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Abstract: To improve the recognition rate of lower limb actions based on surface electromyography
(sEMG), an effective weighted feature method is proposed, and an improved genetic algorithm
support vector machine (IGA-SVM) is designed in this paper. First, for the problem of high feature
redundancy and low discrimination in the surface electromyography feature extraction process, the
weighted feature method is proposed based on the correlation between muscles and actions. Second,
to solve the problem of the genetic algorithm selection operator easily falling into a local optimum
solution, the improved genetic algorithm-support vector machine is designed by championship with
sorting method. Finally, the proposed method is used to recognize six types of lower limb actions
designed, and the average recognition rate reaches 94.75%. Experimental results indicate that the
proposed method has definite potentiality in lower limb action recognition.

Keywords: action recognition; surface electromyography; weighted feature method; championship
and sorting

1. Introduction

Muscles are an important part of the human body and provide power for locomo-
tion [1]. Surface electromyography (sEMG) is derived from the surface of human skeletal
muscle, is closely related to neuromuscular activity and contains much information related
to limbs [2]. sEMG signals are acquired by placing sEMG sensors on the muscle surface
and recording electrical signals [3]. sEMG has been widely used in the field of action
recognition and has achieved compelling results [4–8]. Since sEMG involves nonstationary
bioelectric signals, wearers will experience muscle fatigue, unstable sEMG signals and other
interference during the signal acquisition process. Therefore, as the training time increases,
the SNR will decrease and the noise will increase [9]. This requires the extraction of more
representative signal features to represent the activity of muscle [10]. Many researchers use
time-domain and frequency-domain analysis methods to obtain feature vectors [11–13].
However, pure time-domain and frequency-domain features contain less useful informa-
tion to characterize the activity of muscle. Recent studies have shown that features in
the time-frequency domain can effectively characterize the activity information of sEMG
signals [14]. After the researchers extract the features, they usually perform dimensionality
reduction processing on the features [15,16] to reduce the dimensionality of features while
retaining some effective features as much as possible; this can reduce the redundancy of the
feature vector, but will still discard some effective features. Therefore, the discrimination
of actions and the recognition rate will be reduced. In response to the above problems,
the weighted feature method based on the correlation between muscles and actions was
proposed. The extracted original features of different channels are weighted differently.
Therefore, the weighted features can be obtained. In the same action and different channels,
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the redundancy of features can be reduced. In different actions and the same channel, the
discrimination of features can be increased.

At present, classification algorithms that are commonly used for the construction
of sEMG signal classification models include linear discriminant analysis (LDA), the
nonparameter estimation classifier K-nearest neighbors (KNN), SVM based on discriminant
function analysis, convolutional neural networks (CNNs), etc. [17–19]. The LDA classifier
finds the most suitable linear combination of data variables. Its calculation is easier
and suitable for identifying the difference between linear samples, but it is not ideal for
nonlinear classification [20]. KNN is easier to implement and has efficient computing power,
but the classification recognition rate is greatly reduced when new samples of imbalanced
data sets are input [21]. A CNN can automatically extract signal features and is suitable for
high-dimensional data processing, but it easily falls into a local optimum. Moreover, the
encapsulation of the feature extraction process increases the difficulty of improving the
network [22]. SVM can solve the problems of high dimensionality and nonlinearity, and the
processing process is transparent, and one of the links can be optimized and improved [23].
In view of the advantages and disadvantages of different classifiers, this paper selects SVM
as the classifier and optimizes it by improving the genetic algorithm to improve the action
recognition rate. The framework of the overall action recognition in this paper is shown in
Figure 1, where the MAV is mean absolute value, RMS is root mean square, WA is Willision
amplitude, EC1 is wavelet packet coefficient energy value, IGA-SVM is improved genetic
algorithm–support vector machine classifier.

Figure 1. Action recognition framework.
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2. Methods
2.1. The Framing Energy Method Is Used to Extract the Main Feature Signals

The time for an ordinary person to complete a lower limb action is approximately 3 s.
Therefore, each signal acquisition time should be as long as possible during the experiment
to include all the effective signals of actions, but this will produce the disadvantages of a
large amount of data and a useless resting signal. These disadvantages will increase the
difficulty of signal processing. We extract the main feature segment from a complete signal
to solve the problem. The main feature segment contains most of the effective informa-
tion of actions and filters out of resting signals, so the timeliness of action recognition is
improved [24].

During the experiment, the signal is divided into three segments: the initial segment,
the main feature segment, and the ending segment. The initial segment is defined as the
data segment from the beginning of the action to 0.5 s, the main feature segment is from
the end point of the initial segment to the end of the following 2 s, and the ending segment
follows the main feature segment. The ending segment is ignored and not processed.
The initial point is detected by using the signal frame energy method [25,26]. We use
64 sampling points of the signal as the sliding window frame and 32 sampling points as
the increment and calculate the adaptive threshold th through the resting signal. After that,
we calculate the energy value of each frame of the signal and record it as En. Comparing En
with th, when En is greater than th three times in a row, this frame is judged as the starting
point of the initial segment. Suppose the signal is X(n) = x(1), x(2), ..., x(N), where N
is the sum of the data length, and the calculation method of the signal framing energy
method is as follows:

(1) Select the appropriate frame length and frame shift to divide the normalized signal
into frames:

(M− 1)× I + L = N (1)

where M is the total number of frames of the signal, I is the incremental frame step, L is
the sampling point of each sliding window, namely, the frame length of each frame, and
N is the total length of the signal. The signal after obtaining the split frame is X′(n) =
x′(1), x′(2), ..., x′(N), where x′(1) = x(1), ..., x(L), x′(2) = x(1 + I), ..., x(L + I), ....

(2) Calculate the total energy of each frame signal:

En(i) =
n+L

∑
i=1

amp2
in (2)

where En(i) is the total energy of the signal per frame and ampin is the amplitude of the
n− th sampling point in frame i, with n < L.

(3) Calculate the adaptive threshold th based on the signal energy when stand-
ing steadily:

th =
∑M

i=1 En(i)
M

(3)

If En is greater than th in a certain frame and is greater than th in the next three frames,
then this frame is the starting frame of the signal action segment.

(4) Obtain the main feature segment by extracting 2 s of data 0.5 s after the start point
of the action: 

SN = (FS− 1)× Fs
MSN = SN + 0.5× Fs
MEN = MSN + 2× Fs

(4)

Among them, SN is the detected sampling point at the starting point, FS is the number
of frames at the starting point, Fs is the sampling frequency, MSN is the sampling point at
0.5 s after the starting point, and MEN is the sampling point at 2.5 s after the starting point.
The signal from MSN to MEN is the signal of the main feature segment.
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2.2. Feature Extraction from the Main Feature Segment Signal

sEMG signal analysis methods mainly include time domain analysis, frequency do-
main analysis, parameter modeling, time-frequency analysis, nonlinear dynamic analysis
and so on. Through the analysis of the differences between the physiological responses
of sEMG signals [27,28], this paper selects the features in Table 1 to recognize the lower
limb actions. The overall trends of the selected features under different actions are similar,
but the local responses are different. Therefore, we consider extracting, optimizing and
fusing the features in Table 1 as the input of the lower limb action classifier.

Table 1. Action recognition-related physiological features of sEMG signals.

Features Feature Description

sEMGMAV Mean absolute value
sEMGRMS Root mean square
sEMGWA Willison amplitude
sEMGEC1 Wavelet packet coefficient energy [29,30]

The calculation methods of the four features in Table 1 are as follows:

sEMGMAV =
1
M

M

∑
j=1

(
1

n− 1

n

∑
i=1
|xi|) (5)

sEMGRMS =
1
M

M

∑
j=1

√
1

n− 1

n

∑
i=1

x2
i (6)

sEMGWA =
1
M

M

∑
j=1

(
n−1

∑
i=1

f (|xi − xi+1|)) (7)

sEMGEC1 = log10(
1
M

M

∑
j=1
|Sj|2) (8)

From (5)–(8), xi is the amplitude of the i-th sampling point of the sEMG signal, M is
the total number of windows after signal framing, n is the length of the window, f (x) = 1
when x ≥ th and f (x) = 0 otherwise, and Sj is the wavelet packet coefficient of the
j-th window.

2.3. Weighted Feature Method

sEMG signals are complex and nonstationary [31], so the difference in the extracted
features is small. From the perspective of feature differences, first, we calculate the signal
energy value sumabsX′i of each muscle under different lower limb actions and record and
establish the energy table. The energy value represents the contribution degree of each
muscle to different actions. Second, according to the contribution degree, we calculate
the correlation degree between muscles and actions and establish the correlation degree
table. Finally, according to the correlation coefficient in the correlation table, the features of
each channel are given different weights to complete the purpose of feature optimization.
The correlation between muscles and actions indicates that each muscle plays a different
role in different actions. As mentioned in Section 1, the feature dimensionality reduction
method may cause the loss of some effective information. However, using feature fusion
directly can cause feature redundancy. Therefore, the weighted feature method based on
the correlation between muscles and actions is proposed. The extracted original features of
different channels are weighted differently, and the weighted features can be obtained. In
the same action and different channels, the redundancy of features is reduced. In different
actions and the same channel, the discrimination of features is increased. The specific
calculation method is as follows:
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(1) Remove the noise and baseline drift of the signal X to obtain X′.
(2) Take the absolute value of signal X′ to obtain absX′.
(3) Calculate the energy value of each channel, that is, the sum of amplitudes, and

obtain sumabsX′i , where i is 1, 2, ..., n, and n is the total number of channels. The number of
channels selected in this experiment is 8, so n = 8.

(4) Add up the energies of all channels to obtain sumabsX, where the weight of each
channel can be calculated as follows:

Ci = n×
sumabsX′i
sumabsX

, i = 1, 2, ..., n (9)

(5) Therefore, Feature = ∑n
i=1 f eaturei × Ci, where Feature is the fusion feature vector,

and f eaturei is the feature vector of the corresponding channel.

2.4. Improved Genetic Algorithm-Support Vector Machine Classifier

To achieve classification, SVM establishes a classification hyperplane as a decision
surface to maximize the isolation edge between different classes [32]. This is the core idea
of SVM. Therefore, SVM uses the Lagrange multiplier method to solve the classification
process and introduces a penalty factor c, which is responsible for controlling the intensity
of punishment for incorrect demarcation points. By controlling the distance between the
wrong demarcation point and its correct position, we can keep it within a reasonable
range. When the value of c is high, the occurrence of incorrect demarcation points will
be greatly reduced, but overfitting will occur. When the value of c is very low, this will
lead to a large number of incorrect demarcation points, which will cause the training
model to be unreasonable. The performance of the kernel function selected by SVM
also determines the accuracy of classification, the radial basis kernel function k(xi, xj) =

e−g||xi−xj ||2 exhibits better performance [33], and the value of the kernel parameter g directly
affects the prediction accuracy of the model. This paper combines a genetic algorithm to
optimize the parameters c and g, constructs the population fitness based on the action
recognition rate, and uses the ranking method on the basis of the championship method.
For the sorting based on the fitness, the population is divided into four grades of good,
well, medium, and bad, and the offspring are selected according to a certain proportion to
carry out cross mutation and adaptively evolve the population to optimize the population
and fitness. The specific implementation process is as follows:

(1) Fusion feature vector:
Ei = [ei1, ei2, ..., eia], i = 1, 2, ..., n is used to represent the feature sample vector of the

sEMG signal, a is the dimension of the feature vector, and n is the number of samples. The
fusion feature vector is then:

X = [E1, E2, ..., Em]
T (10)

where m is the number of features, X is divided into training set Xp and test set XT , Xp is
used to train the classifier, and XT is used to detect the classification effect of the classifier.
Suppose there are m groups of samples in the training set Xp, and the corresponding
categories are Yp, i.e., Xp = [x1, x2, ..., xm]T and Yp = [y1, y2, ..., ym]T , where y1 means raise
right leg, y2 means lower right leg, y3 means raise left leg, y4 means lower left leg, y5 means
sitting to standing, and y6 means standing to sitting.

(2) Construct an improved genetic algorithm-support vector machine: GA-SVM uses
the ability of the genetic algorithm to find the optimal solution to optimize the penalty
factor c and the kernel parameter g, which will improve the classifier’s performance to
a certain extent. However, the genetic algorithm will fall into a local optimal solution,
resulting in limited improvement in the classification recognition rate. In this paper, on the
basis of the characteristic of selecting the optimal solution via championship, the genetic
algorithm is combined with the sorting method to improve GA-SVM, namely, IGA-SVM
(improved genetic algorithm-support vector machine).
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The championship execution process is to select a certain number of individuals from
the parent population each time, then select the best one to enter the offspring population,
and to repeat this operation until the new population reaches the size of the original
population. Therefore, the main goal of the tournament selection operator is to find the
optimal individual in the population. This has certain advantages, but it also presents
the disadvantages of destroying the diversity of the population and reducing the ability
to search for the population, thus causing the system to fall into a local optimal solution.
Through integration with the sorting method, we establish a hierarchical elimination
system, in which the individuals in the population are sorted according to their fitness,
and the population is divided into four levels: bad, medium, well, and good. When the
next generation is selected, the four levels of populations are selected according to a certain
proportion. This not only ensures that the proportion of outstanding individuals in the
population is large, but also maintains the diversity of the population and obtains the
global optimal solution. The improvement steps are as follows:

(1) The initial population number is determined, the fusion feature vector Xp is used
as the training data of the genetic algorithm, the fitness of the individuals in the population
is calculated, and the matrix that records the parameters and fitness of the population is
denoted as oldpop.

(2) The individuals in the population are sorted from small to large according to their
fitness values and recorded as matrix sortpop.

(3) The sorted individuals are divided into four grades: bad, medium, well, and good,
expressed as Cbad, Cmid, Cwell , Cgood with C = Cbad + Cmid + Cwell + Cgood, where C is the
total population number.

(4) According to the principle that the good is chosen more and the bad chosen less,
the diversity of the population should be considered as much as possible, and it should be
ensured that all outstanding individuals exist. The four levels of bad, medium, well, and
good are selected according to the probabilities of P, P + σ, P + 2σ, P + 3σ(0 < P < 1, 0 <
σ < 1).

(5) The individuals selected are recombined to obtain a new population newpop. At
this time, the individuals contained in the population are recorded as Cnew = [Cbad × P] +
[Cmid × (P + σ)] + [Cwell × (P + 2σ)] + [Cgood × (P + 3σ)].

(6) Step (5) will discard a part of the population, resulting in an incomplete population
matrix, so it is necessary to insert individuals into newpop. The insertion principle adopts
the principle of survival of the fittest. If C− Cnew ≤ Cgood, then C− Cnew individuals are
randomly selected from Cgood to join the new population newpop; if C−Cnew ≥ Cgood, then
all the individuals in Cgood are input into the new population, and C−Cnew−Cgood random
individuals in Cwell are selected to be input into newpop so that the population number of
newpop is C, and cross-mutation is performed in newpop to obtain better offspring.

(7) The 5-fold cross-validation method is used to calculate the fitness of the population,
and the fitness is the IGA population fitness accuracy rate. If the fitness accuracy rate does
not reach the target value, steps (2)–(6) are repeated until the fitness reaches the target
value, and the value of the penalty factor c and the kernel parameter g are recorded at this
time to obtain bestc, bestg.

(8) bestc, bestg are applied to the SVM to obtain the IGA-SVM training network,
the best classification model Classi f ymodel is trained through the training set, and the test
set XT is input into Classi f ymodel to obtain the best classification accuracy.

3. Results and Analysis
3.1. Experiment Procedure

At present, the known open source database does not contain the data of the six lower
limb actions studied in this paper. Therefore, this paper designs an sEMG acquisition
experiment. The DELSYS TrignoTM wireless sEMG signal acquisition instrument is used
to acquire sEMG signals. The sampling frequency of this instrument can reach 2000 Hz.
As shown in Figure 2, the hardware linked is as follows: the sEMG signals are acquired
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and transmitted by the sEMG sensors worn on the subjects. The sEMG signals are received
by the signal receiving base station with wireless. The base station transmits the sEMG
signals to PC with USB, and the PC is equipped with EMGworks Acquisition. According
to the literature [34], the main sEMG features are distributed over 10–500 Hz. According
to the body’s physiological structure and the distribution of leg muscles [35], we selected
CH1-right leg rectus femoris, CH2-right biceps femoris, CH3-right tibial anterior muscle,
CH4-right gastrocnemius, CH5-left leg rectus femoris, CH6-left biceps femoris, CH7-left
tibialis anterior muscle, and CH8-left gastrocnemius as the signal acquisition sources, as
shown in Figure 3. Because sEMG is susceptible to interference, volunteers needed to wipe
the abovementioned muscles with alcohol before data collection and remove dander on the
skin surface to reduce interference. In addition, volunteers should not exercise vigorously
within 24 h before signal collection.

Figure 2. Hardware link.

Figure 3. Graph of muscle positions.

This paper studies six lower limb actions: raising the right leg, lowering the right
leg, raising the left leg, lowering the left leg, sitting to standing, and standing to sitting,
as shown in Figure 4. The subjects were three healthy (24–26)-year-old males (75 ± 5 kg,
175 ± 5 cm) and one healthy 25-year-old female (50 kg, 165 cm). None of them suffered
from any neuromuscular system or joint diseases. All subjects volunteered to participate
in this experiment and were informed of the experimental content before the experiment.
To standardize the actions in the collection process, it was stipulated that when the signal
was collected, subjects wearing the Fourier X2 and 8 sEMG sensors perform the above
six types of lower limb actions. In the experiment process, each action is performed
500 times and each action lasted 10 s. Considering the sampling frequency of sEMG sensors
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is 2000 Hz, therefore, each time 8 channels acquire 8 × 20,000 data due to per channel
acquires 20,000 data. These data are stored as a csv file, which is called a set of sEMG
signals. By the end of experiment, 12,000 sets of sEMG signals can be obtained. Considering
the fatigue of subjects during experiment, each time the subjects acquire signals within
10 min to ensure the quality of signals.

Figure 4. The diagram of 6 actions.
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3.2. Analysis of Suraface Electromyography Physiological Characteristics in Action Recognition

The sEMG signal is a nonstationary, nonlinear, weak electrical signal that is very
susceptible to interference from environmental noise and power frequency noise. Before
feature extraction and subsequent processing, it is necessary to denoise the sEMG signal
and use the improved wavelet denoising method [36] to filter out the signal noise, power
frequency interference and baseline drift and obtain a smooth sEMG signal with less noise.
The literature [36] has already introduced improved wavelet denoising in detail, so this
paper will not go into details. Here, we consider subject No. 1’s raised right leg as an
example to demonstrate the processing process. The comparison results before and after
denoising are shown in Figure 5.

Due to the long signal length, this paper applies the signal framing energy method
to obtain the main feature segment signal with a shorter data length. First, the energy
threshold of the signal is calculated, and the sum of the energy in the resting state and
the sum of the energy exerted in raising the right leg are obtained, as shown in Figure 6.
Second, according to the adaptive threshold, by judging that the values in three consecutive
frames are greater than the adaptive threshold, this point is selected as the starting point
of the action, and the data 2.5 s after the starting point are extracted. In addition, the data
0.5 s after the starting point are selected as the main feature signal segment, as shown in
Figure 7.

Figure 5. Comparison results of the time domain and frequency domain before and after wavelet denoising.
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Figure 6. Acquisition of the data from the signal action starting point to the end point of the main feature segment.

Figure 7. Obtaining the main feature segment of the signal.

3.3. Analysis of the Weighted Feature Process

The time domain features and wavelet packet coefficient energy features of the main
feature signals are extracted and normalized to the interval of (−1,1), and then the correla-
tion coefficients between muscles and actions are calculated. First, extraction of the signal
of the main feature segment, calculation of the energy value of each muscle during the
six kinds of actions, and establishment of an energy table were performed. As an example,
for subject No. 1, the energy value is calculated with steps (1)–(3) in Section 2.3, as shown
in Table 2, where 1–4 represent the signal acquisition channels of the right rectus femoris,
biceps femoris, tibialis anterior muscle, and gastrocnemius muscle, and 5–8 represent the
signal acquisition channels of the left leg rectus femoris, biceps femoris, tibial anterior mus-
cle, and gastrocnemius muscle. Second, according to Table 2, steps (4)–(5) in Section 2.3 are
used to calculate the correlation coefficient between muscles and actions and to establish
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the table of correlations, as shown in Table 3. The greater the correlation coefficient is,
the greater the correlation among the muscles and the actions.

Table 2. Energy table.

Energy Value
Channel of the Acquisition Signal

1 2 3 4 5 6 7 8

action1 4.4075 7.3995 3.3853 3.0290 2.5047 10.0337 6.0779 6.1198
action2 5.6125 4.2509 16.7769 2.2035 1.9899 5.0036 2.7665 6.7932
action3 2.7713 6.8533 4.1197 8.5512 3.7452 16.5496 5.3684 3.8048
action4 3.7745 2.8812 2.6002 8.2039 4.2894 25.1282 12.0314 2.5562
action5 31.3369 13.8150 23.4856 2.1398 18.2272 14.9905 24.0917 2.6756
action6 23.3024 12.5947 25.4307 2.0793 15.1958 19.6991 29.0533 3.3588

Table 3. Correlation between muscles and actions.

Correlation Coefficient
Channel of the Acquisition Signal

1 2 3 4 5 6 7 8

action1 0.8208 1.3780 0.6304 0.5641 0.4664 1.8686 1.1319 1.1397
action2 0.9890 0.7491 2.9565 0.3883 0.3507 0.8817 0.4875 1.1971
action3 0.4283 1.0592 0.6367 1.3216 0.5788 2.5577 0.8297 0.5880
action4 0.4913 0.3750 0.3384 1.0678 0.5583 3.2706 1.5659 0.3327
action5 1.9172 0.8452 1.4368 0.1309 1.1151 0.9171 1.4739 0.1637
action6 1.4262 0.7708 1.5564 0.1273 0.9300 1.2056 1.7781 0.2056

For simplicity, we only select 50 sets of data for each of the six actions to show the
energy features of the normalized wavelet packet coefficients, as shown in Figure 8. EC1
represents the energy features of wavelet packet coefficients, and WFM-EC1 represents the
energy features of wavelet packet coefficients after optimization. The x-axis coordinates
indicate A—raise right leg, B—lower right leg, C—raise left leg, D—lower left leg, E—
sitting to standing, and F—standing to sitting, and it can be seen from the figure that EC1
has high feature redundancy and low discrimination under 6 actions with 8 channels. After
WFM, WFM-EC1 has low redundancy and increased discrimination under different actions,
which helps improve the recognition rate.

Figure 8. Comparison of energy features of wavelet packet coefficients of 8 channels before and after WFM.
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3.4. Analysis of the Optimization Process of the Improved Genetic Algorithm

The genetic algorithm is optimized through the combination of the championship
method and sorting method. To expand the diversity and universality of the population,
the population size is selected as C = 2000, the crossover probability is 0.7, the mutation
probability is 0.1, and the population selection probability parameter is set to P = 0.4,
σ = 0.2. A total of 12,000 sets of data samples (2000 sets for each action) are selected from
the collected data for preprocessing and feature extraction. Each action takes 1/2 of the sets
of data as the training set, and the 5-fold cross-validation method is used to calculate the
fitness accuracy of the population to obtain the best population newpop. The convergence
process of the population is shown in Figure 9. The population evolution generation stops
at 50 iterations, and the average fitness of IGA is significantly higher than that of GA.

Figure 9. Convergence curve comparison chart of the population average fitness.

4. Discussion

Each subject produced 250 groups for each action, a total of 6000 groups (1500 groups
for each subject) were used as the training set data, and the remaining data were used as
the test set to verify the action recognition rates of different methods. First, we use the
traditional lower-limb action recognition method to identify and classify the six kinds of
lower-limb actions. Inputting the fusion feature vector without WFM into GA-SVM, the
classification results are shown in Table 4.

Second, the traditional GA-SVM classifier is used to classify the fusion feature vectors
after WFM, and the results are shown in Table 5. By comparison with Table 4, the recogni-
tion rates of the six lower limb actions increase by 6.7%, 9.9%, 7.7%, 3.4%, 3.3%, and 5.9%,
and the average recognition rate increases by 6.15%. The experimental results show that
the WFM can improve the recognition rate of the six types of lower limb actions effectively
in the data set of this paper.

Third, we input the fusion feature vector without WFM into IGA-SVM for classification,
and the classification results obtained are shown in Table 6. By comparison with Table 4, the
recognition rates of the six lower limb actions increase by 1.8%, 2.3%, 1%, 1.3%, 0.8% and
4.6%. The results indicate that the IGA-SVM can improve the recognition rate of lower
limb actions slightly in the data set of this paper.

Finally, the IGA-SVM classifier is used to classify the WFM fusion feature vector,
and the results are shown in Table 7. The average recognition rates of the six actions
of raising the right leg, lowering the right leg, raising the left leg, lowering the left leg,
sitting to standing, and standing to sitting are 94.3%, 95.9%, 96.2%, 96.6%, 94.5% and 91%,
respectively, and the average recognition rate of all actions is 94.75%. By comparison
with Table 4, the method proposed in this paper increases the recognition rates of the
six lower limb actions by 9.3%, 13.3%, 10.3%, 7.8%, 6.1%, and 9.8%, and the average
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recognition rate is increased by 9.44%. The result suggests that the WFM and IGA-SVM
have a good performance in lower limb recognition, and the improvement of recognition
rate is relatively obvious in the data set of this paper. Meanwhile, Table 8 shows the
classification results of the test set, the number of six lower limb actions recognized are
980, 984, 981, 981, 1075 and 999. It can be seen that the difference between the results
is small. From Table 8, we can also see that the actions of recognizing errors are in two
similar actions, such as action5 and action6. The reason for this result may be that both
actions involve the same muscles and the sEMG signals acquired are correlated. To further
improve the recognition rate, the correlation can be eliminated by improving the algorithm
or fusing other signals.

Table 4. Recognition rate of the fusion feature vector without the WFM using GA-SVM classification.

Actions
Subject ID

Average Accuracy
1 2 3 4

action1 86.8 85.2 75.6 92.4 85
action2 84 80 79.6 86.8 82.6
action3 94 81.6 85.2 82.8 85.9
action4 94.8 93.6 87.6 79.2 88.8
action5 92.4 95.6 81.2 84.4 88.4
action6 66.4 76.8 91.6 90 81.2

Average accuracy 86.4 85.46 83.46 85.93 85.31

Table 5. Recognition rate of the fusion feature vector with the WFM using GA-SVM classification.

Actions
Subject ID

Average Accuracy
1 2 3 4

action1 95.2 93.2 92 86.4 91.7
action2 94.8 94 90.8 90.4 92.5
action3 96.8 95.2 93.2 89.2 93.6
action4 94.4 92 95.2 87.2 92.2
action5 95.2 89.2 90 92.4 91.7
action6 84.4 86.4 84.4 93.2 87.1

Average accuracy 93.46 91.66 90.93 89.8 91.46

Table 6. Recognition rate of the fusion feature vector without the WFM using IGA-SVM classification.

Actions
Subject ID

Average Accuracy
1 2 3 4

action1 90.4 86.4 76.4 94 86.8
action2 88.4 85.2 78 88 84.9
action3 94.4 81.6 87.2 84.4 86.9
action4 95.2 94 89.2 82 90.1
action5 91.2 95.2 84 86.4 89.2
action6 70.8 86.8 93.2 92.4 85.8

Average accuracy 88.4 88.2 84.66 87.86 87.28
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Table 7. Recognition rate of the fusion feature vector with the WFM using IGA-SVM classification.

Actions
Subject ID

Average Accuracy
1 2 3 4

action1 97.2 95.2 95.6 89.2 94.3
action2 97.6 96.4 94.8 94.8 95.9
action3 98 97.6 96 93.2 96.2
action4 98.4 96.8 98.8 92.4 96.6
action5 97.6 92 93.2 95.2 94.5
action6 87.6 91.6 88.8 96 91

Average accuracy 96.06 94.93 94.53 93.46 94.75

Table 8. The results statistics of the fusion feature vector with the WFM using IGA-SVM classification.

Actual Actions
Predicted Actions

Total Number of Actions
action1 action2 action3 action4 action5 action6

action1 943 2 6 3 24 22 1000
action2 18 959 3 1 16 3 1000
action3 0 9 962 0 18 11 1000
action4 5 0 0 966 7 22 1000
action5 14 0 10 0 945 31 1000
action6 0 14 0 11 65 910 1000

Total number of actions 980 984 981 981 1075 999 6000

To further prove the effectiveness of the method proposed in this paper, we select the
most commonly used classification methods in action recognition, the BP neural network,
LIBSVM, and KNN [37,38], to classify the experimental data. According to the experiment,
the average classification recognition rates of the three classification methods for the six
lower extremity actions are 79.74%, 81.22% and 80.69%, respectively. As shown in Figure 10,
the recognition rates of the method proposed in this paper for the six lower limb actions
are higher than those of the above three classification methods, so the method of this paper
is more suitable for the classification of lower limb actions.

Figure 10. Comparison of recognition rates of different classification methods.

5. Conclusions

From the perspective of action recognition in lower limb rehabilitation training, taking
the six actions of raising the right leg, lowering the right leg, raising the left leg, lowering
the left leg, sitting to standing, and standing to sitting as the recognition targets of lower
limb actions. We propose a lower limb action recognition method based on weighted
features. First, after optimizing the features of the extracted main feature segment sig-
nal, the redundancy of the feature vector is reduced, and a feature vector with greater
discrimination is obtained. Second, we design an improved genetic algorithm-support
vector machine classifier, obtain the global optimal solution, and establish a multi-sEMG
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feature fusion action recognition model. After the WFM and IGA-SVM mentioned in this
paper, the recognition rates of the six lower limb actions are 94.3%, 95.9%, 96.2%, 96.6%,
94.5%, and 91%, and the average recognition rate of all actions is 94.75%. Compared with
the unimproved classification method and the commonly used classification method in
Figure 10, WFM and IGA-SVM obtain better recognition accuracy and performance. The
experimental results show that the weighted feature method of features and improved
genetic algorithm-support vector machine classification can improve the recognition rate
of lower limb actions in the data set of this paper.

The method designed in this paper is mainly aimed at improving the recognition rate
of lower limb movements. The next step is to take into account non-ideal factors such as
muscle fatigue and electrode offset to improve the recognition rate of lower limb actions
under non-ideal conditions, and to apply the method to wearable lower limb exoskeleton
robots to contribute to the field of rehabilitation treatment. In addition, similar actions,
such as sitting and standing, may have different EEG signals. We will explore whether the
recognition rate is improved by fusing EEG signals.
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