (and therefore coral predation) by coral 
crown- of- thorns starfish (Acanthaster planci or CoTS), a major issue 
in the GBR (Uthicke et al., 2015).

F IGURE  1 Flow diagram of the impacts of climate change and human activities on coral reefs from individuals to populations, 
communities, ecosystem functioning and socialecological systems (green), and coral reef organisms’ responses to mitigate the effects of 
climate change (orange). The direct impacts of climate change and local human activities on individuals can be multiplied through changes 
to physiology, behaviour and, therefore, reproduction, and this, combined with species- specific responses to climate change (acclimation, 
adaptation and dispersal) influence populations, communities and ultimately ecosystem functioning. The response of socialecological 
systems to climate change may also then influence local anthropogenic pressures in unanticipated ways. Management strategies aimed 
at reducing the impacts of climate change and local anthropogenic pressures, facilitating positive responses to them, and maintaining the 
resilience of communities and socialecological systems are shown in blue, with dotted blue lines linking management strategies to their level 
of direct impact on threats, and from organism to socio- ecological scales. Photograph of Gili Mimpang coral reef, Bali, Stefan Follows (http://
www.kpnphotographic.com/)
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These climate change- associated changes in community compo-
sition and biodiversity of coral reefs can ultimately lead to regime 
shifts or “novel ecosystems”, either non- coral ecosystems or alter-
native coral communities dominated by thermally resistant spe-
cies (Graham et al., 2014). While exactly predicting regime shifts 
is challenging, there are several conditions known to reduce coral 
reef resilience including herbivore removal, low reef structural com-
plexity and high nutrient concentrations (Fabricius, 2005; Graham, 
Jennings, MacNeil, Mouillot, & Wilson, 2015; Graham, Nash, & Kool, 
2011; Hughes, Graham, Jackson, Mumby, & Steneck, 2010; Hughes 
et al., 2007; Mumby, Hastings, & Edwards, 2007). Through differ-
ential mortality, range shifts and invasive species, ecosystems are 
changing and the functional consequences of these changes are 
largely unknown, leaving the future of coral reefs uncertain (Graham 
et al., 2014).

3  | INTER AC TIONS BET WEEN CLIMATE 
CHANGE FAC TORS AND LOC AL HUMAN 
AC TIVITIES

While climate change alone is a major threat to coral reefs, it cannot 
be considered in isolation when local human activities are severely 
damaging coral reef ecosystems (Burke, McManus, Spalding, & Perry, 
2011; Halpern et al., 2008; see Figure 1). These include direct dam-
age and sedimentation from coastal development, pollution from 
land- use change, increased nutrients from agriculture, invasive spe-
cies, overfishing and destructive fishing practices (Burke et al., 2011). 
These factors exacerbate the negative impacts of climate change on 
coral reefs through direct destruction of reefs and their structural 
complexity, increased bleaching susceptibility of corals, reduced 
coral recruitment and growth, and increased disease prevalence 
(Ateweberhan et al., 2013; Bijma, Portner, Yesson, & Rogers, 2013; 
Halpern et al., 2008). Table 1 provides some key examples of these 
harmful interactions for four major threats of sedimentation, nutrient 
enrichment, overfishing and destructive fishing. Due to these addi-
tional pressures, reefs are becoming less resistant to chronic climate 
change stressors, and are less able to recover from related distur-
bances such as bleaching, storms and CoTS outbreaks (Anthony et al., 
2011; Hughes et al., 2007; McClanahan, Graham, & Darling, 2014).

These interacting factors may be antagonistic (the combined im-
pact is less than the sum of their individual impacts), additive (the 
combined impact is equal to the sum of individual impacts) or syner-
gistic (the combined impact exceeds the sum of individual impacts) 
(Ban, Graham, & Connolly, 2014). Ban et al. (2014) synthesised all 
available studies on interactions between two or more stressors 
on coral reefs, finding that sedimentation, storms and temperature 
influenced the highest number of other stressors, while the most- 
influenced stressors were nutrients, CoTS and pathogens. Most 
stressor-stressor interactions were either additive or synergistic.

However, there are still very little data on most interactions, es-
pecially those where variables are not easy to control, such as fishing 
effort as this is often unmonitored (Ban et al., 2014). Disentangling 

the interacting impacts of a variety of stressors on such a compli-
cated ecosystem is highly challenging and may not be possible (Côté, 
Darling, & Brown, 2016). More research is needed to understand in-
teractions between stressors, especially those which most influence 
other stressors, to enable more effective management prioritisation 
to mitigate against the most severe impacts of climate change and 
human activities on coral reef ecosystems (Ban et al., 2014).

4  | COR AL REEF MANAGEMENT IN A 
CHANGING ENVIRONMENT

4.1 | Towards ecosystem- based management of 
coral reefs

Conservation goals for coral reefs have traditionally focused on re-
versing declines and returning the ecosystem to “pristine” conditions 
(Rogers et al., 2015). However, many people rely on reefs for food 
and livelihoods and multi- use of reefs requires careful consideration 
of the identification and understanding of trade- offs among con-
flicting management and conservation objectives. This also requires 
a detailed understanding of the multiple stakeholders involved in 
direct use of and those involved in distal activities that could be 
impacting reefs, for example, in the case of land- based pollution 
(Fredston- Hermann et al., 2016) and logging (Hamilton et al., 2017). 
The type of management and conservation measures in place needs 
to take into account a combination of the changing environmental 
and human impacts as well as their potentially changing benefits.

Marine protected areas or no- take marine reserves are the most 
common form of reef management, focusing predominantly on re-
ducing local anthropogenic pressures (Agardy, di Sciara, & Christie, 
2011; Mellin, Aaron MacNeil, Cheal, Emslie, & Julian Caley, 2016). 
The recent trend in designations of very large, remote MPAs such as 
the 640,000 km2 Chagos MPA (Jones & De Santo, 2016) to meet the 
10% coverage target of the Convention on Biological Diversity may 
represent political rather than science- based interests. These MPAs 
cost little to designate but may not be effective or representative 
(Jones & De Santo, 2016). They do not protect the most threatened 
reefs—those associated with high human population densities—nor 
address social issues such as maintaining ecosystem services for 
those reliant on reefs for food or income (Sale et al., 2014). Their 
designation should not divert attention from management of more 
damaged coral reefs in highly populated areas.

There is increasing recognition that coral reef management has 
been unable to halt degradation, and that returning to “pristine” 
conditions is an unrealistic goal (Abelson et al., 2016; Burke et al., 
2011; Hughes et al., 2017; Rinkevich, 2015), particularly in the con-
text of changing environmental conditions. Conservation is mov-
ing away from this more traditional approach, as research seeks to 
provide conservation practitioners with a more diverse toolbox, in-
cluding a range of indicators (Nash & Graham, 2016) and modelling 
frameworks (McClanahan et al., 2012). The focus of management 
has changed from individual species and selected reefs, to manage-
ment of the whole seascape, as the complexity of reef ecosystem 
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responses to climate change and local human stressors has been re-
alised (McClanahan, Graham, Macneil, & Cinner, 2015; Olsson, Folke, 
& Hughes, 2008; Weijerman et al., 2015). Ecosystem-based manage-
ment (EBM) is a more holistic framework, incorporating interactions 

within ecosystems and socialecological links, impacts of multiple 
stressors on key functional groups and ecosystem processes, with 
the goal of maintaining ecosystem functioning and services (Levin & 
Lubchenco, 2008).

TABLE  1 Key examples of local stressors and their interactions with climate change factors

Local stressor Interaction with climate change factors References

Destructive fishing practices such as 
blast (dynamite) and cyanide fishing, 
and destructive types of fishing 
gear, e.g., gill nets

Destruction of reef structure and reduction in 
structural complexity, which is also driven by climate 
change

Fox and Caldwell (2006), Graham et al. 
(2006) and Burke et al. (2011)

Coral bleaching and mortality exacerbated by cyanide Jones and Hoegh- Guldberg (1999) and Burke 
et al. (2011)

Overfishing. Globally, coral reef 
fisheries landings are 64% higher 
than is sustainable (Newton et al., 
2007)

Removal of herbivores increases algal growth, reducing 
space for coral growth and recruitment, and thus coral 
recovery after bleaching events

Hughes et al. (2007), Jackson (2010), Doney 
et al. (2012), Ateweberhan et al. (2013) and 
Wiedenmann et al. (2013)

Macroalgal growth also increases prevalence of coral 
diseases and experimentally induces 100% coral 
mortality through increasing microbes in the water

Smith et al. (2006) and Sandin et al. (2008)

Sedimentation Causes higher turbidity in coastal waters and leads to a 
reduction in light availability to corals (e.g., a 20% 
reduction in mean annual light availability in the GBR 
in wetter years), and therefore photosynthesis and 
growth

Fabricius (2011) and Fabricius, Logan, Weeks, 
and Brodie (2014)

Sedimentation is associated with higher abundance of 
macroalgae, by up to five times in one study in the 
GBR

De’ath and Fabricius (2010)

Reefs exposed to higher durations of sediment plumes 
had double the amount of diseases compared to 
nearby reefs with little or no exposure

Pollock et al. (2014)

Sedimentation reduces coral recruitment through 
reduced larval survival and lower abundance of 
coralline algae (60% in one laboratory study 
(Harrington, Fabricius, Eaglesham, & Negri, 2005))

Fabricius and De’ath (2001), Harrington et al. 
(2005) and Perez, Rodgers, Jokiel, Lager, 
and Lager (2014)

Nutrient enrichment Higher concentrations of dissolved inorganic nutrients 
do not directly kill corals but can reduce coral 
calcification and growth

Fabricius (2005, 2011), Chauvin et al. (2011), 
Ateweberhan et al. (2013) and Wiedenmann 
et al. (2013)

Coral diseases are also more (2–5× experimentally) 
prevalent under nutrient enrichment, which can 
exacerbate existing infections

Bruno, Petes, Harvell, and Hettinger (2003), 
Voss and Richardson (2006), Pollock et al. 
(2014) and Vega Thurber et al. (2014)

Nutrient enrichment leads to higher phytoplankton 
concentrations and therefore turbidity, decreasing 
zooxanthellae photosynthesis

Fabricius, 2011 

Increases nutrient- limited competitive macroalgae Fabricius (2011) and D’Angelo and 
Wiedenmann (2014)

Leads to higher frequency of CoTS outbreaks, because 
CoTS larvae are nutrient- limited. Modelled CoTS 
outbreaks in the GBR have increased from one in 
50–80 years to one every 15 years due to increased 
nutrient loading (Fabricius, Okaji, & De’ath, 2010)

Brodie, Fabricius, De’ath, and Okaji (2005) 
and Fabricius et al. (2010)

Higher nitrogen levels stimulate growth of zooxanthel-
lae; however when phosphorus- limited, and combined 
with heat and light stress, this can increase bleaching. 
Vega Thurber et al. (2014) found a 3.5- fold increase in 
bleaching frequency in corals exposed to higher levels 
of nitrogen and phosphorous experimentally. 
Nutrients therefore increase coral susceptibility to 
bleaching and lower “bleaching thresholds”

Veron et al. (2009), Wooldridge (2009), 
Wagner et al. (2010), Ateweberhan et al. 
(2013), Wiedenmann et al. (2013) and Vega 
Thurber et al. (2014)
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The concept of resilience has been advocated and can be used 
to support the design and implementation of EBM (Hughes et al., 
2017; Levin & Lubchenco, 2008). Ecological resilience can be de-
fined as the ability of an ecosystem to maintain the same structure 
and functioning in a changing environment, including resistance to 
stress and recovery from disturbances (Levin & Lubchenco, 2008; 
McClanahan et al., 2012). One of the benefits of embedding this 
framework into EBM for reefs is that resilience of coral reefs has 
been relatively well studied, for example, in the context of recovery 
following disturbance events such as bleaching (Anthony, 2016) and 
socio- ecological resilience (Cinner, Pratchett, et al., 2016; Kittinger, 
Finkbeiner, Glazier, & Crowder, 2012). Vulnerability frameworks 
that integrate across ecological, social and economic aspects of 
coral reefs are an important part of developing adaptive and more 
integrated ecosystem management strategies under climate change 
(Cinner, Huchery, et al., 2013).

In the context of climate change, changes in underlying reef 
resilience could also occur if key recovery processes (such as re-
cruitment, growth or dispersal) are impacted by climate change 
(Anthony, 2016). Management strategies could therefore enhance 
resilience to ongoing stressors (e.g., warming, sedimentation) and 
act directly to reduce the impacts of disturbances, such as con-
trol of CoTS (Anthony et al., 2015). Reducing local drivers of coral 
reef decline may increase the chances of re- establishment of coral- 
dominated reefs from degraded reefs which are themselves resis-
tant to change (Graham et al., 2013). Maintaining resilience also 
means retaining diversity and functional redundancy in the face 
of change, managing ecosystem connectivity, understanding and 
managing feedbacks, and promoting social principles including en-
couraging education, broadening participation and advocating in-
tegration of multiple stakeholders (Biggs et al., 2012; Hughes et al., 
2017).

To maintain the resilience of social- ecological systems to climate 
change, we advocate for the need to (1) minimise local stressors, (2) 
design MPAs that address not only local pressures but also incor-
porate measures to address global environmental change, (3) utilise 
active management approaches such as human- assisted evolution 
and reef restoration, and (4) develop coordinated management and 
governance at multiple scales from local customary tenure and com-
munity participation, to broader- scale MSP, to regulations at the in-
ternational scale. Each of these approaches is considered in depth 
below.

4.2 | Minimising local stressors

Reducing local anthropogenic impacts may make coral reefs more 
resilient to climate change and OA by reducing the harmful inter-
action with climate change factors (see Table 1) (Hoegh- guldberg & 
Bruno, 2010; Hughes et al., 2003; IGBP, 2013; Knowlton & Jackson, 
2008; Pandolfi et al., 2011). Reducing local stressors also buys time 
for coral reef species to adapt or acclimate (Hoegh- Guldberg, 2014), 
especially in more thermally resistant coral reefs with higher adap-
tive potential (e.g., Carilli et al., 2012), such as in the northern Red 

Sea and Arabian Gulf (Coles & Riegl, 2013; Fine, Gildor, & Genin, 
2013).

A long- term (20 years), large- scale (150,000 km2) study of coral 
reef communities on the Great Barrier Reef provided strong evi-
dence that reducing local anthropogenic impacts might make coral 
reefs more resilient to a range of stressors, including coral bleaching 
(Mellin et al., 2016). This was seen through 21%–38% higher sta-
bility of reef community composition, lower susceptibility to initial 
impacts, and 20% increased recovery times (Mellin et al., 2016). 
A simulation model for Bolinao in the Phillipines found that man-
agement of water quality, and to a lesser extent fishing, can signifi-
cantly improve reef state under future climate change scenarios, 
by enhancing recovery after bleaching events (Gurney, Melbourne- 
Thomas, Geronimo, Alino, & Johnson, 2013).

Increasing water quality through minimising sedimentation and 
nutrient enrichment could improve ecosystem health within decades 
(Fabricius, De’ath, McCook, Turak, & Williams, 2005). Better water-
shed management through improved agricultural practices near 
rivers, restoration of riparian reserves along rivers and of coastal 
floodplains and returning to more natural flow regimes could re-
duce run- off and nutrient enrichment (Kroon, Schaffelke, & Bartley, 
2014). Regulation of waste water could reduce bleaching severity 
(Wagner, Kramer, & Van Woesik, 2010), while minimising sedimenta-
tion should reduce coral diseases (Pollock et al., 2014) and decreas-
ing nutrient loads could allow more time for the adaptation of the 
coral–zooxanthellae symbiosis to global change (Wooldridge, 2009).

On eliminating fishing in protected areas, reef resilience may 
be increased through a number of mechanisms: herbivory, reduced 
coral predation, maintaining structural complexity and increased 
response diversity, and promoting recovery from bleaching events 
(Adam, Burkepile, Ruttenberg, & Paddack, 2015; Graham & Nash, 
2013; Graham et al., 2015; Mumby et al., 2007; Nash, Graham, 
Jennings, Wilson, & Bellwood, 2015). No- take marine reserves 
control fishing effort and enable fish populations to recover (Burke 
et al., 2011), but enforcement is often limited and reserves do not 
fulfil their function (McClanahan, Marnane, Cinner, & Kiene, 2006; 
McClanahan et al., 2015). Determining the carrying capacity of fish 
biomass in relation to environmental and anthropogenic variables 
could help managers to develop reference levels that would reduce 
trade- offs between fisheries’ objectives and the protection of reef 
function (Valdivia, Cox, & Bruno, 2017).

Alternative fishing restrictions, such as controlling species 
caught, fishing gear and access, and seasonal closures of breeding 
sites, can be successful at sustaining fish biomass while maintain-
ing key ecosystem functions such as herbivory (Burke et al., 2011; 
MacNeil et al., 2015; McClanahan et al., 2015; Nash, Abesamis, 
Graham, McClure, & Moland, 2016). Setting fisheries targets is chal-
lenging due to the multiple species with diverse ecological functions, 
however total catch biomass alone can provide easy, effective tar-
gets where more information is not available (McClanahan et al., 
2015). Climate change and certain fishing gears may simultaneously 
select for functionally important species. For example, spear guns 
target specific herbivorous species that are susceptible to climate 
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change, and as a result, restrictions on spear- guns could be a tar-
geted strategy for supporting reefs under pressure from climate 
change (Cinner et al., 2009). A key challenge is the quantification of 
the full suite of ecological, social and economic trade- offs associated 
with changes in any of the management levers that are used, but this 
could be addressed using management strategy evaluation (Fulton, 
Smith, Smith, & Johnson, 2014).

4.3 | Marine protected areas

The efficacy of current MPAs is debatable. A meta- analysis of 310 
MPAs found coral cover remained stable within MPAs but declined 
in fished areas outside, while marine reserves can successfully main-
tain reef fish biomass, but only in high compliance with MPA reg-
ulations (Cinner, Huchery, et al., 2016). A recent study in the GBR 
suggests MPAs can increase coral reef resilience to natural distur-
bances exacerbated by climate change, such as coral bleaching, dis-
ease and storms (Mellin et al., 2016), while in the Seychelles recovery 
after a bleaching event was faster within MPAs provided macroalgal 
cover was low (Wilson et al., 2012). However, several studies have 
not shown measurable positive impacts (Bruno & Valdivia, 2016; 
Graham et al., 2008, 2015; Selig, Casey, & Bruno, 2012), and many 
MPAs are small, with low enforcement and compliance, and as such 
do not achieve management objectives (Norström et al., 2016; Sale 
et al., 2014).

Given limited conservation resources (McCarthy et al., 2012) 
and the time needed to produce positive benefits within MPAs 
(McClanahan & Graham, 2015), investing in MPAs without con-
sidering future threats may result in them becoming less effec-
tive over time (McLeod, Salm, Green, & Almany, 2009). If MPAs 
are to support the resilience of coral reefs in the face of climate 
change, providing time for acclimation, adaptation or dispersal by 
reef species, forward looking design is critical (Ban et al., 2011; 
Lawler, Watson, & Game, 2015; McLeod et al., 2009). Although 
research has highlighted general characteristics of effective MPAs 
today (no- take, enforced, old, large and isolated) (Edgar et al., 
2014), other factors need to be considered in a high- CO2 world. 
MPA design needs to address future scenarios in addition to pres-
ent issues (Makino et al., 2014, 2015).

New MPAs should protect key areas under a range of future en-
vironmental scenarios. Key areas include locations where change 
is more gradual (“climate refugia”), ecologically important areas in-
cluding fish spawning aggregations, and areas predicted to be more 
resilient in the long- term, such as those with high herbivore popula-
tions and low sedimentation (Ban et al., 2011; Graham et al., 2008; 
Groves et al., 2012; McLeod et al., 2009). Recent research has also 
highlighted the importance of protecting degraded reefs in addition 
to healthy, resilient ones, due to their increasing percentage of global 
reef area (Abelson et al., 2016).

Small, unconnected MPAs are unsustainable as the surround-
ing seascape also needs to be managed, often in MPA networks 
(McLeod et al., 2009). MPA networks in particular should replicate 
habitat types within them (“spreading risk”), maintain ecological 

connectivity to facilitate recruitment and dispersal, and sustain not 
just biodiversity but ecosystem functioning and services, and key 
functional groups such as herbivorous fish (Groves et al., 2012; 
Lawler et al., 2015; McLeod et al., 2009; Mumby & Steneck, 2008). 
MPA placement should therefore reflect both current and future 
species distributions where ranges are expected to change, to facili-
tate dispersal (Makino et al., 2014).

Implementing MPAs that have been effectively designed to meet 
climate change objectives is not always sufficient because imple-
mentation does not always equate to compliance (McClanahan et al., 
2006). A total of 70% of coral reefs are found in developing nations 
with low enforcement capacity (Ban et al., 2011); thus, MPAs may 
suffer from poor compliance (McClanahan et al., 2006), which can 
have serious consequences for their effectiveness (McClanahan & 
Graham, 2015). Including local stakeholders in MPA planning and 
design may drive improved levels of compliance and improve reef re-
silience outcomes (Cinner, Huchery, et al., 2016). Bottom- up, partic-
ipatory management and conservation approaches that account for 
the local context are central to successful management outcomes on 
many coral reefs, particularly in developing nations (Christie et al., 
2009; Norström et al., 2016).

MPAs that are planned, designed and implemented using partic-
ipatory approaches and with explicit climate change objectives rep-
resent an important strategy in marine management. The benefits of 
an MPA could spill over into surrounding areas supporting fisheries 
(Harrison et al., 2012; Hughes et al., 2010; McCook et al., 2010), al-
though benefits are unlikely to be distributed evenly, introducing is-
sues of inequity (Cinner et al., 2014; Daw et al., 2015). Furthermore, 
MPAs are unlikely to be a cure- all for coral reef conservation be-
cause they do not provide direct protection from external impacts 
such as sedimentation from land run- off (Fabricius et al., 2005; Gilby, 
Maxwell, Tibbetts, & Stevens, 2015), and may only be effective at 
maintaining ecosystem services in reefs of high structural complex-
ity (Rogers et al., 2015). Where structural complexity is lost, reefs 
are heavily degraded, climate change impacts are unpredictable and 
there is high reliance on reefs, MPAs will need to be combined with 
other management approaches (Abelson et al., 2016; Graham et al., 
2013; Makino et al., 2015; Rogers et al., 2015).

4.4 | Active management approaches

On degraded reefs, removal of human pressures may be insufficient 
to facilitate recovery to coral- dominated ecosystems, suggesting that 
active reef restoration may be necessary to maintain healthy ecosys-
tems more resilient to climate change (Abelson et al., 2016; Adam 
et al., 2015; Rogers et al., 2015). Introducing artificial complexity to 
replace the lost habitat structures of low complexity reefs, for ex-
ample due to acidification, has been successful at small scales such 
as in the Gulf of Aqaba, Red Sea (Al- Horani & Khalaf, 2013; Rogers 
et al., 2015). Coral “gardening”, where corals are farmed in mid- water 
structures then transplanted to colonies, has been successful, lead-
ing to increased reproduction and larval dispersal (Rinkevich, 2014), 
for example, a 35% increase in oocyte production in farmed coral in 
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Eilat, Red Sea (Amar & Rinkevich, 2007). Furthermore, coral trans-
plantation could be used to reduce tourism exposure to natural reefs 
(Rogers et al., 2015). These techniques are unlikely to provide larger- 
scale solutions, yet can be effective locally.

Human- assisted evolution of coral reef organisms is another 
novel management tool, whereby genetically modified stress- 
tolerant corals are transplanted onto reefs (Anthony, 2016; van 
Oppen et al., 2015). This could also increase organisms’ resilience 
to environmental change by increasing resistance to stressors such 
as warming and acidification, and recovery from disturbances (van 
Oppen et al., 2015), and could maintain important ecosystem ser-
vices provided by corals (Anthony, 2016). However, it could lead to 
a monopoly of a few resistant species, reducing overall biodiversity 
(Anthony, 2016).

4.5 | Combining different tiers of conservation 
management with spatial planning

Conservation management cannot focus solely on biodiversity 
measures or maintaining pristine reefs in remote locations. Six mil-
lion fishers from nearly 100 countries rely on coral reefs for their 
livelihoods (Teh, Teh, & Sumaila, 2013); therefore, management 
needs to support the resilience of both coral reefs and the communi-
ties that depend on them (Anthony et al., 2015; Cinner, Pratchett, 
et al., 2016). Climate change impacts on reef social- ecological sys-
tems are bi- directional: how climate change impacts on communi-
ties determines how they then interact with the environment. For 
example, if climate change and local human pressures reduce local 
fish populations, will fishers look further afield for more fish, or turn 
to alternative incomes (Cinner, Pratchett, et al., 2016)? Such impacts 
are poorly understood, so the resilience of social- ecological systems 
to climate change cannot be predicted.

Reducing dependency on fishing is imperative to protecting coral 
reefs, but highly challenging in societies with population growth, a 
lack of alternative income sources and poor governance (Burke et al., 
2011; Newton, Côté, Pilling, Jennings, & Dulvy, 2007). These factors 
cannot be managed by conservation practitioners; however, man-
agement strategies built upon access rights, particularly, customary 
tenure are gaining traction (Christie et al., 2009; Jupiter, Cohen, 
Weeks, Tawake, & Govan, 2014). A key study of over 2,500 reefs 
globally showed that reefs doing better than predicted from their 
environmental and social context commonly had customary man-
agement schemes and marine tenure (Cinner, Huchery, et al., 2016). 
In contrast, reefs doing worse than predicted had technological 
commonalities such as intensive netting methods (Cinner, Huchery, 
et al., 2016). These findings suggest reef management may benefit 
from integrating customary and/or marine tenure arrangements, 
and gear restrictions rather than focusing solely on MPAs. These ar-
rangements arise within indigenous communities or kinship groups 
and restrict certain behaviours, for example fishing at specific times 
or locations. Importantly, these restrictions may support key reef 
functions and processes, with positive implications for coral reef re-
silience (Aswani, Albert, Sabetian, & Furusawa, 2007).

Further considerations often overlooked are large- scale or “dis-
tal” human drivers of coral reef degradation, which influence local 
anthropogenic threats such as fishing and pollution (Hughes et al., 
2017). These include international demand for certain species for 
food or the aquarium trade; increasing human migration (which may 
be exacerbated by climate change); foreign investments driving 
land use change; and changing fishing effort (Cinner, Graham, et al., 
2013; Norström et al., 2016; Rhyne et al., 2012; Sale et al., 2014). 
Broader management strategies, especially marine spatial planning, 
need to be used to combat these external drivers. MSP incorporates 
MPAs and zoning, supports key ecosystem services, and separates 
conflicting uses of marine resources, for example by dividing coastal 
waters for different activities (e.g., conservation, food security and 
livelihoods) and integrating local and regional targets (Agardy et al., 
2011; Sale et al., 2014). This approach compensates for many of the 
deficits of MPAs on their own, incorporating them into a broader 
system of management and preventing degradation of surrounding 
areas (Agardy et al., 2011). It should also reduce conflicts, maintain 
ecosystem services, and can facilitate rights- based governance (Sale 
et al., 2014). For instance, models for a national spatial plan for Belize 
which quantified ecosystem services led to a 25% increase in coastal 
protection with increases in tourism and doubling of fishing reve-
nue when contrasted with models only including stakeholder views 
(Arkema et al., 2015).

Prioritisation of goals at national and regional scales, the in-
clusion of ecosystem services, and broad, coordinated conserva-
tion planning are essential to protecting coral reefs. Successful 
implementation of MSP will require adaptation to local need 
and governance, participation of communities and stakehold-
ers, political motivation at national and international levels, and 
support from NGOs and international development partners. 
Internationally, regulation of markets and the aquarium trade 
could reduce  demands on coral reefs by ensuring fish are caught 
through  sustainable measures (Burke et al., 2011). For example, 
international screening for the effects of cyanide poisoning on live 
fish could promote sustainable fishing (Calado et al., 2014). From 
local, rights- based management, through to regional and national 
marine planning and international laws and regulations on trade, 
coral reef conservation is a multi- scale objective requiring support 
from a wide variety of stakeholders and organisations.

5  | CONCLUSIONS

Coral reefs are severely threatened by a suite of human- induced stress-
ors at local and global scales. Ecosystem- based management combined 
with resilience thinking can be used to better effect than approaches 
which do not take into account the multi- use, complex social- ecological 
nature of coral reef systems. Improving MPA design to enable coral reef 
organisms to adapt, acclimate or disperse under climate change is nec-
essary but not sufficient: a range of other conservation tools will need 
to be employed including management of external stressors, alterna-
tive fisheries restrictions, novel approaches such as active restoration, 
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inclusion of social–ecological factors and action on multiple scales. 
Figure 1 summarises various management strategies aimed at reducing 
the impacts of climate change and local human activities, facilitating 
positive responses to them via acclimation, adaptation or dispersal, and 
sustaining ecosystem services and functioning to maintain the resil-
ience of social- ecological systems.

To save coral reefs in the long- term, global action to reduce car-
bon emissions and limit warming to 1.5- 2°C is vital (Frieler et al., 
2012; Hoegh- guldberg & Bruno, 2010; Hoegh- Guldberg et al., 2017). 
However, integration of MPAs with other management strategies 
and participatory approaches provide the best chance of maximis-
ing coral reef resilience in the face of climate change, while ensuring 
equitable access to the valuable ecosystem services they provide.
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