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Abstract

T cell epitope candidates are commonly identified using computational prediction tools in

order to enable applications such as vaccine design, cancer neoantigen identification, devel-

opment of diagnostics and removal of unwanted immune responses against protein thera-

peutics. Most T cell epitope prediction tools are based on machine learning algorithms

trained on MHC binding or naturally processed MHC ligand elution data. The ability of cur-

rently available tools to predict T cell epitopes has not been comprehensively evaluated. In

this study, we used a recently published dataset that systematically defined T cell epitopes

recognized in vaccinia virus (VACV) infected C57BL/6 mice (expressing H-2Db and H-2Kb),

considering both peptides predicted to bind MHC or experimentally eluted from infected

cells, making this the most comprehensive dataset of T cell epitopes mapped in a complex

pathogen. We evaluated the performance of all currently publicly available computational T

cell epitope prediction tools to identify these major epitopes from all peptides encoded in the

VACV proteome. We found that all methods were able to improve epitope identification

above random, with the best performance achieved by neural network-based predictions

trained on both MHC binding and MHC ligand elution data (NetMHCPan-4.0 and

MHCFlurry). Impressively, these methods were able to capture more than half of the major

epitopes in the top N = 277 predictions within the N = 767,788 predictions made for distinct

peptides of relevant lengths that can theoretically be encoded in the VACV proteome. These

performance metrics provide guidance for immunologists as to which prediction methods to

use, and what success rates are possible for epitope predictions when considering a highly

controlled system of administered immunizations to inbred mice. In addition, this benchmark

was implemented in an open and easy to reproduce format, providing developers with a

framework for future comparisons against new tools.
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Author summary

Computational prediction tools are used to screen peptides to identify potential T cell epi-

tope candidates. These tools, developed using machine learning methods, save time and

resources in many immunological studies including vaccine discovery and cancer neoan-

tigen identification. In addition to the already existing methods several epitope prediction

tools are being developed these days but they lack a comprehensive and uniform evalua-

tion to see which method performs best. In this study we did a comprehensive evaluation

of publicly accessible MHC I restricted T cell epitope prediction tools using a recently

published dataset of Vaccinia virus epitopes identified in the context of H-2Db and H-

2Kb. We found that methods based on artificial neural network architecture and trained

on both MHC binding and ligand elution data showed very high performance (NetMHC-

Pan-4.0 and MHCFlurry). This benchmark analysis will help immunologists to choose the

right prediction method for their desired work and will also serve as a framework for tool

developers to evaluate new prediction methods.

Introduction

T cell epitope identification is important in many immunological applications including devel-

opment of vaccines and diagnostics in infectious, allergic and autoimmune diseases, removal

of unwanted immune responses against protein therapeutics and in cancer immunotherapy.

Computational T cell epitope prediction tools can help to reduce the time and resources

needed for epitope identification projects by narrowing down the peptide repertoire that

needs to be experimentally tested. Most epitope prediction tools are developed using machine

learning algorithms trained on two types of experimental data: binding affinities of peptides to

specific MHC molecules generated using MHC binding assays, or sets of naturally processed

MHC ligands found by eluting peptides from MHC molecules on the cell surface and identify-

ing them by mass spectrometry. Since the first computational epitope prediction methods

were introduced more than two decades ago [1–3], advancement in machine learning methods

and increases in the availability of training data have improved the performance of these meth-

ods significantly in recent years, as has been demonstrated on benchmarks of MHC binding

data [4,5].

Given the wealth of epitope prediction methods available, it is necessary to keep comparing

the performance of the different methods against each other, in order to allow users to ratio-

nally decide which methods to choose and to allow developers to understand what changes

can truly improve prediction performance. One issue with the past evaluations has been that,

when new methods are developed and tested, they are commonly evaluated using the same

kind of data on which they were trained, which can impact the performance results. For exam-

ple, a method trained using MHC binding data will tend to show better performance when it

is evaluated using MHC binding data and a method trained using MHC ligand elution data

will tend to perform better when evaluated using MHC ligand data. This is evident in the

recent benchmark of MHC class I binding prediction methods by Zhao and Sher (2018) [5].

Their analysis showed that methods trained on elution data showed better accuracy when nat-

urally processed MHC-ligands were used for evaluation. The ultimate aim of the epitope pre-

diction methods is to predict actual T cell epitopes i.e. peptides that are recognized by T cells

in the host. Thus, we believe that the best way to compare prediction methods trained on dif-

ferent data is to evaluate their performance in identifying epitopes.
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One problem when using T cell epitope identification as a way to benchmark prediction

methods is that it is typically not known what a true negative is, as only a subset of epitope can-

didates is commonly tested for T cell recognition experimentally. Here, we took advantage of a

recent study that comprehensively identified T cell responses in C57BL/6 mice infected with

Vaccinia virus (VACV) [6]. This dataset is unique in that it covered all peptides previously

shown to be presented by either H-2Db or H-2Kb molecules expressed in these mice, which

included epitopes identified following a large-scale screen of predicted peptide ligands [7], as

well as all epitopes recognized in a comprehensive screen of a VACV protein expression

library [8], and all peptides found to be naturally processed and presented by MHC ligand elu-

tion assays using mass spectrometry [6]. All these epitope candidates were rescreened in a con-

sistent format, using eight separately infected mice, defining the major epitopes (categorized as

those recognized in more than half of the animals), as well as negatives (never recognized in

any animal), and for each epitope defining the magnitude of the T cell response. Just as impor-

tantly, and unique to this dataset, all the peptides considered as ‘negative’ had a chance to be

identified as positive in multiple unbiased screens in different labs using different experimental

approachs.

We retrieved predictions from all publicly available computational algorithms prior to

release of the dataset. We next evaluated each prediction algorithm based on its ability to pick

the major epitopes from within the total peptides that can be derived from VACV, using differ-

ent metrics such as AUC (area under the ROC curve), number of peptides needed to capture

different fractions of the epitopes, number of epitopes captured in the top set of predicted pep-

tides, and the magnitude of T cell response accounted for at different thresholds.

Materials & methods

Selection of methods

As a first step, we compiled a list of all freely available CD8+ T cell epitope prediction methods

by querying Google and Google Scholar. We identified 44 methods (S1 Table) that had execut-

able algorithms freely available publicly (excluding those that required us to train a prediction

model), and excluding commercial prediction tools that required us to obtain licenses. Out of

these 44 methods, we selected those that had trained models available for the two mouse alleles

for which we had benchmarking data (H-2Db & H-2Kb). Further, we contacted the authors of

the selected methods and excluded the ones that the authors explicitly wanted to be excluded

from the benchmarking for different reasons (mostly because the methods were not updated

recently or new version of the methods were to be released soon). The final list included 15

methods that were selected to be included in the benchmarking: ARB [9], BIMAS [2], IEDB

Consensus [7], MHCflurry [10], MHCLovac [11], NetMHC-4.0 [12], NetMHCpan-3.0 [13],

NetMHCpan-4.0 [14], PAComplex [15], PREDEP [16], ProPred1 [17], Rankpep [18], SMM

[19], SMMPMBEC [20], SYFPEITHI [3]. Out of the 15 methods, NetMHCpan-4.0 offered two

different outputs, the first one being the predicted binding affinity of a peptide (referred as

NetMHCpan-4.0-B), and the second the predicted probability of a peptide being a ligand in

terms of a probability score (NetMHCpan-4.0-L). Both these outputs were evaluated sepa-

rately. Similarly, MHCflurry could use two different models, first one trained with only bind-

ing data (MHCflurry-B) and second one incorporating data on peptides identified by mass-

spectrometry (MHCflurry-L). Both these models were evaluated separately. Considering these

as separate methods, a total of 17 methods were included in the benchmark, and are described

in more detail in S1 Table. The methods differed widely in the peptide lengths that they could

predict for each allele. For example, while MHCLovac could predict lengths 7–13 for both

alleles, PAComplex could predict for only 8-mers of H-2Kb and none of the lengths in case of
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H-2Db. The methods also differed in the kind of prediction scores provided but ultimately

they all represented a score that was intended to correlate with the probability of a peptide

being an epitope in the context of the given MHC molecule. A complete list of the peptide

lengths allowed for prediction per allele by each method and the kind of prediction scores they

provide are given in S2 Table.

Dataset of VACV peptides

For the benchmark analysis, we used the peptide data set described in Croft et al., 2019 (S3

Table). This dataset represented a comprehensive set of peptides naturally processed and

eluted from VACV-infected cells in addition to any previously identified epitopes. The total of

220 VACV peptides were tested for T cell immune responses in infected mice. Of these pep-

tides, 172 were eluted from H-2Db and Kb molecules from VACV-infected cells as described

in detail in Croft et al., 2019. In brief, DC2.4 cells (derived from C57BL/6 mice [21] that

expressed H-2b MHC molecules were infected with VACV. The H-2Db and Kb molecules were

then individually isolated and the bound peptides eluted. The peptides were then analyzed by

high resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). The remain-

ing peptides in the set were not detected by LC-MS/MS and included 46 VACV-derived H-2b

restricted peptides/epitopes from the IEDB [22] and one entirely unpublished epitope and

another that was mapped from a longer published sequence [23] identified by the Tscharke

laboratory. Immune reactivity for each of these 220 peptides was then tested 8 times and the

peptides that tested positive more than four times were classified as “major epitopes” and

those tested positive four or fewer times were classified as “minor epitopes”. All peptides that

were never positive were classified as “nonimmunogenic”. There were 83 peptides classified as

“major” positives (S3 Table), ranging in lengths 7–13. In addition to the 220 peptides tested for

immunogenicity, we generated all possible peptides of lengths 7–13 from the VACV reference

proteome (https://www.uniprot.org/proteomes/UP000000344) (S1 File), which were also con-

sidered non-immunogenic, based on them not being found in elution assays on infected cells,

and not being found positive in any of the many studies recorded in the IEDB. The entire data-

set comprised 767,788 peptide/allele combinations.

Performance evaluations

The performance of the prediction methods was evaluated mainly by generating ROC curves

(Receiver operating characteristic curve) and calculating the AUCROC (Area under the curve

of ROC curve). The ROC curve shows the performance of a prediction model by plotting the

True positive rate (TPR, fraction of true positives out of the all real positives) against the False

positive rate (FPR, fraction of false positives out of the all real negatives) as the threshold of the

predicted score is varied. AUCROC is the area under the ROC curve which summarizes the

curve information and acts as a single value representing the performance of the classifier sys-

tem. A predictor whose prediction is equivalent to random will have an AUC = 0.5 whereas a

perfect predictor will have AUC = 1.0. That is, the closer the AUC is to 1.0, the better the pre-

diction method. AUC values were first calculated on different sets of peptides grouped by

length and allele separately. Secondly, overall AUCs were calculated by taking peptides of all

lengths and both alleles together, which reflects the real life usability of having to decide which

peptides to test. In this calculation, poor scores were assigned to peptides of lengths where pre-

dictions were not available for a given method. For example, in the case of SMM, lower numer-

ical values of the prediction score indicate better epitope candidates, with scores ranging from

0 to 100. So a score of 999 was assigned to all peptides of lengths for which predictions were

not available in SMM (lengths 7, 12 and 13 for both alleles). Similarly a score of -100 was
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assigned in case of SYFPEITHI (H-2Db: 7–8, 11–13; H-2Kb: 7, 9–13) where a higher numerical

value of predicted score indicates better epitope candidate and the scores ranging from -4 to

32.

Fully automated pipeline to generate benchmarking metrics

The Python scikit-learn package [24] was used for calculating the AUCs and Python matplotlib

package [25] was used for plotting. A python script that can generate all results and plots along

with the input file containing all peptides and their prediction scores from each method,

immunogenicity category, T cell response scores, the "ProteinPilot confidence scores" repre-

senting the mass-spectrometry (MS) identification confidence level of the peptides and the

number of times the peptides were identified by MS are provided in the GitLab repository

(https://gitlab.com/iedb-tools/cd8-t-cell-epitope-prediction-benchmarking). The repository

also contains the outputs from the script, i.e. the relevant results and plots. This will enable

interested users to check our results and add their own prediction algorithms.

Results

Performance of the methods based on AUCROC

As described in the method section, we identified 17 distinct prediction approaches that were

freely accessible and could be applied to our dataset. Predictions from these methods were

retrieved for all peptides of lengths 7–13 in the VACV proteome, which included the peptides

tested for T cell response in Croft et al. (2019) [6]. The predictions were done using default

parameters and the prediction outputs were used as provided by the tools without any modifi-

cation or optimization. For tools provided by DTU server (NetMHCpan, NetMHC) and IEDB

(Consensus, SMM, SMMPMBEC, ARB), where it provides raw score (for example predicted

absolute binding affinity) and the percentile ranks (predicted relative binding affinity), the per-

centile ranks were used in the analysis. We considered the “major epitopes” (peptides that

were tested positive in more than four out of the eight mice) as positives. To avoid ambiguity

we excluded the “minor epitopes” (peptides that were tested positive in four or less mice out of

the eight), and all other peptides were considered as negatives. This provides a binary classifi-

cation of peptides into epitopes/non-epitopes. In order to evaluate the performance of each

prediction approach, we generated ROC curves and calculated the AUCROC for all methods on

a per allele (H-2Db, H-2Kb) and per peptide length (7–13) basis, which are listed in Table 1.

The per allele/length AUCs were then averaged to get an AUC value per each allele for each

method and then the AUCs of both alleles were averaged to get a single AUC value per

method. These average AUC values for each method are also provided in Table 1. The average

AUCs varied from 0.793 to 0.983. NetMHCpan-4.0-B came top based on this analysis with an

average AUC of 0.983. It was followed by NetMHCpan-3.0 (AUC = 0.982) and NetMHC-4.0

(AUC = 0.980). The lowest AUC was obtained for MHCLovac (0.793). When looking at the

individual AUC values for each length, it was noticed that MHCLovac had very low perfor-

mance for H-2Kb lengths 7 and 12 (AUC of 0.529 and 0.284 respectively) where there were

only one positive each. Thus, these two low AUCs brought the average AUC down for

MHCLovac, which is arguably irrelevant, as there are very few peptides positive for those

lengths in the first place.

In practical applications, an experimental investigator uses predictions to choose which

peptides to synthesize and test. The total number of peptides to be synthesized and tested is the

limiting factor, and how many of the epitopes are covered is a measure of success, regardless of

what the peptide length is or what allele they are restricted by. To reflect this, we estimated

overall AUC values for each method by considering peptides of all lengths and both alleles
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together. If a given prediction method was unable to make predictions for a certain length

(reflecting that the length is not considered likely to be an epitope), uniformly poor scores

were assigned to those peptides. The overall AUCs ranged from 0.642 to 0.977. NetMHCpan-

4.0-L ranked first with with AUC of 0.977 followed by NetMHCpan-4.0-B (0.975) and

MHCflurry-L (0.973) (Table 1, Fig 1, S1 Fig). The ROC curves are shown in Fig 2. Fig 2A

shows the ROC curves of all benchmarked methods for 100% FPR and Fig 2B shows the same

up to 2% FPR to clearly distinguish the curves for each method in the initial part. Fig 2C and

2D show respectively the same for a set of top and historically important methods. It has to be

noted that certain methods such as NetMHCpan-4.0 are implicitly adjusting prediction scores

to account for the fact that certain peptide sizes are preferred when natural ligands are consid-

ered, as these methods were trained on such ligands. This means that prior approaches to

adjust for the prevalence of different peptide lengths as was done for NetMHCPan 2.8 [26] are

Fig 1. Bar chart showing the overall AUCs for each benchmarked method. The chart shows the overall AUCs for each method with binary classification (epitope/

non-epitope) based and T cell response based analyses.

https://doi.org/10.1371/journal.pcbi.1007757.g001
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no longer necessary for such modern methods. It is likely that other methods, such as BIMAS

or SMM that were trained on binding data only, could be improved when adjusting for

lengths, but we wanted to test the performance of each method on an as-is basis.

Next, we wanted to examine if the exclusion of ‘minor’ epitopes in our analysis had an effect

on the reported prediction performances. Thus, we tested preditions of all methods when

“minor” epitopes were included and labeled as “negatives”. Doing that, the AUCs were not

affected within the first three digits for any method except ProPred-I where AUC changed

from 0.687 to 0.686. None of the rankings of the methods based on AUC was changed.

Alternative metrics to evaluate performance of the methods

In addition to the AUCs, we calculated metrics that are more intuitive for scientists less famil-

iar with ROC curves, namely the number of peptides needed to capture 50%, 75% and 90% of

the epitopes (which corresponds to comparing ROC curves at horizontal lines at 50%, 75%

and 90% sensitivity). Since a total of 83 major epitopes were found in the dataset, we calculated

how many predicted peptides were needed to capture 42 (= 50%) of them, after sorting based

on the prediction score for each method. The results are shown in Table 2 and Fig 3A (and S2

Fig and S3 Fig). The number of peptides required by the methods varied widely. NetMHCpan-

4.0-L required only 0.036% (N = 277) peptides (S4 Table) and MHCflurry-L needed only

0.037% (N = 285) peptides to capture 50% epitopes while ProPred1 needed 21% (160,644) and

Fig 2. ROC curves showing the performance of the benchmarked methods. The curves are made by plotting true positive rate against the false positive rate

in case of binary classification (epitopes/non-epitopes) based analysis and by plotting the % of T cell response against % of total peptides in case of T cell

response based analysis. 2A. ROC curve for all methods that were benchmarked. 2B. ROC curve for all methods that were benchmarked with the curves

zoomed in to FPR = 0.02 in order to be able to distinguish them more clearly in this region. 2C. ROC curve showing the performance of a set of top and

historically important methods. 2D. ROC curve for selected methods with the curves zoomed in to FPR = 0.02. 2E. Curve generated by plotting the % of T cell

response against % of total peptides. 2F. Curve generated by plotting the % of T cell response against % of total peptides. This plot shows the curves zoomed in

to % of peptides = 0.02.

https://doi.org/10.1371/journal.pcbi.1007757.g002
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PAComplex needed 30% (230,132) peptides respectively to capture 50% epitopes. In a similar

manner, we also calculated the number of peptides needed to capture 75% (N = 62) and 90%

epitopes (N = 75). For 75% epitopes, MHCflurry-B was on top with 0.20% peptides

(N = 1,542) whereas PAComplex needed 65% peptides (N = 498,917) (Table 2, Fig 3B and S2

Fig and S4 Fig). For 90% epitopes NetMHCpan-4.0-B needed only 1.33% (N = 10,224) pep-

tides and NetMHCpan-4.0-L required only 1.47% (11,254) peptides while ProPred1 and

PAComplex needed 84% (N = 646,291) and 86% (660,189) peptides respectively (Table 2, Fig

3C (and S2 Fig and S5 Fig)).

Similar to above, another metric we calculated was the number of epitopes captured in the

top 172 peptides predicted by each method. This corresponds to the number of peptides iden-

tified by mass-spectrometry of naturally eluted ligands. The results are provided in Table 3 and

Fig 4A (and S6 Fig). The number of epitopes captured by these top peptides also varied widely

for the methods. The MHCflurry methods performed the best, capturing 43% (N = 36) of the

epitopes and NetMHCpan-4.0 methods captured 40% (N = 33) epitopes while PREDEP could

not capture any epitope in the top 172 peptides.

In addition to the analyses based on the binary classification of peptides (epitopes/non-epi-

topes), we also evaluated the methods based on the T cell response generated by the peptides,

measured as the percentage of IFNγ producing cells in CD8 T cells as a whole (S3 Table). First,

Table 2. Number of peptides needed to capture 50%, 75% and 90% of epitopes and T cell response.

Method Peptides needed to capture 50% Method Peptides needed to capture 75% Method Peptides needed to capture 90%

Epitopes T cell response Epitopes T cell response Epitopes T cell response

Count % Count % Count % Count % Count % Count %

NetMHCpan-

4.0-L

277 0.04% 286 0.04% MHCflurry-B 1,542 0.20% 1,639 0.21% NetMHCpan-

4.0-B

10,224 1.33% 8,030 1.05%

MHCflurry-L 285 0.04% 230 0.03% MHCflurry-L 1,896 0.25% 1,991 0.26% NetMHCpan-

4.0-L

11,254 1.47% 11,309 1.47%

MHCflurry-B 307 0.04% 216 0.03% NetMHCpan-

4.0-L

2,147 0.28% 1,549 0.20% MHCflurry-B 13,719 1.79% 13,842 1.80%

NetMHCpan-

4.0-B

349 0.05% 236 0.03% NetMHCpan-

4.0-B

3,058 0.40% 2,250 0.29% MHCflurry-L 15,651 2.04% 16,039 2.09%

NetMHC-4.0 365 0.05% 317 0.04% NetMHC-4.0 3,922 0.51% 3,037 0.40% NetMHCpan-

3.0

27,731 3.61% 17,533 2.28%

SMM 924 0.12% 761 0.10% IEDB

Consensus

4,925 0.64% 4,877 0.64% NetMHC-4.0 30,472 3.97% 20,984 2.73%

IEDB

Consensus

1,163 0.15% 1,135 0.15% NetMHCpan-

3.0

5,764 0.75% 5,341 0.70% IEDB

Consensus

49,777 6.48% 44,516 5.80%

Rankpep 1,251 0.16% 3,211 0.42% SMM 6,240 0.81% 5,493 0.72% SMMPMBEC 71,593 9.33% 91,619 11.93%

NetMHCpan-

3.0

1,309 0.17% 1,157 0.15% SMMPMBEC 7,939 1.03% 7,174 0.93% SMM 83,425 10.87% 84,821 11.05%

SMMPMBEC 1,697 0.22% 1,214 0.16% Rankpep 16,218 2.11% 34,742 4.53% Rankpep 131,992 17.19% 399,634 52.05%

ARB 1,781 0.23% 2,262 0.29% ARB 17,260 2.25% 13,791 1.80% ARB 152,456 19.86% 91,256 11.89%

SYFPEITHI 2,070 0.27% 1,955 0.25% BIMAS 20,156 2.63% 17,264 2.25% MHCLovac 285,408 37.18% 312,869 40.75%

BIMAS 4,466 0.58% 6,733 0.88% MHCLovac 138,245 18.01% 187,337 24.40% BIMAS 313,329 40.81% 166,819 21.73%

PREDEP 30,363 3.96% 31,820 4.14% SYFPEITHI 267,557 34.85% 351,034 45.72% SYFPEITHI 567,644 73.94% 601,086 78.29%

MHCLovac 34,218 4.46% 30,981 4.04% PREDEP 327,655 42.68% 388,964 50.66% PREDEP 591,684 77.07% 616,259 80.26%

ProPred1 160,644 20.93% 221,775 28.89% ProPred1 464,173 60.46% 494,782 64.44% ProPred1 646,291 84.19% 658,585 85.78%

PAComplex 230,132 29.98% 216,523 28.19% PAComplex 498,917 64.99% 492,155 64.10% PAComplex 660,189 86.00% 657,535 85.64%

The table shows the number of peptides needed to capture 50%, 75% and 90% of epitopes and T cell response. The lower the number of peptides needed to capture the

respective amount of epitopes or T cell response, the better the performance of the prediction method.

https://doi.org/10.1371/journal.pcbi.1007757.t002
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we plotted the cumulative fraction of the T cell response accounted for by a given % of the

total peptides considered and estimated the overall AUCs for each method with peptides of all

lengths and both alleles taken together. Measuring the performance of the prediction methods

based on the magnitude of the T cell response covered systematically gave slightly higher per-

formances with overall AUCs ranging from 0.651 to 0.979 (Table 1, Fig 1, S7 Fig). The rank-

ings however were essentially identical, with NetMHCpan-4.0-L again ranking first with an

AUC of 0.979 followed by NetMHCpan-4.0-B (0.978) and MHCflurry-L of (0.977). Fig 2E

shows the the corresponding curves for 100% peptides and Fig 2F shows the same for 2% pep-

tides. Similar to the analysis we did with epitopes, we also estimated the number of peptides

needed to capture 50%, 75% and 90% of the T cell response. The results were essentially same

as that of the epitopes at the corresponding percentage levels with some minor exceptions

(Table 2, Fig 3D–3F (and S3 Fig, S4 Fig, S5 Fig and S8 Fig)). Similarly we also calculated the

amount of T cell response captured in the top 172 peptides predicted by each method (Table 3

and Fig 4B (and S6 Fig)). Here NetMHCpan-4.0-B came top with 47.4% of the response and

was closely followed by MHCflurry-B with 47.2% T cell response.

Comparing epitope identification by mass-spectrometry and epitope

prediction

Next, we wanted to determine how epitope candidates identified experimentally by mass-spec-

trometry (MS) should be ranked. In the dataset used, a single elution and identification of

Fig 3. Number of peptides needed to capture 50%, 75% asnd 90% epitopes and T cell response 3A. Number of peptides needed to capture 50% epitopes. Fig 3B.

Number of peptides needed to capture 75% epitopes. 3C. Number of peptides needed to capture 90% epitopes. 3D. Number of peptides needed to capture 50% T cell

response. 3E. Number of peptides needed to capture 75% T cell response. 3F. Number of peptides needed to capture 90% T cell response.

https://doi.org/10.1371/journal.pcbi.1007757.g003
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peptides by LC-MS/MS was done. Rather than treating the outcome of this MS experiment as

a binary outcome (ligands being identified or not), we ranked the results based on confidence

that the identified hits are accurate, and to test if that enables discriminating hits that turn out

to be epitopes from others that do not. We compared the performance of three metrics derived

from the MS experiment. First the ProteinPilot confidence score which is obtained from the

software used in identification of peptides using MS; second, the number of times a peptide

was identified in MS (i.e. spectral count); and third, a combined score derived by taking the

product of the previous two (S3 Table). When evaluating these three approaches, we found

that the number of times the peptide was identified by MS had the best performance with an

AUC of 0.674 (AUC of combined score = 0.667, ProteinPilot = 0.503). This shows that the

number of times a precursor ion was selected for MS/MS, which is a proxy for the abundance

of a peptide, but not the ProteinPilot score, which is an indication of the certainty of the hit,

has small but significant predictive power for a peptide to be an actual epitope (p = 0.0001).

Using this score to rank the identified MS ligands, and assigning a score of 0 to all other

peptides in the VACV peptide dataset, we could now generate ROC curves in the same way as

was done for the prediction approaches, and compare it to the best performing method

NetMHCpan-4.0-L. Fig 5A shows the ROC curves for both MS-based and prediction based

(NetMHCpan-4.0-L) approaches for 100% FPR and Fig 5B shows the ROC curves up to 2%

FPR. The MS based curve had an AUC of 0.898 compared to AUC of 0.977 for NetMHCpan-

4.0-L. At the same time, when evaluating how many peptides are needed to be synthesized to

capture 50% of the epitopes, the ligand elution data by far outperforms all prediction methods,

needing only 0.01% peptides (N = 48), with the best prediction method (NetMHCPan4L)

needing 277 peptides. This suggests that, when the intent of a study is to identify all epitopes,

Table 3. Number of epitopes and amount of T cell response captured in the top 172 peptides.

Method Epitopes captured in top 172 peptides T cell response captured in top 172

peptides

Count % Count %

MHCflurry-L 36 43.37% 24.92 44.36%

MHCflurry-B 36 43.37% 26.51 47.18%

NetMHCpan-4.0-B 33 40.00% 26.64 47.42%

NetMHCpan-4.0-L 33 39.76% 22.7 40.40%

NetMHC-4.0 31 36.86% 23.5 41.83%

Rankpep 22 26.51% 11.1 19.75%

SYFPEITHI 16 19.73% 9.43 16.78%

ProPred1 13 15.66% 6.28 11.17%

ARB 12 14.46% 7.32 13.04%

BIMAS 11 13.25% 4.64 8.25%

SMM 11 12.67% 7.65 13.61%

NetMHCpan-3.0 10 12.11% 9.23 16.42%

SMMPMBEC 7 8.72% 7.03 12.51%

PAComplex 3 3.61% 4.1 7.30%

IEDB Consensus 2 2.88% 1.93 3.43%

MHCLovac 2 2.41% 1.51 2.69%

PREDEP 0 0.00% 0 0.00%

Number of epitopes and amount of T cell response captured in the top 172 peptides. The higher the number of

epitopes or amount of T cell response captured, the better the performance of the prediction method. The number of

top peptides was fixed at 172 because that was the number of peptides identified by LC-MS/MS.

https://doi.org/10.1371/journal.pcbi.1007757.t003
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and the number of peptides tested is a minor concern, predictions have a better performance,

as some fraction of T cell epitopes will be missed in typical ligand-elution experiments. At the

same time, when the intent is to identify a small pool of high confidence candidate peptides,

MHC ligand elution experiments have a much better performance.

Fig 4. Number of epitopes and the amount of T cell response captured in the top 172 peptides. The number of top peptides was fixed at 172 to match the number of

peptides identified by mass-spectrometry. 4A. Number of epitopes captured in the top 172 peptides. 4B. Amount of T cell response captured in the top 172 peptides.

https://doi.org/10.1371/journal.pcbi.1007757.g004

Fig 5. ROC curves comparing epitope candidate selection using mass-spectrometry and prediction approaches. The curves were generated from the number times

a precursor ion was selected for MS/MS which acts as a proxy for the abundance of a peptide and represents MS and NetMHCpan-4.0-L prediction scores. 5A. ROC

curves comparing epitope candidate selection using mass-spectrometry and prediction approaches. Plot showing 100% FPR. 5B. ROC curves comparing epitope

candidate selection using mass-spectrometry and prediction approaches. Plot showing up to 2% FPR.

https://doi.org/10.1371/journal.pcbi.1007757.g005
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Comparison of prediction speed

As an independent measure of prediction performance, we wanted to compare the speed with

which the different methods could provide their answers. As the initial gathering of predic-

tions involved significant manual troubleshooting, we performed a dedicated speed test, using

5 random amino acid sequences that were 1000 residues long for both H-2Db and H-2Kb

alleles, and for each method. We used the fastest available online versions of the methods for

prediction, for example, RESTful API where available. For some methods, we were unable to

quantify prediction times that could be meaningfully compared to the others, and these were

excluded from this analysis (for example, MHCflurry server was having memory issues and we

could not get the predictions done in a manner consistent with other methods). Out of the 10

methods that we could compare, BIMAS and SYFPEITHI were the fastest with 0.97 and 0.99

seconds per sequence respectively (Fig 6A). On the other end, NetMHCpan-4.0 and NetMHC-

pan-3.0 were the slowest with average times of 8.53 and 6.30 seconds. We noticed that in gen-

eral, matrix based methods (BIMAS, SYFPEITHI, RANKPEP, SMM, SMMPMBEC) were

significantly faster compared to artificial neural network-based methods (NetMHCpan-4.0,

NetMHCpan-3.0, NetMHC-4.0) on average (Fig 6B). The matrix-based methods took an

Fig 6. Comparison of prediction speed among the some of the benchmarked methods. The plot shows the average time in seconds taken by the methods for doing

epitope prediction for 1000 amino acid residue long sequence. 6A. Comparison of prediction speed among individual methods. 6B. Comparison of prediction speed

between matrix-based methods and artificial neural network-based methods.

https://doi.org/10.1371/journal.pcbi.1007757.g006
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average of 2.07 seconds while the neural network-based methods needed an average of 6.06

seconds per sequence, with the pan-based methods being particularly slow. This indicates a

trade-off between prediction performance and speed.

Discussion

In this study we comprehensively evaluated the ability of different prediction methods to iden-

tify T cell epitopes. We found that most of the latest methods perform at a very high level, espe-

cially the methods developed on artificial neural-network based architectures. In addition, we

found that methods that integrated MHC binding and MHC ligand elution data performed

better than those trained on MHC binding data alone. And where available, methods that pro-

vided two outputs, where one output predicted MHC ligands vs. another that predicted MHC

binding, the MHC ligand output score performed better. Based on these results, the IEDB will

be updating the default recommended prediction method to NetMHCPan-4.0-L.

The results from this study are mostly in agreement with the recent benchmark analysis

done by Zhao and Sher (2018) [5]. Based on that analysis using MHC binding/non-binding

classification data, they observed that mhcflurry performed best for MHC class I 9-mers while

NetMHCpan4 showed comparable predictive power. Meanwhile, when MHC elution data was

used, NetMHCpan4 performed best. It should be noted that the Zhao and Sher study used

MHC binding and elution data whereas the present study uses T cell epitope data.

Our results highlight the value of integrating both MHC binding and MHC elution data

into training prediction algorithms, and confirm that the approach of generating different pre-

diction outputs allows to capture aspects of MHC ligands that is not captured by binding

alone, and that these aspects improve T cell epitope predictions [14]. At the same time, the dif-

ference in performance is small, highlighting that MHC binding captures nearly all features of

peptides that distinguish epitopes from non-epitopes in current prediction methods.

It is also interesting to note that the top 172 peptides captured 40% or more epitopes by the

top methods (NetMHCpan-4.0, MHCflurry) (Table 3). This should be viewed against the total

amount of peptides in the entire peptidome that could be generated from VACV proteome. It

means that the top 0.02% of the peptides could capture 40% of the epitopes and close to 50% of

the total immune response (Table 3). Similarly, it took less than 2% of the top peptides pre-

dicted by the best methods to capture 90% of the epitopes and T cell response. In the same

manner less than 0.04% of peptides captured 50% of the epitopes and T cell response (Table 2).

This is relevant because it shows that these methods can significantly reduce the number of

peptides needed to be tested in large scale epitope identification studies. Balance between

greater coverage (with fewer false negatives) vs. greater specificity (with fewer false positives)

that comes with different thresholds and methods has to be made in the context of a specific

application. For example, if the goal of a study is to identify patient-specific tumor epitopes for

a low mutational burden tumor, avoiding false negatives is crucial, as there are few potential

targets to begin with. In contrast, if the goal of a study is to identify epitopes that can be used

as potential diagnostic markers for a bacterial infection, there will be a plethora of candidates,

and avoiding false positives becomes much more important.

Interestingly it was also noticed that on an allele basis, the performance for H-2Kb was

slightly better than H-2Db. In machine learning-based applications other than the method

itself, one major factor that affects performance is the quantity and quality of training data.

Training the algorithms with larger volumes of high quality training data will improve perfor-

mance. When looking at IEDB database both these alleles have similar number of data points.

Therefore the quality of the available data or some other factors could be affecting H-2Db and

more detailed analyses will be required to pinpoint the exact reason.
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A limitation of previous benchmarks is that they either used MHC binding or MHC ligand

elution data to evaluate performance, or they use T cell epitope datasets for which it is unclear

what constitutes a negative. The dataset we use here is unique in that it comprehensively

defines T cell epitopes in a consistent fashion. The downside of this dataset is that it is limited

to two murine MHC class I molecules. Future benchmarks on similar datasets for T cell epi-

topes recognized in humans will be necessary to confirm that the results hold there.

In the process of conducting this benchmark, it became clear that comparing methods that

varied in terms of the lengths of peptides they covered introduces difficulties. Developers want

to see methods compared on the same datasets, and can refer to the values in Table 1. We

strongly advocate that all prediction methods should be evaluated by ranking all possible pep-

tides, which should be extended to ligands from 7 to 15 residues in the case of MHC class I.

Method developers should also include guidance on how scores from different length peptides

should be compared. That has been done in some cases before [26], but has not been done in

others, including in several developed by our own team (SMM, SMMPMBEC).

We want to mention that out of the 172 peptides that were identified by LC-MS/MS, 37

were detected in modified form but were tested for immunogenicity as synthesized unmodi-

fied peptides (S3 Table). The caveat is that we do not know to what extent the modification

affects binding compared to unmodified form for these peptides or indeed if some modifica-

tion were artefacts of sample preparation. We therefore repeated the analysis after excluding

the peptides identified in modified form and found that the AUCs did not change much and

the rankings of the methods remained same except that MHCflurry-B moved ahead of

MHCflurry-L (S5 Table).

Although the artificial neural network-based methods were much ahead in performance,

they were found to be slower compared to the matrix-based methods. This is expected since

artificial neural network-based methods employ more complex algorithms compared to rather

linear models used by matrix-based methods. But it should be noted that offline or standalone

versions are available for many methods that are significantly faster than the online and API

versions. These versions can be run on local computers and users should consider using these

standalone versions for doing large scale predictions.

Finally, an important aspect of this benchmark is that we have made all data including pre-

diction results from all benchmarked methods and the code for generating all result metrics

and plots publicly available as a pipeline (https://gitlab.com/iedb-tools/cd8-t-cell-epitope-

prediction-benchmarking). We believe this will act as a useful resource for streamlined bench-

marking process for epitope prediction methods. New prediction method developers can plug

in the prediction scores from the new method into this dataset and run the pipeline for side-

by-side comparison of their method’s performance with those included in the analysis. The

only point to remember is that the developers should exclude this data from the training data

for their method. We believe that this benchmark analysis will not only help guide immunolo-

gists choose the best epitope prediction methods for their intended use, but will also help

method developers evaluate and compare new advances in method development, and provide

target metrics to optimize against.

Supporting information

S1 File. The VACV reference proteome used for generating VACV peptides that were used

in the analysis. The proteome was collected from UniProt (Vaccinia virus strain Western

Reserve, https://www.uniprot.org/proteomes/UP000000344).

(XLSX)
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S1 Fig. Bar chart showing the overall AUCs for each method with binary classification

(epitope/non-epitope) based analyses.

(TIF)

S2 Fig. Bar chart showing the number of peptides (%) needed to capture 50%, 75% and

90% epitopes.

(TIF)

S3 Fig. Bar chart showing the number of peptides needed to capture 50% of epitopes and

50% of T cell response.

(TIF)

S4 Fig. Bar chart showing the number of peptides needed to capture 75% of epitopes and

75% of T cell response.

(TIF)

S5 Fig. Bar chart showing the number of peptides needed to capture 90% of epitopes and

90% of T cell response.

(TIF)

S6 Fig. Bar chart showing the number of epitopes and T cell response captured in the top

172 peptides.

(TIF)

S7 Fig. Bar chart showing the overall AUCs for each method with T cell response based

analyses.

(TIF)

S8 Fig. Bar chart showing the number of peptides (%) needed to capture 50%, 75% and

90% T cell response.

(TIF)

S1 Table. List of publicly available T cell epitope prediction methods compiled from inter-

net. There were 44 methods with the executables freely available. This list was further screened

for inclusion of the methods in the benchmark analysis based on certain criteria e.g. availabil-

ity of trained algorithms for the two alleles for which we had data. The last column shows

whether the method was included and the reason for exclusion in case it was not included.

(XLSX)

S2 Table. Methods included in this benchmark analysis. The table shows the methods finally

included in the benchmark analysis and their available peptide lengths per allele.

(XLSX)

S3 Table. Peptides tested for T cell response. The table shows the 220 VACV peptides that

were tested for T cell immune response. It includes the 172 peptides that were identified by

mass-spectrometry and the additional 48 peptides that were selected from other sources. This

table is derived from Croft et al., 2019 (dataset-S1 therein).

(XLSX)

S4 Table. Predicted binding scores for the top 277 peptides for NetMHCpan-4.0-L. The

table shows the predicted scores and other details for the top 277 peptides in NetMHCpan-

4.0-L method. This is a subset of the complete data provided in Github repository.

(XLSX)
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S5 Table. Overall AUCs after excluding the peptides that were identified in modified form

by the LC-MS/MS but tested for T cell response in unmodified form. The ranking of the

methods was same as that with including all peptides with only one exception that

MHCflurry-B moved ahead of MHCflurry-L.

(XLSX)

Author Contributions

Conceptualization: Sinu Paul, Bjoern Peters.

Data curation: Sinu Paul, Nathan P. Croft, Anthony W. Purcell, David C. Tscharke.

Formal analysis: Sinu Paul.

Funding acquisition: Alessandro Sette, Bjoern Peters.

Investigation: Sinu Paul.

Methodology: Sinu Paul.

Supervision: Bjoern Peters.

Validation: Sinu Paul.

Visualization: Sinu Paul.

Writing – original draft: Sinu Paul, Bjoern Peters.

Writing – review & editing: Sinu Paul, Nathan P. Croft, Anthony W. Purcell, David C.

Tscharke, Alessandro Sette, Morten Nielsen, Bjoern Peters.

References
1. Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, et al. Prediction of major histocompatibility

complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci. 1989;

86: 3296–3300. https://doi.org/10.1073/pnas.86.9.3296 PMID: 2717617

2. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on

independent binding of individual peptide side-chains. J Immunol. 1994; 152: 163–175.

3. Rammensee H-G, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S. SYFPEITHI: database for

MHC ligands and peptide motifs. Immunogenetics. 1999; 50: 213–219. https://doi.org/10.1007/

s002510050595 PMID: 10602881

4. Peters B, Bui H-H, Frankild S, Nielsen M, Lundegaard C, Kostem E, et al. A Community Resource

Benchmarking Predictions of Peptide Binding to MHC-I Molecules. PLOS Comput Biol. 2006; 2: e65.

https://doi.org/10.1371/journal.pcbi.0020065 PMID: 16789818

5. Zhao W, Sher X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to natu-

rally processed epitopes. PLOS Comput Biol. 2018; 14: e1006457. https://doi.org/10.1371/journal.pcbi.

1006457 PMID: 30408041

6. Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, et al. Most viral peptides displayed by

class I MHC on infected cells are immunogenic. Proc Natl Acad Sci. 2019; 116: 3112–3117.

7. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui H-H, et al. A consensus epitope predic-

tion approach identifies the breadth of murine TCD8 -cell responses to vaccinia virus. Nat Biotechnol.

2006; 24: 817–819.

8. Tscharke DC, Karupiah G, Zhou J, Palmore T, Irvine KR, Haeryfar SMM, et al. Identification of poxvirus

CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp

Med. 2005; 201: 95–104. https://doi.org/10.1084/jem.20041912 PMID: 15623576

9. Bui H-H, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K-A, et al. Automated generation and

evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics. 2005;

57: 304–314. https://doi.org/10.1007/s00251-005-0798-y PMID: 15868141

PLOS COMPUTATIONAL BIOLOGY MHC I epitope prediction benchmarking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007757 May 26, 2020 17 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007757.s014
https://doi.org/10.1073/pnas.86.9.3296
http://www.ncbi.nlm.nih.gov/pubmed/2717617
https://doi.org/10.1007/s002510050595
https://doi.org/10.1007/s002510050595
http://www.ncbi.nlm.nih.gov/pubmed/10602881
https://doi.org/10.1371/journal.pcbi.0020065
http://www.ncbi.nlm.nih.gov/pubmed/16789818
https://doi.org/10.1371/journal.pcbi.1006457
https://doi.org/10.1371/journal.pcbi.1006457
http://www.ncbi.nlm.nih.gov/pubmed/30408041
https://doi.org/10.1084/jem.20041912
http://www.ncbi.nlm.nih.gov/pubmed/15623576
https://doi.org/10.1007/s00251-005-0798-y
http://www.ncbi.nlm.nih.gov/pubmed/15868141
https://doi.org/10.1371/journal.pcbi.1007757


10. O’Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher J. MHCflurry: Open-

Source Class I MHC Binding Affinity Prediction. Cell Syst. 2018; 7: 129–132.e4. https://doi.org/10.1016/

j.cels.2018.05.014 PMID: 29960884

11. Stojanovic S. MHCLovac: MHC binding prediction based on modeled physicochemical properties of

peptides. [Internet]. 2019. Available: https://pypi.org/project/mhclovac/2.0.0/

12. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the

MHC class I system. Bioinformatics. 2015; 32: 511–517.

13. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules inte-

grating information from multiple receptor and peptide length datasets. Genome Med. 2016; 8: 33.

14. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved Peptide–

MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J

Immunol. 2017; 199: 3360–3368.

15. Liu I-H, Lo Y-S, Yang J-M. PAComplex: a web server to infer peptide antigen families and binding mod-

els from TCR–pMHC complexes. Nucleic Acids Res. 2011; 39: W254–W260. https://doi.org/10.1093/

nar/gkr434 PMID: 21666259

16. Altuvia Y, Schueler O, Margalit H. Ranking potential binding peptides to MHC molecules by a computa-

tional threading approach. J Mol Biol. 1995; 249: 244–250. https://doi.org/10.1006/jmbi.1995.0293

PMID: 7540211

17. Singh H, Raghava G. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics.

2003; 19: 1009–1014.

18. Reche PA, Glutting J-P, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs.

Hum Immunol. 2002; 63: 701–709. https://doi.org/10.1016/S0198-8859(02)00432-9

19. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological pro-

cesses with the stabilized matrix method. BMC Bioinformatics. 2005; 6: 132. https://doi.org/10.1186/

1471-2105-6-132 PMID: 15927070

20. Kim Y, Sidney J, Pinilla C, Sette A, Peters B. Derivation of an amino acid similarity matrix for peptide:

MHC binding and its application as a Bayesian prior. BMC Bioinformatics. 2009; 10: 394.

21. Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on

both MHC class I and class II molecules. J Immunol. 1997; 158: 2723–2730.

22. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope

database (IEDB) 3.0. Nucleic Acids Res. 2014; 43: D405–D412.

23. Hersperger AR, Siciliano NA, Eisenlohr LC. Comparable polyfunctionality of ectromelia virus-and vac-

cinia virus-specific murine T cells despite markedly different in vivo replication and pathogenicity. J

Virol. 2012; 86: 7298–7309.

24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. J Mach Learn Res. 2011; 12: 2825–2830.

25. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007; 9: 90.

26. Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T, et al. The Length Distribution of

Class I–Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele–Specific

Binding Preference. J Immunol. 2016; 196: 1480–1487. https://doi.org/10.4049/jimmunol.1501721

PMID: 26783342

PLOS COMPUTATIONAL BIOLOGY MHC I epitope prediction benchmarking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007757 May 26, 2020 18 / 18

https://doi.org/10.1016/j.cels.2018.05.014
https://doi.org/10.1016/j.cels.2018.05.014
http://www.ncbi.nlm.nih.gov/pubmed/29960884
https://pypi.org/project/mhclovac/2.0.0/
https://doi.org/10.1093/nar/gkr434
https://doi.org/10.1093/nar/gkr434
http://www.ncbi.nlm.nih.gov/pubmed/21666259
https://doi.org/10.1006/jmbi.1995.0293
http://www.ncbi.nlm.nih.gov/pubmed/7540211
https://doi.org/10.1016/S0198-8859(02)00432-9
https://doi.org/10.1186/1471-2105-6-132
https://doi.org/10.1186/1471-2105-6-132
http://www.ncbi.nlm.nih.gov/pubmed/15927070
https://doi.org/10.4049/jimmunol.1501721
http://www.ncbi.nlm.nih.gov/pubmed/26783342
https://doi.org/10.1371/journal.pcbi.1007757

