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Abstract

This article addresses the effects of homogeneous-heterogeneous reactions in

peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical

modelling and analysis have been carried out in the presence of Hall current. The

channel walls satisfy the more realistic convective conditions. The governing partial

differential equations along with long wavelength and low Reynolds number

considerations are solved. The results of temperature and heat transfer coefficient

are analyzed for various parameters of interest.

Introduction

In the last few decades, the peristaltic motion of non-Newtonian fluids is a topic

of major contemporary interest both in engineering and biological applications.

To be more specific, such motion occurs in powder technology, fluidization,

chyme movement in the gastrointestinal tract, vasomotion of small blood vessels,

locomotion of worms, gliding motility of bacteria, passage of urine from kidney to

bladder, reproductive tracts, corrosive and sanitary fluids transport, roller, finger

and hose pumps and blood pump through heart lung machine. There is no doubt

that viscoelasticity has key role mostly in all the aforementioned applications.

Viscoelastic materials are non-Newtonian and possess both the viscous and elastic

properties. Most of the biological liquids such as blood at low shear rate, chyme,

food bolus etc. are viscoelastic in nature. Another aspect which has yet not been

properly addressed is the interaction of rheological characteristics of fluids in

peristalsis with convective effects. The significance of convective heat exchange

with peristalsis cannot be under estimated for instance in translocation of water in

tall trees, dynamic of lakes, solar ponds, lubrication and drying technologies,

diffusion of nutrients out of blood, oxygenation, hemodialysis and nuclear

reactors. The heat and mass transfer effects in such processes have prominent role.
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The magnetohydrodynamic (MHD) character of fluid especially in physiological

and industrial processes seems too much important. Such consideration is useful

for blood pumping and magnetic resonance imaging (MRI), cancer therapy,

hyperthermia etc. The controlled application of low intensity and frequency

pulsating fields modify the cell and tissue behavior. Magnetically susceptible of

chyme is satisfied from the heat generated by magnetic field or the ions contained

in the chyme. Also the magnetotherapy is an application of magnets to human

body which is used for the treatment of diseases. The magnets could heal

inflammations, ulceration, several diseases of bowel (intestine) and uterus. With

all such motivations in mind, the recent researchers are engaged in the

development of model of peristalsis of non-Newtonian liquids through different

aspects including heat/mass transfer, MHD etc. Few representative attempts in

this direction can be mentioned through the recent researchers [1–13] and several

studies therein.

To our knowledge, no study has been undertaken yet to discuss the effects of

homogeneous-heterogeneous reactions in peristaltic flows of non-Newtonian

fluids. Even such study is yet not presented for the viscous fluid. However such

consideration is quite important because many chemically reacting systems

involve both homogeneous and heterogeneous reactions, with examples occurring

in combustion, biochemical systems, catalysis, crops damaging through freezing,

cooling towers, fog dispersion, hydrometallurgical processes etc. Hence the main

objective of present investigation is to model and analyze the peristalsis of Carreau

fluid in a compliant wall channel with convective conditions and homogeneous-

heterogeneous reactions. Effects of Hall current and viscous dissipation are also

considered. The resulting mathematical systems are solved and examined in the

case of long wavelength and small Reynolds number. This article is structured as

follows. Section two consists of mathematical modelling and solution expressions

up to first order. The behaviors of sundry variables on the temperature, heat

transfer coefficient and concentration are discussed graphically in section three.

Main results of present study are also included in this section.

Mathematical Formulation

Consider the peristaltic transport of an incompressible Carreau fluid in two-

dimensional compliant wall channel. The channel walls satisfy the convective

conditions. The Cartesian coordinates x and y are considered along and transverse

to the direction of fluid flow respectively. The flow is generated by the peristaltic

wave of speed c travelling along the channel walls. The Hall effects are also

considered in the flow analysis. Further we consider the flow in the presence of a

simple homogeneous and heterogeneous reaction model. There are two chemical

species �A and �B with concentrations �a and �b respectively. The physical model of

the wall surface can be analyzed by the expression:

y~+g(x,t)~dza sin
2p
l

(x{ct), ð1Þ
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where a represents the wave amplitude, l the wavelength, d the half width of

symmetric channel, t the time, g displacement of upper wall and {g displacement

of lower wall.

Consider the uniform magnetic field in the form

B0~(0,0,B0): ð2Þ

Application of generalized Ohm’s law leads to the following expression

J~s V|B0{
1

en
^ (J|B0)

� �
, ð3Þ

where J represents the current density, s the electrical conductivity, V the velocity

field, e the electric charge and n
^

the number density of electrons. Also the effects

of electric field are considered absent i.e. E~0:
If V~½u,u,0� is the velocity with components u and u in the x and y directions

respectively then from Eqs. (2) and (3) we have

J|B0~
{sB2

0

1zm2
u{muð Þ, uzmuð Þ,0½ �, ð4Þ

where m~
sB0

en
^ serves as the Hall parameter. The reaction model is considered in

the form [14–16]:

�Az2�B?3�B, rate~kcab2,

while on the catalyst surface we have the single, isothermal, first order chemical

reaction.

�A?�B, rate~ksa,

in which kc and ks are the rate constants. Both reaction processes are assumed

isothermal.

The corresponding flow equations are as follows:

Lu
Lx

z
Lu

Ly
~0, ð5Þ

r
du
dt

~{
Lp
Lx

z
LRxx

Lx
z

LRxy

Ly
{

sB2
0

1zm2
u{muð Þ, ð6Þ

r
du

dt
~{

Lp
Ly

z
LRyx

Lx
z

LRyy

Ly
{

sB2
0

1zm2
uzmuð Þ, ð7Þ

rcp
dT
dt

~k
L2T
Lx2

z
L2T
Ly2

� �
zRxx

Lu
Lx

zRxy
Lu

Lx
zRyx

Lu
Ly

zRyy
Lu

Ly
, ð8Þ
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da
dt

~DA
L2a
Lx2

z
L2a
Ly2

� �
{kcab2, ð9Þ

db
dt

~DB
L2b
Lx2

z
L2b
Ly2

� �
zkcab2, ð10Þ

where Rij are the components of extra stress tensor for the Carreau fluid and extra

stress tensor R (see refs. [17] and [25]) here is given by

R~½g?z(g0{g?)(1z(C _c)2)
n{1

2 )� _c: ð11Þ

Here g? is the infinite shear-rate viscosity, g0 the zero shear-rate viscosity, C the

time constant and n the dimensionless form of power law index (nv1). Also _c is

defined as follows:

_c~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X
i

X
j

_cij _cji

s
~

ffiffiffiffiffiffiffiffi
1
2
P

r
, ð12Þ

where P denotes the second invariant strain tensor defined by

P~tr½+Vz(+V)t�2 and _c~+Vz(+V)t: Here we consider the case for which

g?~0 and C _cv1: Therefore the extra stress tensor takes the form

R~g0 1z(C _c)2� �n{1
2

� �
_c: ð13Þ

It is worth mentioning that the above model reduces to viscous model for n~1 or

C~0: The component forms of extra stress tensor are

Rxx ~ 2m0½1z
n{1

2
(C _c)2� Lu

Lx
, ð14Þ

Rxy ~ m0½1z
n{1

2
(C _c)2�( Lu

Ly
z

Lu

Lx
)~Ryx, ð15Þ

Ryy ~ 2m0½1z
n{1

2
(C _c)2� Lu

Ly
: ð16Þ

In above equations
d
dt

is the material time derivative, r the density of fluid, m0

the fluid viscosity, n the kinematic viscosity, T the fluid temperature, C the

concentration of fluid, T0 and T1 the temperatures at the lower and upper walls

respectively, K the measure of the strength of homogeneous reaction, DA and DB

the diffusion coefficients for homogeneous and heterogeneous reactions, cp the

specific heat at constant pressure, k the thermal conductivity, a and b the

concentrations of homogeneous and heterogeneous reactions with a0 serves as

uniform concentration of reactant A and kc the rate constant.
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The exchange of heat at the walls is given by

k
LT
Ly

~ {h1(T{T1), at y~g,

k
LT
Ly

~ {h2(T0{T), at y~{g:

ð17Þ

Here h1 and h2 indicate the heat transfer coefficients at the upper and lower

walls respectively.

The no-slip condition at the boundary wall is represented by the following

expressions

u~0, u~+gt at y~+g: ð18Þ

The compliant wall properties are described through the expression

{t
L3

Lx3
zm�1

L3

LxLt2
zd0

L2

LtLx

� �
g~

{r
du
dt

z
LRxx

Lx
z

LRxy

Ly
{

sB2
0

1zm2
u{muð Þ at y~+g,

ð19Þ

in which t is the elastic tension in the membrane, m�1 the mass per unit area and d’
the coefficient of viscous damping. The mass conditions under the homogeneous

and heterogeneous reactions are given through the following expressions:

DA
La
Ly

~ksa, at y~+g, ð20Þ

Figure 1. Plot of temperature h for wall parameters E1, E2, E3, with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6,
Br~1, m1~2, n~0:4, We~0:4 and m~0:04

doi:10.1371/journal.pone.0113851.g001

Homogeneous-Heterogeneous Reactions with Peristalsis

PLOS ONE | DOI:10.1371/journal.pone.0113851 December 2, 2014 5 / 24



DB
Lb
Ly

~{ksa, at y~+g, ð21Þ

where ks indicates the rate constant.

Performing
L
Ly

(6){
L
Lx

(7) we get

r
d
dt

Lu
Ly

{
Lu

Lx

� �
~

L2Rxx

LyLx
{

L2Ryx

Lx2
z

L2Rxy

Ly2
{

L2Ryy

LxLy
{

sB2
0

1zm2

Lu
Ly

{m
Lu

Ly

� �
z

sB2
0

1zm2

Lu

Lx
zm

Lu
Lx

� �
:

ð22Þ

Figure 2. Plot of temperature h for Brinkman number Br with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6, E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04

doi:10.1371/journal.pone.0113851.g002

Figure 3. Plot of temperature h for Biot number ª1 with E~0:1, t~0:01, x~0:2, Br~1, ª2~6, E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04

doi:10.1371/journal.pone.0113851.g003
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Introducing the stream function y x,y,tð Þ and defining the following

dimensionless variables:

u~
Ly

Ly
, u~{

Ly

Lx
,

y�~
y

cd
,x�~

x
l

,y�~
y
d

, t�~
ct
l

, g�~
g

d
,h~

T{T0

T1{T0
,b_c~ d

c
_c,j�~

DB

DA
,

g�~
a
a0

,h�~
b
a0

,R�xx~
l

m0c
Rxx, R�xy~

d
m0c

Rxy, R�yx~
d

m0c
Ryx,R�yy~

d
m0c

Ryy: ð23Þ

Eqs. (8), (9) and (22) yield

dRe
d
dt

L2y

Ly2
zd2 L2y

Lx2

� �� �
~d2 L2Rxx

LyLx
{d2 L2Ryx

Lx2
z

L2Rxy

Ly2
zd

L2Ryy

LxLy

{
m2

1

1zm2

L2y

Ly2
zd2 L2y

Lx2
z2md

L2y

LxLy

� �
,

ð24Þ

d Pr Re
dh

dt
~

d2 L2h

Lx2
z

L2h

Ly2
zBr d2Rxx

L2y

Ly2
{d2Rxy

L2y

Lx2
zRyx

L2y

Ly2
{d3Ryy

L2y

LxLy

� �
,

ð25Þ

Red
dg
dt

~
1
Sc

d2 L2g
Lx2

z
L2g
Ly2

� �
{Kgh2, ð26Þ

Figure 4. Plot of temperature h for Biot number ª2 with E~0:1, t~0:01, x~0:2, ª1~4, Br~1 E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g004
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Red
dh
dt

~
j

Sc
d2 L2h

Lx2
z

L2h
Ly2

� �
zKgh2, ð27Þ

with the dimensionless conditions

g ~ 1zE sin 2p x{tð Þ, ð28Þ

Lh

Ly
zc1(h{1) ~ 0 at y~g,

Lh

Ly
{c2h ~ 0 at y~{g, ð29Þ

Lg
Ly

{Mg~0 at y~+g, ð30Þ

j
Lh
Ly

zMh~0 at y~+g, ð31Þ

yy~0 at y~+g, ð32Þ

E1
L3

Lx3
zE2

L3

LxLt2
zE3

L2

LxLt

� �
g~{Red

d
dt

(
Ly

Ly
)zd2 L

Lx
Rxxz

L
Ly

Rxy

{
m2

1

1zm2

Ly

Ly
zmd

Ly

Lx

� �
at y~+g: ð33Þ

Figure 5. Plot of temperature h for Hall parameter m with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6, E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and Br~1:

doi:10.1371/journal.pone.0113851.g005
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Also Eqs. (14–16) become

Rxx~ 2(1z
n{1

2
We2b_c2

)yxy, ð34Þ

Rxy~ Ryx~2(1z
n{1

2
We2b_c2

)(yyy{d2yxx), ð35Þ

Ryy ~ {2d(1z
n{1

2
We2b_c2

)yxy: ð36Þ

In above equations asterisks have been omitted for simplicity. Here d is the

dimensionless wave number, the Reynolds number Re, the Prandtl number Pr, the

Figure 6. Plot of temperature h for Hartman number m1 with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6, E1~0:4,
E2~0:2, E3~0:3, Br~1, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g006

Figure 7. Plot of temperature h for Weissenberg number We with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6,
E1~0:4, E2~0:2, E3~0:3, m1~2, n~0:4, Br~1 and m~0:04:

doi:10.1371/journal.pone.0113851.g007

Homogeneous-Heterogeneous Reactions with Peristalsis

PLOS ONE | DOI:10.1371/journal.pone.0113851 December 2, 2014 9 / 24



amplitude ratio E, the chemical reaction parameter c, the Hartman number m1,

the non-dimensional elasticity parameters E1, E2, E3, the Schmidt number Sc, the

Eckert number E, the Brinkman number Br, the heat transfer Biot numbers c1, c2,

the Weissenberg number We, the ratio of diffusion coefficient j, the strength

measuring parameters K and M (for homogeneous and heterogeneous reaction

respectively) and _̂c (non-dimensional form of _c) are given through the following

variables:

d ~
d
l

,Re~
cd
n

, Pr ~
mcp

k
,E~

a
d

,We~
Cc
d

,E~
c2

(T1{T0)cp
,

Sc ~
m0

rDA
,E1~{

td3

l3m0c
,E2~

m�1cd3

l3m0

,E3~
d3d

0

ml2 ,Br~EPr,

b_c ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 L2y

LxLy

� �2

z
L2y

Ly2
{d2 L2y

Lx2

� �s
,c1~

h1d
k

,c2~
h2d

k
,

m2
1 ~

sB2
0d2

m0
,j~

DB

DA
,K~

kca2
0d2

n
,M~

ksd
DA

:

ð37Þ

We now employ the approximations of long wavelength and low Reynolds

number [17–23] and equality of diffusion coefficients DA and DB i.e. j~1: The

assumption j~1 leads to the following relation:

g(g)zh(g)~1, ð38Þ

and we obtain the following set of equations

Figure 8. Plot of temperature h for power law index n with E~0:1, t~0:01, x~0:2, ª1~4, ª2~6, E1~0:4,
E2~0:2, E3~0:3, m1~2, We~0:4, Br~1 and m~0:04:

doi:10.1371/journal.pone.0113851.g008
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L4y

Ly4
z

3
2

(n{1)We2 L4y

Ly4

L2y

Ly2

� �2

z3(n{1)We2 L3y

Ly3

� �2
L2y

Ly2
{

m2
1

1zm2

L2y

Ly2
~0,

ð39Þ

L2h

Ly2
zBr

L2y

Ly2

� �2

1z
n{1

2
We2 L2y

Ly2

� �2
 !

~0, ð40Þ

1
Sc

L2g
Ly2

{Kg(1{g)2~0, ð41Þ

Figure 9. Plot of heat transfer coefficient Z for wall parameters E1, E2, E3, with E~0:1, t~0:01, ª1~4,
ª2~6, m1~2, We~0:4, n~0:4, Br~1 and m~0:04:

doi:10.1371/journal.pone.0113851.g009

Figure 10. Plot of heat transfer coefficient Z for Brinkman number Br with E~0:1, t~0:01, ª1~4, ª2~6,
E1~0:4, E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g010
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Ly

Ly
~ 0 at y~+g, ð42Þ

Lh

Ly
zc1 h{1ð Þ ~ 0, at y~g,

Lh

Ly
{c2h ~ 0, at y~{g,

ð43Þ

Lg
Ly

{Mg ~ 0, at y~+g, ð44Þ

E1
L3

Lx3
zE2

L3

LxLt2
zE3

L2

LxLt

� �
g ~

L3y

Ly3
z

3
2

(n{1)We2 L2y

Ly2

� �2L3y

Ly3

{
m2

1

1zm2

Ly

Ly
at y ~ +g:

ð45Þ

2.1 Method of solution

It is seen from Eqs. (39) and (41) that these Eqs. are non-linear and involve

Weissenberg number We and homogeneous reaction parameter K respectively.

Therefore the problem at hand cannot be solved exactly, but can be linearized

about "small" parameter to the mathematical description of the exactly solvable

problem. The technique is referred as perturbation. Perturbation method

represent a very powerful tool in modern mathematical physics and, in particular,

in fluid dynamics and leads to a series solution of resulting system of equations

having small paramter. Therefore we have applied this method to form the series

Figure 11. Plot of heat transfer coefficient Z for Biot number ª1 with E~0:1, t~0:01, Br~1, ª2~6, E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g011
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solutions for stream function y, temperature h and concentration g corre-

sponding to the involved non-linear quantities (We and K). For this we write the

flow quantities in the forms:

y~y0zWe2y1zO We4
� �

,

h~h0zWe2h1zO We4
� �

,

g~g0zKg1zO K2
� �

,

Z~Z0zWe2Z1zO(We4):

2.2 Zeroth order system and its solution

The zeroth order system is given by

L4y0

Ly4
{

m2
1

1zm2

L2y0

Ly2
~ 0, ð46Þ

L2h0

Ly2
zBr

L2y0

Ly2

� �2

~ 0, ð47Þ

1
Sc

L2g0

Ly2
~0, ð48Þ

Ly0

Ly
~0, at y~+g, ð49Þ

Figure 12. Plot of heat transfer coefficient Z for Biot number ª2 with E~0:1, t~0:01, ª1~4, Br~1, E1~0:4,
E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g012
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Lh0

Ly
zc1(h0{1)~0 at y~g,

Lh0

Ly
{c2h0~0 at y~{g, ð50Þ

Lg0

Ly
{Mg0~0, at y~+g, ð51Þ

Figure 13. Plot of heat transfer coefficient Z for Hall parameter m with E~0:1, t~0:01, ª1~4, ª2~6,
E1~0:4, E2~0:2, E3~0:3, m1~2, n~0:4, We~0:4 and Br~1:

doi:10.1371/journal.pone.0113851.g013

Figure 14. Plot of heat transfer coefficient Z for Hartman number m1 with E~0:1, t~0:01, ª1~4, ª2~6,
E1~0:4, E2~0:2, E3~0:3, Br~1, n~0:4, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g014
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E1
L3

Lx3
zE2

L3

LxLt2
zE3

L2

LxLt

� �
g~

L3y0

Ly3
{

m2
1

1zm2

Ly0

Ly
at y~+g: ð52Þ

The solutions of Eqs. (46–48) subject to the boundary conditions (49–52) are

y0~A2(
ffiffiffiffi
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2.3 First order system and its solution

At this order we have
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Ly4
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3
2

(n{1)
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� �2
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{
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1
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L2y1

Ly2
~0, ð57Þ

Figure 15. Plot of heat transfer coefficient Z for Weissenberg number We with E~0:1, t~0:01, ª1~4,
ª2~6, E1~0:4, E2~0:2, E3~0:3, m1~2, n~0:4, Br~1 and m~0:04:

doi:10.1371/journal.pone.0113851.g015
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{c2h1~0 at y~{g, ð61Þ
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{
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Solving Eqs. (57–59) and then applying the corresponding boundary conditions

we get the solutions in the forms given below:

Figure 16. Plot of heat transfer coefficient Z for power law index n with E~0:1, t~0:01, ª1~4, ª2~6,
E1~0:4, E2~0:2, E3~0:3, m1~2, Br~1, We~0:4 and m~0:04:

doi:10.1371/journal.pone.0113851.g016
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Figure 17. Plot of concentration g for homogeneous reaction parameter K with E~0:2, t~0:1, x~0:1,
Sc~1:5 and M~2.

doi:10.1371/journal.pone.0113851.g017

Figure 18. Plot of concentration g for heterogeneous reaction parameter M with E~0:2, t~0:1, x~0:1,
Sc~1:5 and K~0:5.

doi:10.1371/journal.pone.0113851.g018
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g1~H1zC1yzC2y2zC3y3zC4y4zC5y5, ð66Þ

and the heat transfer coefficient is
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Figure 19. Plot of concentration g for Schmidt number Sc with E~0:2, t~0:1, x~0:1 K~0:5 and M~2.

doi:10.1371/journal.pone.0113851.g019
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Results and Discussion

This section is prepared to explore the effects of influential parameters on the

temperature, heat transfer coefficient and concentration.

3.1 Temperature profile

Figs. (1–8) are formulated to examine the impact of various involved parameters

on temperature distribution h: Fig. 1 indicates the increasing behavior of

temperature profile with wall parameters E1 and E2 while E3 corresponds to

reduction in temperature profile. It is in view of the fact that elastic properties of

the wall depicted by E1 and E2 cause less resistance to flow of fluid velocity as well

as energy. On the other hand the damping characteristic of the wall identified by

E3 reduces the velocity and temperature of the fluid (see Fig. 1). The temperature
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profile is an increasing function of Brinkman number Br (see Fig. 2). This is

because of the increase in internal resistance of fluid particles which increases the

fluid temperature. The Biot numbers c1 and c2 on the lower and upper walls have

similar effect on the temperature profile i:e: increase in c1 and c2 decreases the

temperature profile near upper and lower channel walls respectively (see Figs. 3

and 4). It is seen that increasing c1 and c2 reduces the thermal conductivity which

causes reduction of temperature profile. The Hall parameter m increases the

temperature. This is due to the fact that electrical conductivity increases with

increasing values of m (see Fig. 5). It is observed from Fig. 6 that Hartman

number m1 lessens the temperature distribution. Also the results drawn in Figs. 7

and 8 show opposite effects of Weissenberg number We and the power law index

n i:e:, increasing values of We reduces the temperature whereas an increase in n
enhances the temperature of fluid. The obtained results are in good agreement

with the articles presented in [17–19].

3.2 Heat transfer coefficient

Figs. 9–16 demonstrate the influence of embedded parameters on the heat transfer

coefficient Z: The graphs signify the oscillatory behavior of Z because of the

propagation of peristaltic waves. Fig. 9 reveals that magnitude of heat transfer

coefficient increases for compliant wall parameters E1, E2 and E3. Since E1, E2 and

E3 describes the elastic nature of wall that offer less resistance to heat transfer.

Increasing values of Brinkman number Br show similar behavior on heat transfer

as of wall parameters. However the results obtained are much more distinguished

in case of Br (see Fig. 10). The Biot number c1 causes reduction in magnitude of

heat transfer coefficient on the upper wall. Here thermal conductivity decreases

with an increase in c1 which lessens the impact of heat transfer coefficient near

positive side (xw{0:1) as depicted in Fig. 11. Reverse effect of Biot number c2

has been observed in the region from Fig. 12 as heat transfer being directly related

to Biot number dominates with an increase in c2 which in turn increases the heat

transfer distribution. Fig. 13 shows decrease in heat transfer coefficient Z with

Hall parameter m. Also in absence of Hall parameter (m~0) the results are much

more distinguished. The Hartman number m1 is an increasing function of heat

transfer coefficient Z as fluid viscosity decreases with an increase in m1. The less

viscous fluid particles will move through gain of higher kinetic energy that causes

rise in transfer of heat (see Fig. 14). The effects of Weissenberg number We are

displayed in Fig. 15. The obtained results show increase in transfer of heat when

We increases as speed of wave increases with an increase in We that supports the

transfer of heat. The increasing values of power law index show decline in heat

transfer distribution (see Fig. 16).

3.3 Homogeneous-Heterogeneous reactions effects

Effects of homogeneous and heterogeneous reaction parameters M and K and

Schmidt number Sc are displayed in the Figs. 17–19. The results drawn in Fig. 17
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illustrates the dual behavior of homogeneous reaction parameter K on the

concentration profile. It is observed that concentration increases in the region

xw0:5 as in this region increase in K enhances the fluid density hence

concentration rises while in the region xv0:5 the concentration decreases because

viscosity reduces. On the other hand the heterogeneous reaction parameter M
shows the opposite behavior when compared with K i:e: it increases along positive

side of the coordinate axes xv0ð Þ (since diffusion reduces with an increase in M
and less diffused particles will rise the concentration) and decreases along negative

side of coordinate axes (xw0) (as increase in rate of reaction dominates the

decrease in diffusion in this region). It is evident from Figs. 17 and 18 that the

concentration distribution of reactants increases from {g to g in both cases and

after a certain value of g it starts decaying. This critical value of g depends on the

strength of homogeneous reaction and it is prominent for increasing K . The

effects of Schmidt number Sc are depicted in Fig. 19. The exhibited results are

quite similar to Fig. 17. The drawn results follow by the fact that viscosity of fluid

increases with an increase in Schmidt number that provides resistance to flow of

fluid. The slow moving fluid particles have small molecular vibrations which

lessen the concentration of fluid. As Schmidt number defines the ratio of viscous

diffusion rate to molecular diffusion rate. Hence increasing values of Sc enhances

the viscous diffusion rate for fixed molecular diffusion rate which in turn helps to

increase the concentration of fluid (see Fig. 19). The similar findings are reported

by Shaw et al. [24].

3.4 Concluding remarks

The present analysis explores the effects of homogeneous and heterogeneous

reactions in the peristalsis of Carreau fluid. Such analysis even for viscous fluid is

yet not available. The major results of this study are listed below.

N Similar behavior is observed for compliant wall parameters on temperature

profile and heat transfer coefficient.

N Temperature is increasing function of Brinkman number and Hall parameter.

N The Biot numbers and Hartman number decrease the temperature of fluid.

N Opposite effects of Weissenberg number We and power law index n are

observed on the temperature profile and heat transfer coefficient.

N Concentration of the reactants is more signified in case of homogeneous

reaction parameter K than heterogeneous reaction parameter M.
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