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Abstract

Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynu-
cleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process
to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular,
cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer
progression. The study and modulation of glycans in cell and organismal biology is aided by small mole-
cule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of cur-
rently available inhibitors, focusing on agents which have been independently validated in diverse
systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need
for innovation for basic research as well as for therapeutic applications.
� 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction

All cells synthesize complex glycans, also called
sugars, carbohydrates, or polysaccharides. In
mammals, glycoconjugates are broadly classified
as (i) glycoproteins which bear O-linked glycans
on serine/threonine residues or N-linked glycans
on asparagine residues, (ii) proteoglycans which
are proteins modified by long glycosaminoglycan
chains, (iii) glycolipids, (iv) free polysaccharides,
and (v) the recently reported glycosylated RNAs
(Fig. 1A) [1–4].
Human glycans are constructed from nine

monosaccharide units: fucose (Fuc), galactose
(Gal), glucose (Glc), glucuronic acid (GlcA),
mannose (Man), N-acetylgalactosamine (GalNAc),
N-acetylglucosamine (GlcNAc), sialic acid (the
most common of which is N-acetylneuraminic
acid, Neu5Ac), and xylose (Xyl) (Fig. 1A). These
monomers are converted to nucleotide sugar
by Elsevier B.V.This is an open access article un
donors which act as substrates for glycosyltrans-
ferases (glycosyltransferase biochemistry has
been reviewed elsewhere [5–8]). The majority of
the cellular glycan pool is composed of complex,
branching glycans that are biosynthesized in the
endoplasmic reticulum (ER) and the Golgi appara-
tus by hundreds of enzymes acting through interwo-
ven metabolic pathways. Complex glycoconjugates
are then secreted into the extracellular space
or trafficked to the cell membrane. Intracellular
proteins can be modified with unelaborated
O-GlcNAc, which has been reviewed elsewhere
[9–12]. All glycan classes can be modified post-
synthetically, e.g. through sulfation and acetylation
[13]. Taken together, glycosylation is both more
abundant and more structurally diverse than other
post-translational modifications such as phosphory-
lation and palmitoylation [14].
Complex glycoconjugates are a vital constituent

of cell signalling [15–17]. Indeed, extracellular
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Fig. 1. Fundamentals of glycosylation. (a) Monosaccharides units used in human glycans and their nucleotide sugar
donors, along with symbol nomenclature [292] (b) Overview of glycosylation pathways. Dietary monosaccharides and
monosaccharides obtained from salvage pathways are internalized via membrane channels and transporters.
Through complex metabolic pathways, they are converted to nucleotide sugars, and transported to the ER and Golgi
apparatus where combinatorial biosynthesis is performed. The final glycosylated lipids and proteins are then shuttled
to the cell membrane. Monosaccharide inhibitors (red text) are structural analogues of naturally occurring
monosaccharides, and act as competitive inhibitors for downstream enzymes.
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glycans are recognized as a key regulator of cell,
tissue, and organismal processes including leuko-
cyte adhesion, host–pathogen interaction, viral
entry, embryonic development, cancer cell adhe-
sion, and cellular differentiation [18–24]. Decades
of biochemical and clinical evidence point not only
to the significance of the complex glycans in health,
but also to the consequences of altered glycosyla-
tion in disease, including vascular diseases, infec-
tious diseases, autoimmune diseases, and cancer
progression [15,16,25–35]. Cell-surface and
secreted glycoconjugates have therefore attracted
considerable attention as a point of therapeutic
intervention [36].
Efforts to selectively target extracellular glycans

have historically faced several technical
challenges: (i) glycans are not directly encoded in
the genome, meaning it is extremely difficult to
manipulate a gene and observe an exclusive
consequence on a single glycan structure [37]; (ii)
robust technologies for labelling and sequencing
complex glycans have historically lagged behind
those of peer fields. As a result, despite promising
recent efforts to, for example, prevent loss of cell
surface glycans upon vascular injury or reverse
upregulation of immune checkpoint binding sialic
acids on tumors [1,38], progress in small molecule
drug targeting of glycosylation pathways has trailed
progress made for targeting of other fundamental
biomolecules and post-translational modifications.
Here, we aim to describe and critically assess the

current battery of small, drug-like molecules that
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target the biosynthetic machinery responsible for
complex, extracellular mammalian glycosylation
(compiled in Table 2). We strive to provide a
useful resource for experimentalists as well as
highlight the need for innovation: many key
molecular targets cannot be addressed at the
moment. Thus, efforts from medicinal chemists
and biochemists to accelerate the progress in this
field are required, which we hope to inspire.
Monosaccharide inhibitors

Monosaccharide inhibitors are engineered sugars
that mimic naturally occurring monosaccharides but
cannot be readily used by cellular biosynthetic
machinery (Fig. 1b, red text). Several deoxy-
genated and fluorinated analogues of glucose,
mannose, glucosamine, and mannosamine have
been developed, and the most commonly used
ones are described below [39,40].
Note, if the experimenter’s goal is to reduce levels

of a single glycan class, these inhibitors may be
inappropriate, as they will reduce the levels of
all glycan types bearing the inhibited monosac-
charide unit. If the experimenter’s goal is to
reduce total levels of a single monosaccharide
unit, still caution is required as other precursors
may be reduced through intermediary metabolism
[41]. Therefore, it can be difficult to directly link
observed phenotypes to loss of specific glycan
classes using these inhibitors.
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2-Deoxyglucose

2-Deoxyglucose (2-DG) was one of the first sugar
analogues described [42,43]. 2-DG is a glucose and
mannose analogue which features a hydrogen
atom instead of the 2-hydroxyl group. Mimicking
glucose, 2-DG enters the cell via glucose trans-
porters, where it can act to inhibit glucose-
dependent pathways. For example, 2-DG seems
to preferentially inhibit protein N-glycosylation at
normoxic conditions, whereas at hypoxic conditions
it preferentially inhibits glycolysis [44,45]. The
effects of 2-DG on N-glycoprotein synthesis are
the best studied, and involve 2-DG metabolism to
UDP-2-DG and GDP-2-DG. GDP-2-DG then gets
transferred onto its lipid carrier, thus forming
dolichol-P-2DG. The formation of dolichol-P-2DG
terminates further extension of the oligosaccharide
precursor and its transfer to the protein due to the
lack of the hydroxyl group necessary for extension.
Notably, the inhibitory effect of 2-DG is reversed in
cells upon the addition of glucose as well as man-
nose [46]. The effective concentration range for 2-
DG in cells is 1–5 mM, with some reports going as
high as 50 mM [47]. As cancer cells exhibit
increased glucose uptake and metabolism, several
groups have investigated the use of 2-DG as an
adjuvant to chemotherapeutic agents in several
cancer types [48–50].
Several fluorinated sugar analogues that are

similar to 2-DG, including 2-fluoro-D-mannose (2-
FM) and 2-fluoro-2-deoxy-D-glucose (2-FG), have
been developed as well. Both 2-FM and 2-FG
inhibit protein N-glycosylation at an effective
concentration range of 0.2–10 mM and 0.2–3 mM,
respectively [47,51,52]. Kurtoglu, Lampidis, et al.
showed the potential of these sugar analogues in
blocking glycoprotein synthesis in cancer cells is
of the following order: 2-DG > 2-FM > 2-FG [45].
Glucosamine

Glucosamine is also referred to as 2-amino-2-
deoxy-D-glucose. Its use as an inhibitor of N-
glycosylation has been reported at a concentration
of 1 mM in Madin-Darby Canine Kidney (MDCK)
cells. At this concentration the cells exhibited a
lipid carrier with an oligosaccharide precursor of
the structure Man6-8(GlcNAc)2 compared to
Glc3Man9(GlcNAc)2 structures in control cells,
which may be of interest in scenarios where
truncated N-glycosylation is desired. This shift
towards smaller precursors was more profound
when the inhibitor concentration was increased to
10 mM [53]. This compound is usually used at a
concentration range of 4–40 mM in cells [51]. It
was reported that glucosamine also exhibits anti-
cancer activity that is thought to arise from its ability
to inhibit N-glycosylation [54,55]. Glucosamine is
unlikely to act selectively on N-glycosylation path-
ways. For example, it can modulate lipid biosynthe-
sis causing ER stress, [56] as well as O-glycan
3

biosynthesis resulting in differential response of cul-
tured cells to TNF-a [57]. In addition, glucosamine is
used as an over-the-counter remedy for joint pain
[58].
4-F-GlcNAc

Woynarowska, Bernacki, et al. first reported 4-F-
GlcNAc as a glycosylation inhibitor, demonstrating
inhibition of glycoconjugate biosynthesis in human
ovarian carcinoma cells (A-121) [59]. 4-F-GlcNAc
has also been applied in mouse models of mela-
noma (B16) and lymphoma (EL-4), where 100 mg/
kg intraperitoneal treatments were tolerated [60].
In those models, reduction in levels of T cell and B
cellN-acetyllactosamines (LacNAcs) were observed
by flow cytometry. Barthel, Dimitroff, et al. explored
4-F-GlcNAc’s mechanism of action, concluding that
4-F-GlcNAc functions through inhibition of intracel-
lular UDP-GlcNAc formation, not via direct incorpo-
ration into glycans [61]. They reported a decrease in
the content and diversity of N- and O-glycans
through lowering the abundance of tri- and tetra-
antennaryN-glycan structures, LacNAc extensions,
and core 2 O-glycan and sialyl-Lewis X structures.
RNA sequencing revealed that 4-F-GlcNAc had
negligible effects on the expression of glycosylation-
related genes, and glycosyltransferase assays in
cell lysates showed no change in activity upon 4-
F-GlcNAc treatment.
Inhibitors of N-glycans

N-glycosylation is a post-translational
modification by which glycans are covalently
linked to asparagine (Asn) (Fig. 2). This complex
process initiates in the endoplasmic reticulum,
where dolichol phosphate is embedded into the
membrane. Analogous to a step-by-step assembly
of a product on a conveyer belt, glycans are
transferred to the dolichol, which is then flipped
into the lumen of the ER. In the ER lumen, the
glycolipid is further decorated by mannosyltrans-
ferases and glucosyltransferases. The oligosac-
charyltransferase complex (OST) then mediates
transfer of the glycan tree from the lipid carrier to
the target protein. Next, a-glucosidases and a-
mannosidases trim the glycan tree on the protein.
The resulting glycoprotein (-Asn-GlcNAc2Man8) is
then transferred to the Golgi apparatus where
mannose units are further trimmed. Finally, a
series of Golgi enzymes build the glycan tree back
up, diverging into pathways responsible for
synthesis of high mannose, complex, and hybrid
N-glycan structures. N-glycosylation has been
implicated in several diseases including inflam-
matory bowel disease, diabetes, viral infections,
and cancer [62–66]. As one example, the functions
of cancer-related adhesion molecules including
integrins, TGF b receptor, and epithelial growth fac-
tor receptor, are influenced by their N-glycosylation



Fig. 2. Inhibitors of N-glycosylation. Canonical sequence of N-glycan biosynthesis. Key inhibitors are shown in red.
Enzymes are shown only for steps for which an inhibitor is available.
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status [67–69]. Modulating the biosynthetic path-
ways involved in this post-translational modification
has emerged as a promising strategy for supressing
cancer progression [70–77].

Inhibitors of dolichol precursor assembly

One approach to reduce N-glycan levels is to
block the glycan assembly onto dolichol phos-
phate. Several antibiotics have been shown to
inhibit N-linked glycosylation in both animal and
cell models via this route.

Tunicamycin. Over four decades ago, while
screening for bacterially-derived antiviral drugs,
Takatsuki, Tamura, et al. isolated tunicamycin from
Streptomyces lysosuperificus, demonstrated its
antiviral potential, and solved its structure [78,79].
Subsequently, Heifetz, Elbein, et al. discovered the
N-glycosylation inhibitory effect of tunicamycin.
Early pre-clinical studies exploiting a microsomal
preparation of pig aorta demonstrated the potent
inhibitory effect of tunicamycin on GlcNAc-phos-
photransferase complex (Ki ffi 5 � 10�8 M com-
pared to a Km value offfi 3 � 10�6 M for UDP-
GlcNAc), thus revealing its mechanism of action
[80–82]. Tunicamycin has been widely used on
various cell culture models, and its effective inhibi-
tory concentration range seems to vary between
0.1 and 10 mg/ml [39]. In addition, tunicamycin-
resistant mutant cells with elevated GlcNAc-
phosphotransferase levels have been reported
4

[83]. As a note of caution, experiments with rat and
chick hepatocytes have revealed that tunicamycin
can also antagonize protein synthesis, a potential
confound when interpreting results with this mole-
cule [84].
Studies have shown that tunicamycin elevates

the sensitivity of cancer cells to the anticancer
drug trastuzumab in vivo and in vitro [85]. This impli-
cates tunicamycin as a potential candidate for adju-
vant cancer therapy. Unfortunately, tunicamycin did
not make its way into clinic due to its poor selectivity
and toxicity [86]. Today, tunicamycin is mainly used
as a research tool in glycobiology and to induce ER
stress [87].

Lipopeptide antibiotics. Following the discovery
of tunicamycin, lipopeptide antibiotics which target
peptidoglycans or lipopolysaccharides in the
bacterial cell wall attracted attention as potential
N-glycan inhibitors, the two main ones of which
are amphomycin and tsushimycin [88–90]. Unfortu-
nately, both antibiotics fail to inhibit N-glycoproteins
in mammalian cells when added to cell culture
media, owing to poor cell membrane permeability.
Therefore, both antibiotics would have to be modi-
fied before use in a mammalian system. Mechanis-
tically, amphomycin is reported to block the
synthesis of dolichol-P-mannose by forming com-
plexes with the carrier lipid dolichol-phosphate
[91]. Reports have demonstrated that other types
of antibiotics (e.g., showdomycin and diumycin)
are also capable of interfering with dolichol precur-
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sor assembly, however they all seem to do so in a
less specific manner than tunicamycin [92,93].
Looking forward, inhibitors that can penetrate cell
membranes, specifically target a single step in the
dolichol precursor assembly pathway, and demon-
strate potency in vivo are needed.

Inhibitors of glucosidases and mannosidases

Following the transfer of the oligosaccharide from
the lipid carrier to the protein, the oligosaccharide
then undergoes several processing reactions that
are regulated by glucosidases and mannosidases.
Therefore, drugs that target these enzymes are
powerful pharmacological tools that can alter the
formation of N-glycans.

Deoxynojirimycin. In 1966, Inouye, Nida, et al.
discovered the first natural iminosugar, nojirimycin,
originally isolated from Streptomyces strains [94].
Nojirimycin was a potent inhibitor of glucosidases,
but its poor stability limited its applications.
Deoxynojirimycin (DNJ) is a closely related imi-
nosugar with improved potency and chemical stabil-
ity. DNJ can inhibit both glucosidases I and II, and
therefore the processing of N-glycoproteins [95].
The effective inhibitory concentration range of
DNJ in cells is 0.5–20 mM, with 5 mM being the
optimal concentration. Functionally, DNJ treatment
can reduce antibody secretion [96] and protein
secretion with accumulation in the rough ER. This
highlights the effects N-glycosylation inhibition can
have on protein stability, especially prior to protein
folding. Since such early intervention removes or
modifies the carbohydrate residues that are vital
for the calnexin/calreticulin cycle, protein matura-
tion, transport, and secretion are affected.
DNJ analogues have been explored as well. The

methylated derivative of DNJ, N-methyl-1-
deoxynojirimycin (MDNJ), demonstrated maximal
inhibition at 1 mM compared to 5 mM achieved by
DNJ in rat intestinal epithelial cells [98]. Additionally,
in DNJ-treated cells 20% of the oligosaccharides
exhibited three glucose units compared to 70%
achieved by MDNJ [98]. Clinically, acarbose, an
oral drug integrating a structural isomer of DNJ, is
currently used as an antidiabetic due to its ability
to prevent amylase breakdown in the intestine [99].

Castanospermine. In the early 1980s, a plant
alkaloid known as castanospermine was isolated
from the toxic seeds of Australian legume
Castanospermumaustral [100]. The toxicity of these
plant’s seeds arises from the ability of castanosper-
mine to potently inhibit various a-glucosidases (e.g.,
maltase and sucrase) that regulate starch and
sucrose metabolism, causing gastrointestinal irrita-
tion [101]. Additionally, pharmacological demonstra-
tions in cells have revealed that castanospermine
blocks glucosidase I and II, causing enrichment of
immature N-glycans [102]. The effective inhibitory
concentration range of castanospermine is 1–
5

50 mg/ml for one to two hours [103]. Notably,
castanospermine-treated cells exhibited a signifi-
cant reduction in glycosylated receptors such as
insulin receptor and low-density lipoprotein receptor,
again highlighting effects on protein folding and
secretion [104,105].
To increase the cellular uptake of castano-

spermine and decrease its gastrointestinal tract
toxicity, researchers at Merrell Dow developed a
butanoyl-modified castanospermine known as
celgosivir (6-O-butanoyl-castanospermine) [106,
107]. Celgosivir is a prodrug that is less active
against intestinal sucrase, maintains its inhibitory
activity against a-glucosidase I, and is approxi-
mately 30 times more potent than castanospermine
[107]. Celgosivir has been clinically evaluated for
the treatment of several viruses including human
Dengue virus and Hepatitis C virus, through modifi-
cation of host glycans in a manner that reduces
viral–host interactions [106]. Thus far, the prodrug
has failed to demonstrate clinical anti-viral efficacy
as a monotherapy [106,108,109]. Recently, demon-
strations from Clarke, Bradfute, et al. have shown
that castanospermine and celgosivir inhibit SARS-
CoV-2 replication in a cell culture system [110].
Australine. One limitation to the use of
deoxynojirmycin and castanospermine is that they
act on both glucosidase I and II, which makes it
difficult to distinguish the effects of these two
enzymes. Another iminosugar, australine, fills this
gap, by preferentially inhibiting glucosidase I.
Similar to castanospermine, australine was also
isolated from the seeds of Castanospermum
austral [111]. Notably, australine-treated MDCK
cells exhibited accumulated immature Glc3Man7-9-
(GlcNAc)

2
structures [111,112]. However, austra-

line is a rather weak inhibitor compared to
castanospermine, since 500 mg/mL of australine
was required to achieve the same degree of inhibi-
tion produced by 10 mg/mL of castanospermine,
which might explain its rather rare use and further-
more emphasizes the need to develop more potent
selective glucosidase inhibitors [102].
Swainsonine. Swainsonine was the firstN-glyco-
protein processing inhibitor discovered, originally
isolated from the Australian plant, Swainsona
canesces. Swainsonine is an iminosugar that
inhibits Golgi mannosidase II, thus blocking the
synthesis of glycoproteins with complex mannose
content. Consequently, swainsonine treated cells
expressed hybrid N-glycan structures that lack a-
1,3 and a-1,6mannose residues [113]. The effective
concentration range in cells for swainsonine is 1–
10 mg/ml [103]. In mice and rats, administration is
either through addition to drinking water (dose of
2.5–3 mg/mL) or intraperitoneal injection (doses of
2–8 mg/kg), with which authors have observed
reduction of tumour growth and metastasis [114–
117]. A hydrochloride salt of swainsonine
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(GD0039) exhibited adverse side effects and failed
to demonstrate significant anti-tumour activity in 17
patients with metastatic renal cancer [118].
Nonetheless, this does not eliminate the potential
of swainsonine in treating other types of cancer.
Deoxymannojirimycin. The successful develop-
ment of deoxynojirimycin as an N-glycosylation
inhibitor prompted scientists to synthesize struc-
tural analogues that exhibit a mannose configura-
tion. Both chemically synthesized and naturally-
derived deoxymannojirimycin (DMJ; the 2-epimer
of deoxynojirimycin) have been shown to inhibit
50% of Golgi-mannosidase I in rat liver lysate at a
concentration of 1 mM [119,120]. Notably, the treat-
ment of MDCK cells with DMJ resulted in the accu-
mulation of high mannose glycoproteins with
structures Man8-9(GlcNAc)2 [121]. The effective
concentration range of DMJ in live cells is 1–
5 mM. Since its discovery, DMJ has proven to be
a powerful tool to study the function of glycans on
proteins. For example, unlike deoxynojirimycin-
treated rat hepatocytes, DMJ-treated hepatocytes
fail to block IgM secretion. This observation sug-
gested that the assembly of glucose on oligosac-
charides is important for the intracellular transport
of some glycoproteins, whereas a switch from high
mannose structures to normal complex chains
seems to be less significant for correct protein fold-
ing and secretion [39,96,122]. Remarkably, the
mannosidase inhibitors DMJ and swainsonine
aided the discovery of the calreticulin-calnexin
cycle, thus highlighting the importance of glycosyla-
tion inhibitors for functional studies [123].
Fig. 3. Inhibitors of O-glycosylation. Initial steps of O-
glycan biosynthesis. Key inhibitors are shown in red.
Enzymes are shown only for steps for which an inhibitor
is available.
Kifunensine. Kifunensine is an alkaloid which
was first isolated from Kitasatosporia kifunense by
Iwami, Imanaka, et al. in 1987 [124]. Similar to
deoxymannojirimycin, kifunensine is an inhibitor of
Golgi mannosidase I, but is approximately 100
times more potent [39]. Kifunensine shifts the struc-
ture of complex glycan chains to Man9(GlcNAc)2. In
contrast to deoxymannojirimycin, which failed to
fully inhibit complex glycosylation at 50 lg/ml, kifu-
nensine demonstrated complete inhibition of com-
plex glycosylation at a concentration of 1 lg/ml in
MDCK cells [125]. Kifunensine has an IC50 of
20 nM measured in extracted plant mannosidase
I, and its effective concentration range in cells is
5–20 lM for 24 h [126]. The high potency of kifu-
nensine in blocking glycoprotein processing makes
it a valuable tool to study glycans. Recently, kifu-
nensine and swainsonine aided the discovery of a
novel glycosylated small non-coding RNA [3]. Clin-
ically, kifunensine is currently used to construct
recombinant glucocerebrosides for the treatment
of Gaucher disease type 1 [127]. Additionally, kifu-
nensine seems to be a promising drug for sarcogly-
canopathy, which involves accumulation of N-
glycosylated proteins [128,129].
6

Inhibitors of mucin-type
O-glycosylation

O-Glycosylation refers to the attachment of sugar
molecules to the hydroxyl groups of serine (Ser) or
threonine (Thr) residues in a protein [130]. Themost
common initiating sugars are GalNAc and GlcNAc.
GalNAc-linked glycans, also known as mucin-type
O-glycans, are found on cell surfaces, while O-
GlcNAc is an unelaborated intracellular post-
translational modification. As the focus of this
review is complex glycosylation, post-translational
O-GlcNAcylation, which is vitally involved in diverse
cellular processes such as protein–protein interac-
tions, tuning of signalling pathway activity, and pro-
tein trafficking, is not surveyed here. We refer the
reader to the extensive body of literature on the bio-
logical role of O-GlcNAcylation and its inhibition [9–
12].
Mucin-typeO-glycan biosynthesis is initiated by a

family of polypeptide N-acetyl-a-galactosaminyl
transferases (GALNTs) which transfer GalNAc
from its donor, uridine diphosphate N-acetyl-a-
galactosamine (UDP-GalNAc) to peptide back-
bone acceptors (Fig. 3) [131,132]. A glycopeptide
with an a-GalNAc-Ser/Thr (Tn antigen) structure is
therefore generated. Tn antigen is elaborated via
addition of of galactose, GlcNAc, sialic acid, and
fucose by downstream glycosyltransferases to form
more complex glycan structures. As is the case with
N-glycans, O-glycans play key roles in both health
and disease [133]. As one example, aberrated O-
glycosylation is a common feature of human neo-
plasms [134–138]. For example, the metastasis of
gastric cancer cells is decreased with the overex-
pression of GALNT2 and is increased with the
expression of GALNT12 [139,140]. Other GALNTs
such as GALNT3, GALNT6, and GALNT7 have
also been associated with the exacerbation of tumor
prognosis [141–147]. As such, GALNTs are thera-
peutic targets for cancer treatment and important
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markers for cancer diagnosis and prognosis [148–
150].
2,3,4-trihydroxybenzene modified uridine

Inhibitors of GALNTs were described by Hang,
Bertozzi, et al. in 2004 from screening of a uridine-
based library [131]. The lead compound, 1-68A, is
formed by a 2,3,4-trihydroxybenzene motif (68A)
connected through an oxime linkage to uridine. 1-
68A bound to GALNT1 in a competitive inhibition
mode with respect to the native uridine diphosphate
N-acetylgalactosamine (UDP-GalNAc) substrate.
Its inhibition constant (Ki) of 7.8 ± 0.1 lM was half
as large as the Michaelis constant (Km), 13.9
± 1.8 lM in the absence of inhibitor. Ki measure-
ments with structurally similar compounds indicated
that the 68A group and linker length were both
involved in driving affinity for GALNT1. Beyond
GALNT1, 1-68A exhibited in vitro micromolar inhibi-
tory activity against GALNT1–5, –T7, –T10, and
–T11, with negligible inhibitory activity on other
glycosyltransferases and nucleotide sugar utilizing
enzymes tested, such as a1,3-galactosyltransferase
and UDP-GlcNAc/GalNAc C4-epimerase. Cell lines
treated with 80–100 mM 1-68A for 24 h showed
reduced binding to O-glycan selective lectins but
notN-glycan selective lectins, alongside a significant
induction of cell death, which alongside its commer-
cial unavailability, is a drawback for use of this
compound.
Luteolin

Luteolin extracted from the commonweedReseda
luteola has been used as a fabric dye since
prehistoric times [151]. Liu, Wu, et al. [152] reported
in 2017 that luteolin inhibited GALNT2, -T3, -T6,
-T10, and -T14 (subfamilies Ib, Ic, and IIb) but not
GALNT1 or -T13 (subfamily Ia). Authors focused
mechanisticworkonGALNT2,where theymeasured
competitive inhibition of catalytic activity on a peptide
acceptor substrate with a Ki of 1.4 ± 0.05 lM relative
to a Km of 160.2 ± 11.5 lM, indicating a� 100-fold
greater binding capacity for luteolin over the acceptor
peptide. In contrast, luteolin displayed non-
competitive inhibition with respect to UDP-GalNAc
substrates (Ki 4.1 ± 1.1 lM versus Km 59.7
± 4.6 lM). X-ray structures revealed that luteolin
bound to GALNT2 via interactions with its peptide-
binding groove. Treatment of cultured cells with 20–
25 mM luteolin for 24 h resulted in loss of O-glycan
selective lectin staining (Jacalin), without loss of N-
glycan selective lectin staining (ConA). The same
conditions resulted in inhibition of GALNT2 medi-
ated, but not -T1 mediated, glycosylation of an
exogenously expressed glycoprotein. Inmice, doses
of 50 mg/kg/day are tolerated [152]. Outside of its
context as an O-glycan inhibitor, luteolin has not
been investigated for its antioxidant, anticancer,
anti-inflammatory, neuroprotective, and cardiopro-
tective properties [153–159]. It remains to be seen
7

whether these effects arise from luteolin’s activity
on GALNTs or other, possibly pleotropic mecha-
nisms. Furthermore, luteolin has been reported to
trigger topisomerase II-mediated DNA damage,
which can accumulate over time, causing off-target
toxicity in the context of cancer treatment [160,161].
Peracetyl N-thioglycolyl-D-galactosamine
(Ac5GalNTGc)

In 2013, Agarwal, Sampathkumar, et al. iden-
tified peracetyl N-thioglycolyl-D-galactosamine
(Ac5GalNTGc) as an inhibitor of mucin-type O-
glycosylation [162]. Ac5GalNTGc enters cells
through the GalNAc salvage pathway and is added
to serine/threonine residues in place of GalNAc,
preventing elaboration at those sites and O-glycan
initiation at neighbouring sites. The same group fur-
ther characterized Ac5GalNTGc in a follow-up study
published in 2021 [132]. Employingmass spectrom-
etry, lectin blotting, and flow cytometry on cultured
cells they quantified a 30–60% inhibition of O-
glycan elaboration beyond Tn-antigen (GalNAca-
Ser/Thr) with typical treatment conditions of 50–
80 mM for 16–40 h. Functionally, Ac5GalNTGc treat-
ment mediated loss of leukocyte sialyl-Lewis X
(sLeX) expression and diminished L- and P-
selectin dependent rolling adhesion. Ac5GalNTGc
showed no effects on cellular nucleotide sugars
and negligible changes in N-glycan structures, but
did reduce glycosphingolipids to some extent based
on mass spectrometry analysis. Mice tolerated
treatment with 100 mg/kg Ac5GalNTGc daily for
four days. Flow cytometry analysis of neutrophils
in the peritoneum after 16 h revealed 2-fold higher
Vicia villosa agglutinin (VVA) binding with respect
to vehicle control, indicating inhibition of core 1 O-
glycan elaboration by Ac5GalNTGc in vivo.
T3lnh-1

The first isoform selective GALNT inhibitor was
reported by Song and Linstedt in 2017 [163]. It
was discovered through small molecule library
screening for inhibition of a cell-based fluorescence
sensor of GALNT3, with counter screening against
compounds influencing an analogous sensor of
GALNT2. The lead compound, T3lnh-1, bound to
both free GALNT3 and enzyme-substrate com-
plexes in a mode of mixed inhibition with Ki at
9.9 lM and 2.9 lM with respect to acceptor peptide
and UDP-GalNAc substrates, respectively. It
showed negligible activity against either GALNT2
or GALNT6. In various cancer cell lines, treatment
with 5 mM T3lnh-1 for 5–10 h reduced migration
and invasiveness. In mice, a single intraperitoneal
injection of 25 mg/kg T3lnh-1 influenced the beha-
viour of a known GALNT3 target glycoprotein, while
a GALNT2 substrate was unaffected. Notably,
T3lnh-1 treatment of cell lines resulted in no detect-
able decrease in staining by N- andO-glycan selec-
tive lectins, possibly due to its activity against only a
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small number of protein substrates. Isoform selec-
tive inhibitors of GALNTs will continue to grow in
importance as GALNT substrate profiles are char-
acterized [164,165].
Fig. 4. Inhibitors of capping modifications. (a) Inhibi-
tors of sialylation and desialylation. Empty hexagons
indicate that sialylation can occur on a wide variety of
monosaccharide units. The four human sialyltransferase
families are indicated along with the four sialidases
found in humans. (b) Inhibitors of fucosylation. The
fucosyltransferase (FUT) family of enzymes catalyzes
the transfer of fucose to a variety of monosaccharide
units.
Aryl-a-N-acetylgalactosamines

The most commonly used inhibitor of mucin-type
O-glycosylation is benzyl-a-GalNAc, first described
by Kuanm, Kim, et al. in 1989 [166]. They found that
benzyl-a-GalNAc, along with other aryl versions
such as phenyl and p-nitrophenyl, could block the
activity of galactosyltransferases in human colon
cancer cells in a dose-dependent manner by acting
as a decoy substrate, analogous to b-D-xylosides
(vide infra). The IC50 for inhibition of glycosylated
mucin production in these cells was � 1 mM, with
a maximum observed reduction of 90% seen at
2 mM, for a treatment time of 24 h. Inhibitory activity
on GALNTs and N-linked glycoprotein secretion
was not observed. With respect to asialo-ovine sub-
maxillary mucin acceptor substrates, benzyl-a-
GalNAc bound to the galactosyltransferases in a
competitive mode with an increase in the apparent
Km from 0.06 mg/mL in the absence of inhibitor to
0.4 mg/mL in the presence of 3 mM inhibitor. The
many aryl-a-GalNAc analogues that have been syn-
thesized and characterized as mucin-type O-
glycosylation inhibitors since 1989 support the
above mechanism of activity [167]. A drawback of
benzyl-a-GalNAc and similar compounds are the
millimolar doses at which they need to be used,
which can be toxic to cell lines and animals.
Inhibitors of capping modifications

Two glycosylation types are typically viewed as
“capping” modifications: fucosylation and sialyla-
tion. They can be found on O-glycans, N-glycans,
and glycolipids and are not further modified with
other types of sugars (the exception being long
chains of 2,8-linked sialic acids, called polysialic
acid, with diverse functions, e.g. in neuron
function and cell adhesion) [168,169]. Sialic acid is
almost always at the terminal end of glycans while
fucose can be found both at the terminal ends of gly-
can trees as well as branching from core residues.
Due to their exposed location on the glycocalyx
(which is already the outermost part of the cell), it
is not surprising that both fucose and sialic acids
play roles in a broad range of cellular processes.
Examples include immune system regulation,
pathogen binding, cancer progression, angiogene-
sis, leukocyte adhesion, and host–microbiome
interactions [29,170–176]. Although they fulfil differ-
ent biological functions, we discuss them together,
not only due to their capping function, but also
because their unique structures have enabled
development of high specificity inhibitors, summa-
rized in Fig. 4.
8

Sialylation

The most common form of sialic acid, Neu5Ac,
is synthesized in the cytosol and then relocates
to the nucleus where it is converted to cytosine
50-monophosphate N-acetylneuraminic acid
(CMP-Neu5Ac) by CMP-Neu5Ac synthetase.
CMP-Neu5Ac is then transferred to the Golgi
where sialyltransferases facilitate the transfer of
sialic acids from the donor substrate to various
glycoconjugates. Twenty sialyltransferases have
been identified so far, which can be classified
according to their acceptor substrates and their
linkage specificities into four families (Table 1)
[357]. Sialic acids modify a range of glycoconju-
gates and are involved in pathways relating to mul-
ticellular communication [4]. As one example,
members of the sialic-acid binding Ig-like lectins
(Siglec) family of cell surface receptors are
expressed widely on immune cells, where they
can bind various sialylated species presented to
them [177]. Due to the presence of inhibitory intra-
cellular domains in several family members, Siglecs
can act as immune checkpoint receptors, analo-
gous to the clinical targets PD-1 and CTLA-4
[133,178]. In the context of tumor progression, tar-
geting either the Siglec receptors or their sialylated
ligands has proved to be a promising strategy in
model systems [38,179]. Indeed, an engineered
human sialidase enzyme genetic fusion, recently
received investigational new drug approval in the



Table 1 Sialyltransferase families.

Sialyltransferase family Acceptor substrate Linkage

ST3Gal A terminal galactose of N- or O-glycans a2,3
ST6Gal Galactose residues of N-glycans a2,6
ST8Sia Another Neu5Ac residue in N- or O-glycans a2,8
ST6GalNAc Terminal N-acetyl galactosamine (GalNAc) residues of glycoproteins and glycolipids a2,6
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U.S. for testing in human clinical trials (E-602,
Palleon Pharmaceuticals).
Several classes of molecule have been shown to

inhibit sialyltransferases, including CMP-sialic acid
analogues, cytidine analogues, sialic acid ana-
logues, and several natural product inhibitors.
Many of these inhibitors fail to penetrate the cell
membrane, thus hampering their clinical potential.
Sialyltransferase inhibitors have been exhaustively
reviewed elsewhere [180–182], and here we focus
on particularly promising sialyltransferase inhibitors
in each category.

CMP-sialic acid analogues. The earliest
sialyltransferase inhibitors are CMP-sialic acid
analogues. This class of molecules was pioneered
two decades ago by Richard Schmidt [183,184].
These molecules were designed based on the
observation that sialyltransferase-catalysed reac-
tions of the donor substrate CMP-Neu5Ac exhibit
a transition state where CMP leaves prior to bond
formation with the hydroxyl group of the nucleophile
[185]. By mimicking this transition state, CMP-
Neu5Ac analogues can inhibit sialyltransferase
activity. Over the last decade, numerous CMP-
analogues with a range of activities have been
reported [180–182]. Among the most potent agents
are aryl- (Ki = 19 nM, ST6Gal I), [186] benzamide-
(Ki = 16 nM, hST6Gal I), [187] and cyclopentyl-
(Ki = 28 nM, ST6Gal I) derivatives of CMP-sialic
acid [188]. Despite their excellent potency, these
compounds are associated with pharmacokinetic
limitations, owing to their polar phosphodiester lin-
ker which hampers their ability to penetrate the cell
and makes them unstable. Various groups are
working toward overcoming these limitations by
masking the charged linker with neutral ones (e.g.,
amide and carbamate) [189–192].
Cytidine analogues have also been developed

[185]. Among them is 20-O-methyl-CMP which
demonstrated polysialyltransferase inhibitory
effects. This is significant considering the role of
polysialic acid in tumour progression and metasta-
sis [193]. Treatment with 0.25 mM of this analogue
strongly inhibited ST8Sia-II, ST8-Sia-III, and
ST8Sia-IV when chinese hamster ovary (CHO)
cells were treated for 24 h, thus suppressing poly-
sialic acid levels on the cell surface [194]. Addition-
ally, the same concentration also inhibited ST3Gal-
III and ST3Gal-IV, but not ST6Gal-I.

P-3Fax-Neu5Ac. As discussed earlier, exploiting
fluorinated sugar analogues can provide an
9

effective strategy to inhibit glycosyltransferases
[195]. Recently, Rillahan, Paulson, et al. developed
a cell-penetrating peracetylated analogue known as
P-3Fax-Neu5Ac. Upon cellular uptake, P-3Fax-
Neu5Ac is metabolized to the active inhibitor
CMP-3Fax-Neu5Ac, which can inhibit the synthesis
of various sialylated glycan epitopes [196]. When
human myeloid cells (HL-60 cells) were treated with
30–500 lM of P-3Fax-Neu5Ac for 3 days, the for-
mation of sialyl Lewis X was substantially inhibited
[196]. Moreover, P-3Fax-Neu5Ac blocked sialyla-
tion when 100 or 300 mg/kg was administered in
mice, suppressing the levels of sialylated glycans
in all cells of tissues tested including brain, kidney,
lung, heart, and liver. Treated mice in these exper-
iments developed kidney and liver dysfunction, thus
highlighting the significance of sialosides in these
tissues [197]. Furthermore, P-3Fax-Neu5Ac was
able to induce long-term suppression in the levels
of a2,3-/a2,6-linked sialic acids inmurinemelanoma
cells (B16F10 cells), thus impairing tumor adhesion
and migration [198]. This implicates P-3Fax-
Neu5Ac as a potential anticancer drug, limited by
its systemic toxicity. In the light of this context, the
same group formulated P-3Fax-Neu5Ac into
tumor-targeted nanoparticles that reduced systemic
toxicity [199]. A recent study showed that P-3Fax-
Neu5Ac suppresses SARS-CoV-2 viral infectivity
in cells, highlighting the role of sialylated glycans
in facilitating SARS-CoV-2 entry and implicating
them as a potential therapeutic target [200,201].

Soyasaponin I. Wu, Tsai, et al. identified
soyasaponin I from screening of a library of
microbial extracts and natural products [202]. Soy-
asaponin I is derived from soybean saponin and
has been shown to competitively inhibit the binding
of CMP-Neu5Ac to ST3GAL1 (Ki = 2.3 lM), thus
suppressing the levels of 2,3-linked sialic acid on
the cell surface [202]. When breast cancer cells
were incubated with soyasaponin I at a concentra-
tion of 50 lM for 3 days, �40% of the surface
a2,3-sialic acids were inhibited. Attenuation of sialic
acid levels in these cells resulted in decreased cell
migration and stimulated cell adhesion, altering
the tumour’s metastatic and invasive behaviour
[203]. Moreover, soyasaponin I-treated mice exhib-
ited suppressed lung metastasis compared to con-
trols [204].

Lithocholic acid derivatives. Several steroidal
compounds have been shown to inhibit sialyltrans-
ferases. One promising class of steroidal inhibitors



Table 2 Structures, commercial sources, and typical treatment conditions for inhibitors discussed in this review.

Drug Structure and Commercial Availability Drug Class Molecular

Weight

Reported

Concentration

Model Used References

2-Deoxy-D-glucose Monosaccharide inhibitor 164.16 g/mol 1–50 mM Chick embryo fibroblasts [42,293–295]

Rabbit kidney cells [296]

Madin Darby kidney cells [297]

Human skin cells [298]

Monkey kidney cells [299]

2-Deoxy-2-fluoro-D-

glucose

Monosaccharide inhibitor 182.15 g/mol 0.2–3 mM Chick embryo fibroblasts [52,295,300]

Rabbit kidney cells [52]

Saccharomyces cerevisiae [301]

Glucosamine Monosaccharide inhibitor 179.17 g/mol

g/mol

4–40 mM Chick embryo fibroblasts [294,295,302]

Human embryo lung cells [303]

Baby Hamster Kidney cells [304]

Madin Darby bovine kidney cells [297]

Mouse embryonic fibroblasts [56]

Human prostate cancer cell line (DU145) [54]

2-Deoxy-2-fluoro-D-

mannose

Monosaccharide inhibitor 182.15 g/mol 0.2–10 mM Chick embryo fibroblasts [52,295]

Rabbit kidney cells [52]

Saccharomyces cerevisiae [305]

4-F-GlcNAc Monosaccharide inhibitor 349.31 g/mol 0.05–0.5 mM Human ovarian carcinoma cell line

(A-121)

[59]

100 mg/kg Mice [60]

0.01–0.05

mM

Human sLeX (+) T cells and leukemic

KG1a cells

[61]

Tunicamycin N-Glycan inhibitor; inhibits

dolichol precursor assembly

844.94 g/mol 0.1–10 lg/ml Chick embryo fibroblasts [306–310]

Human fibroblasts [311,312]

Baby hamster kidney cells [313–316]

Liver cells [84,97,317,318]

Plasmacytoma cells [319–321]

Human leukaemia cells [322]

Hen oviduct [323]

Madin Darby bovine kidney cells [297]

Sea urchin embryos [324,325]

Chick cornea [326]

Saccharomyces cerevisiae [327,328–330]

Trypanosoma brucei [331]

0.5 lg/mL Human B-cell lymphocytes [333]
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Amphomycin N-Glycan inhibitor; inhibits

dolichol precursor assembly

1290.4 g/mol 500 lg/ml Cell-free system (Pig aorta) [333]

0–200 lg Rabbit kidney cells [334]

Castanospermine N-Glycan inhibitor; inhibits

glucosidases I and II

189.21 g/mol 10 lg/mL Madin-Darby canine kidney cells [102]

250 lg/mL Primate smooth muscle cells; human

skin fibroblasts

[105]

100 lg/ml Human B-cell lymphocytes [104]

20 lg/ml Feline embryo cells [335]

100 lg/ml Human T-lymphoblastoid cells [336–338]

2 mM Human B-cell lymphocytes [332]

Deoxynojirimycin N-Glycan inhibitor; inhibits

glucosidases I and II

163.17 g/mol 5 mM Small intestinal epithelial cells [95]

7.5 mM Cultured human B-cell lymphocytes [104]

5 mM Small intestinal epithelial cells [339]

1 mM Daudi and Raji lymphoblastoid cell lines [96]

5 mM Cultured human B-cell lymphocytes [332]

Australine N-Glycan inhibitor; inhibits

glucosidases I and II

189.21 g/mol 5.8 lM Madin-Darby canine kidney cells [113]

500 lM Cultured human B-cell lymphocytes [332]

20 lM Chinese hamster ovary (CHO) cells [340]

Swainsonine N-Glycan inhibitor; inhibits

mannosidase II

173.21 g/mol 100 lM Cultured human B-cell lymphocytes [332]

0.5 mM Rat liver [341]

0–10 mM Purified rat liver mannosidases [114]

1 lg/ml Primary calf kidney cultures [342]

3 mg/ml

(drinking

water)

Mice [343]

0.3 mg/ml Leukemia cell lines [344]

20 lM HEK293T cells [345]

1 lg/ml Chinese hamster ovary (CHO) cells [346]

2–12 mg/kg

i.p.

Rats [114]

(continued on next page)
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Table 2 (continued)

Drug Structure and Commercial Availability Drug Class Molecular

Weight

Reported

Concentration

Model Used References

Kifunensine N-Glycan inhibitor; inhibits

mannosidase I

232.19 g/mol �1 mg/ml Madin-Darby canine kidney cells [124]

50lM Human breast cancer cell lines [347]

5 mM Renal cell lines [348]

2 lg/ll HeLa cervical cancer cell line [349]

5 lM HEK293T cells [345]

1 lg/ml Chinese hamster ovary (CHO) cells [346]

Deoxymannojirimycin N-Glycan inhibitor; inhibits

mannosidase I

163.17 g/mol 1 mM Human hepatocarcinoma cells [350]

150 mM Chinese hamster ovary (CHO) cells [119]

1 mM Hybridomas [120]

0.5–4 mM Primary cultures of rat hepatocytes [122]

1-68A O-Glycan inhibitor; inhibits

GALNTs

395.32 g/mol 100 lM Human Jurkat T cell lymphoma cell line [131]

100 lM Human embryonic kidney (HEK) 293T

cells

Ac5GalNTGc O-Glycan inhibitor; inhibits

GALNTs

463.45 g/mol 0–100 lM Human Jurkat T cell lymphoma cell line [162]

0–100 lM Various human leukemia cell lines

0–200 lM Mouse peripheral blood neutrophils;

human promyelocytic leukemia (HL-60)

cells, human breast cancer (T47D and

ZR-75-1) cells, human prostate cancer

cells (PC-3)

[132]

100 mg/kg/day Mice

Luteolin O-Glycan inhibitor; inhibits

GALNTs

286.24 g/mol 0–30 lM Human embryonic kidney (HEK) 293T

cells

[152]

25 lM Chinese hamster ovary (CHO) cells

50 mg/kg/day Mice

T3lnh-1 O-Glycan inhibitor; inhibits

GALNT3

476.50 g/mol 0–50 lM Human embryonic kidney (HEK) 293T

cells

[163]

0–50 mg/kg Mice
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benzyl-a-GalNAc O-Glycan inhibitor; decoy

inhibitor for Ser/Thr-a-
GalNAc

311.33 g/mol 0–10 mM Human coloncancer (LS174T)

cells

[166]

3-(3-Bromo-4-hydroxy-

5-methoxyphenyl)-2-

cyano-N-(2,4-

dichlorophenyl)

acrylamide

(Compound 34)

Inhibitor of

glycosaminoglycan

sulfotransferases.

442.09 g/mol 0–25 lM Neu7 cytes [249]

3.0 mg/kg Mice

N-Acetyl-2,3-dehydro-

2-Deoxyneuraminic

Acid (DANA)

Sialidase inhibitor 291.26 g/mol 100 mM A549 n lung carcinoma epithelial

cells

[215]

1 mM U937 n lymphoma cells [210]

1 mM Rat b lices [212]

10 mg/kg Mice [213]

10 mM Rat p atic beta cell line [351]

70–2100

mmol/kg

C57B mice

1.6 mM Alliga imary pulmonary fibroblasts [211]

4-Guanidino-DANA

(Zanamivir)

Sialidase inhibitor 332.32 g/mol 2.5 mM Huma La cervical cancer cell line [216]

Lith-O-Asp Sialyltransferase inhibitor;

inhibits ST3GAL1,

ST3GAL3, and ST6GAL1

491.66 g/mol 15 mM Huma g cancer cell lines (H1299,

A549 -0, CL1-1, and CL1-5F4)

[205]

3 mg/kg i.p. Mice [206]

P-3Fax-Neu5Ac Sialyltransferase inhibitor;

inhibits a2,3-sialyation
551.47 g/mol 32–512 lM Huma kemia cell line (HL-60) [196]

10–300 mg/

kg

C57B mice [197]

(continued on next page)
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Table 2 (continued)

Drug Structure and Commercial Availability Drug Class Molecular

Weight

Reported

Concentration

Model Used References

Soyasaponin I Sialyltransferase inhibitor;

inhibits ST3GAL1

943.1 g/mol 50 lM Huma reast cancer cell lines [95,202]

20-O-methyl-cytidine

monophosphate

Sialyltransferase inhibitor;

Inhibits ST8Sia-IV, ST8-

Sia-II, ST8Sia-III, ST3Gal-

III and ST3Gal-IV

337.223

g/mol

250 mM Chine hamster ovary (CHO) cells [194]

AL-10 Sialyltransferase inhibitor;

inhibits ST3GAL1and

ST6GAL1

668.79 g/mol �1 lM Huma ng cancer cells (CL1-0, CL1-5,

A549) man bronchial epithelial cells

(BEAS )

[207]

FCW34 Sialyltransferase inhibitor;

inhibits ST3GAL3 and

ST6GAL1

811.93 g/mol 1.7 lM Huma reast cancer cell-lines [208]

K
.
A
lm

a
h
a
y
n
i,
M
.
S
p
ie
k
e
rm

a
n
n
,
A
.
F
io
re
,
e
t
a
l.

M
a
trix

B
io
lo
g
y
P
lu
s
1
6
(2
0
2
2
)
1
0
0
1
0
8

1
4

n b

se

n lu

Hu

-2B

n b



2-Deoxy-2-fluoro-D-

fucose (2FF)

Fucosylation inhibitor;

monosaccharide analog

166.15 g/mol 10–100 lM Human colon cancer (LS174T) cell lines,

leukemia monocytes (THP-1), cervical

cancer cells (HeLa), lung carcinoma

cells (H1299)

[225,227]

150 mg/kg i.

p.; 50–100

mM oral

(drinking

water)

Mice

6,6,6-Trifluorofucose

(Fucostatin I)

Fucosylation inhibitor;

monosaccharide analog

218.13 g/mol 0.02–10 mM Chinese Hamster Ovary (CHO) cells [229]

Murine hybridoma cells [230]

6-Alkynyl-fucose Fucosylation inhibitor;

monosaccharide analog

342.3 g/mol 10–50 lM Various cultured cell lines [240,242]

60 pmol

injection

Zebrafish eggs [242]

N-butyldeoxymanno-

jirimycin (NB-DNJ)

Glycolipid inhibitor; inhibits

glucosylceramide synthase

219.28 g/mol 0.5 mM Human leukemia and lymphoma cell

lines (HL-60, K-562, MOLT-4, H9)

[254]

Adamantane-pentyl-

deoxymannojirimycin

(AMP-DNJ)

Glycolipid inhibitor; inhibits

glucosylceramide synthase

397.5 g/mol 10 mM 3T3-L1 adipocytes [262]

2 nM Human melanoma cells [261]

(+)D-threo-PDMP Glycolipid inhibitor; inhibits

glucosylceramide synthase

390.57 g/mol 40 mM Human liver cancer cell line (Hep2G

cells)

[262]

50 mM Rabbit skin fibroblasts [263]

PDMP (racemic

mixture)

Glycolipid inhibitor; inhibits

glucosylceramide synthase

390.57 g/mol 25 mM Murine melanoma cell line (B16) [267]

(continued on next page)
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Table 2 (continued)

Drug Structure and Commercial Availability Drug Class Molecular

Weight

Reported

Concentration

Model Used References

D-Threo-PPPP Glycolipid inhibitor; inhibits

glucosylceramide synthase

511.2 g/mol 2 mM PC12 cells [269]

1 mM Mouse embryonic fibroblasts [272]

4-Methylumbelliferone

(4-MU)

Glycosaminoglycan

inhibitor; competitively

inhibits UDP-

glucuronosyltransferases

and depletes UDP-

glucuronic acid

176.17 g/mol 1.0 mM Breast cancer cell lines (MDA-MB-231)

and murine fibroblast cell line (NIH3T3)

[352]

0.5 mM Murine melanoma cell line (B16F-10) [353]

Oral dose of

3000 mg/kg

oral

Mice

0–1 mM Human skin fibroblasts [278]

0.125–0.5

mM

Mouse tumour cell line (CT26) [282]

200mg/

kg/day

Mice

0–0.6 mM Prostate cancer cell lines (DU145, PC3-

ML, LNCaP, C4-2B, and LAPC-4)

[285]

Oral gavage

of 225–450

mg/kg oral

Mice

Aryl b-D-xylosides Glycosaminoglycan

inhibitor; decoy inhibitor for

Ser/Thr-b-xylose

Variable; for

shown

structure:

354.29 g/mol

0.5–30 mM RG-C6, NB41A, and rat hepatoma cells [354]

Chinese hamster ovary (CHO) cells [355]

Human glioblastoma cells [277]

1–25 mM Chicken embryos [274,356]
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are lithocholic acid derivatives, of which sixteen
compounds were developed by Li, Chang, et al.
[205] Among these compounds, Lith-O-Asp was
capable of inhibiting ST3GAL1, ST3GAL3, and
ST6GAL1 with IC50s of 15.9 lM, 12.2 lM, and
15.8 lM, respectively, when incubated with various
lung and breast cancer cell lines for 48 h. Moreover,
a 3 mg/kg intraperitoneal treatment of Lith-O-Asp
suppressed metastasis formation of cancer models
in mice [206]. AL-10, another lithocholic acid ana-
logue developed by the same group, was also found
to be capable of penetrating cell membranes and
inhibiting ST3GAL1 and ST6GAL1 at IC50s of
0.88 lM and 1.50 lM, respectively. Moreover a
3 mg/kg intraperitoneal treatment of AL-10 sup-
pressed metastasis formation of lung cancer in
mice without disturbing liver and kidney function
[207]. Therefore, further testing of AL-10 as an anti-
cancer drug is warranted.
Recently, Fu, Li, et al. reported a more selective

lithocholic acid derivative known as FCW34 which
inhibits ST3GAL3 and ST6GAL1 with IC50s of
1.74 lM and of 3.60 lM, respectively. In contrast
to other compounds, FCW34 exhibited no
inhibition of ST3GAL1 at concentrations lower
than 500 lM. Moreover, this molecule was able to
inhibit breast cancer tumour growth in vivo in mice
[208].
Sialidase inhibitors: DANA, zanamivir, and
oseltamivir. Clinically, sialidase (also known as
neuraminidase) inhibitors are primarily attractive
for the inhibition of viral sialidases, which may
reduce the attachment and cellular entry of
viruses to host cells, thus providing a treatment
strategy [209]. However, inhibition of sialidases is
also valuable in mammalian systems, targeting
the four canonical mammalian sialidases NEU1–4.
The sialidase inhibitor 2-deoxy-2,3-didehydro-N-
acetylneuraminic acid (DANA) inhibits mammalian
sialidases in cultured human leukaemia cells, pri-
mary pulmonary fibroblasts, and primary rat hip-
pocampal neurons at a concentration of 1 mM, in
pancreatic beta cells at 100 mM, and at 10 mg/kg
i.p. in mice [210–213]. However, DANA is still much
more efficient in the inhibition of viral and bacterial
sialidases [214].
Based on the DANA scaffold, derivatives have

been developed which exhibit stronger or more
specific inhibition. One of these derivatives is C9-
butyl-amide-2-deoxy-2,3-dehydro-N-acetylneur-
aminic acid (C9-BA-DANA), which is a specific
inhibitor of neuraminidase-1 (NEU1) at 100 mM
concentration in cells and at 15 mg/kg i.p. in mice
[215]. Another derivative is 4-Guanidino-DANA,
also known as Zanamivir, marketed under the trade
name Relenza [216,217]. A functionally equivalent
compound is GS4104, also called oseltamivir, and
marketed under the name Tamiflu [218]. Both
Zanamivir and Oseltamivir are FDA approved anti-
influenza drugs [219]. They are designed to specif-
17
ically inhibit viral sialidases, however, activity of
zanamivir against human NEU2 and NEU3 has
been reported (Ki of� 4 mM and � 13 mM, respec-
tively). Notably, oseltamivir showed no inhibition
against human sialidases even at 1 mM concentra-
tion [220]. Nevertheless, considering the nanomolar
concentrations at which oseltamivir and zanamivir
inhibit viral sialidases, the affinity of zanamivir to
NEU2 and NEU3 is comparably low.

Fucosylation

Fucosylation is a late stage step in glycan biosyn-
thetic pathways catalyzed by fucosyltransferase
(FUT) enzymes. Inhibitors of fucosylation have
been explored in the context of their potential to
combat cancer, chronic obstructive pulmonary
disease, Crohn’s disease, rheumatoid arthritis,
and others [174,221–223].

2-Deoxy-fluoro-L-fucose. 2-Deoxy-fluoro-L-fucose
(2FF) was synthetized by Murray, Wong, et al. in
1997 [224]. As with other fluorinated monosaccha-
rides, 2FF is transported through the cell membrane
then converted to its nucleotide sugar, in this case
GDP-2FF. GDP-2FF inhibits fucosylation through
both feedback inhibition of the native GDP-fucose
biosynthesis pathway and competitive inhibition of
fucosyltransferases (Ki = �4 mM) [195,224]. 2FF is
active in vitro and in vivo. Typical dosages are
100–200 mM for 7–10 days in cell culture, 50–
100 mM orally for 21 days in mice, and 150 mg/kg
injection for 10 days in mice [196,225]. No signifi-
cant toxicity has been reported in vitro or in mice.
It is worth noting that under some conditions 2FF
treatment can result in sufficient depletion of GDP-
fucose such that cells use GDP-2FF as a donor
substrate. Promising results in tumor models have
resulted in use of 2FF in a human clinical trial for
patients with advanced solid tumors [226].
Recently, b- and a-GDP analogues of 2FF have
been reported, which cross cell membranes and
exhibit 4–7 fold higher inhibition potency, with no
observed change in toxicity relative to 2FF [227].

6,6,6-Trifluorofucose. 6,6,6-Trifluorofucose
(Fucostatin I) was first synthetized in 1991 [228].
Fucostatin I’s mechanism of action relies on allos-
teric inhibition of GDP-mannose 4,6-dehydratase,
which is necessary for cellular synthesis of GDP-
fucose (KD = 11 lM) [229]. In Chinese hamster
ovary cells (CHO) Fucostatin I inhibited fucosylated
glycoproteins with an EC50 of 4 lM, with no
changes in cell growth, viability or behaviour
observed up to a dose of 20 lM. A possible point
of caution is that Fucostatin I can be incorporated
in protein glycans (at approximately 1%) due to its
accumulation as a nucleotide sugar. A viable alter-
native is the a-fucose-1-phosphonate analog Fuco-
statin II which acts as an inhibitor with slightly less
potency (EC50 = 30 lM), and showed no incorpora-
tion in antibodies [229]. Fucostatin II shows some
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toxicity at concentrations of 40 lM [229]. As shown
by McKenzie, Goddard-Borger, et al., work is
ongoing to refine both the production and the char-
acterization of Fucostatins as fucosylation inhibitors
[230].

Indolizidine 21. Bastida, Garciá-Junceda, et al.
have demonstrated that a castanospermine
stereoisomer (a polyhydroxylated indolizidine)
inhibits a 1,6-Fucosyltransferase (FucT-VIII) with
an IC50 of 45 lM in cell-free extracts [231]. As
FucT-VIII is upregulated in several cancer types,
[232–235] developing FucT-VIII inhibitors may
serve as a strategy for anticancer therapy.

6-Alkynyl fucose. Various alkyne- and azide-
modified fucose analogs have been developed as
metabolic labeling tools for fucosylated glycans
[236–239], and a subset of these exhibit inhibitory
activity on cellular fucosylation. 5-alkynyl-fucose
(5AF) was reported to have similar inhibition poten-
tial to 2FF in vitro (CHO cells, 50 mM concentration),
though it exhibited a three-fold reduced oral
bioavailability in mice when compared to 2FF [225].
Kizuka, Taniguchi et al. showed that 6-alkynyl-

fucose (6AF) inhibits fucosylation in a variety of
cultured cell lines at <10 mM concentration [240].
6AF directly inhibits GDP-L-fucose synthase (also
called GFUS, FX, or TST3), and does not appear
to influence the GDP-fucose transporter FUT8 or
GDP-mannose 4,6-dehydratase when used at low
micromolar concentrations [240]. When compared
to other inhibitors like 2FF, 6AF seems to have sim-
ilar inhibition potential, although results vary in dif-
ferent cell lines and experimental conditions. For
example, 6AF is reported to be more potent than
2FF in MEF, [240] Caco-2, and PNT2 cell lines,
while 2FF performs better in A549 [241]. An addi-
tional complexity emerges from the analysis of the
post-inhibition glycome, revealing that alkynylated
fucose analogues are incorporated in the cell
[241].
From a therapeutic standpoint, 6-alkynyl-fucose

(as well as 6-alkenyl fucose) has been shown to
inhibit notch signalling, which is an O-fucose-
regulated cell-surface receptor that controls cell-
fate and has been targeted in the context of
cancer progression. A recent study showed 6AF
and 6-alkenyl fucose inhibit notch signalling in
HEK293 cells (50 mM) and in zebrafish embryo
(60 pmol injection in yolk at 1-cell stage) [242].

Inhibitors of postsynthetic glycan
modifications

Postsynthetic modifications, as their name
suggests, involve changes that occur to the glyco-
conjugates after the glycosylation process is com-
pleted, and the target chain is fully synthetized.
There are four common types of postsyntheticmodi-
fication to glycans: methylation, phosphorylation,
18
acetylation, and sulfation. Methylation has not
been reported in humans to the best of our
knowledge, although such modification is observed
in other organisms, including bacteria, fungi, algae
and worms [243]. Mannose-6-phosphate is the best
characterized example of a phosphorylated glycan;
it is critical for shuttling enzymes to the lysosome.
The existing inhibitor to this pathway, PF-429242,
[244] does not act directly on a glycan modifying
enzyme, and is as such not discussed further here.
Below, we focus on inhibitors of glycosaminoglycan
sulfation and sialic acid O-acetylation. Functionally,
O-acetylation and sulfation of glycans can influence
their signaling, as is the case for modulation of sialic
acid binding to host lectins [245] and the modulation
of heparin activity in the coagulation pathway [246].
Furthermore, sulfatedGAGs are key components of
the extracellular matrix and are involved in the stabi-
lization of tissue, with changes in GAG sulfation
being implicated in pathological alterations of the
skin, of joints, muscles, and bones, as well as dis-
eases of aging such as Alzheimer’s Disease and
cancer [247].
Inhibitors of glycosaminoglycan sulfation

A cell-permeable small molecule glycosamino-
glycan (GAG) sulfotransferase inhibitor, (E)-3-(3-
bromo-4-hydroxy-5-methoxyphenyl)-2-cyano-N-(2,
4-dichlorophenyl)acrylamide, was first reported by
Cheung, Hsieh-Wilson, et al. in 2017 [248]. The
molecule, designated compound 34 by authors, is
a dichlorinated version of the lead scaffold identified
in a screen for inhibition of the chondroitin sulfo-
transferase Chst15, with counter screening for the
cytosolic sulfotransferase Sult1c1. Compound 34
inhibited Chst15 with respect to a chondroitin
sulfate-A (CS-A) substrate in a mixed inhibition
mode, with a Ki of 1.43 lM, Ki’ of 2.45 lM, and an
increase in Km from 0.96 lM to 1.49 lM. Based on
kinetic analysis of compound 34 and analogues,
authors postulated that 34 binds the sulfate donor
binding site competitively, while also interacting with
the acceptor binding site to some degree. In addi-
tion to Chst15, compound 34 was effective against
chondroitin 4-O-sulfotransferase Chst11, the chon-
droitin 2-O-sulfotransferase Ust, and the heparan
3-O-sulfotransferase Hs3st1 (IC50 values 2.0–
2.5 lM). Activity against cytosolic sulfotrans-
ferases, such as Sult1e1, Sult2b1a, and Sult2b1b,
had IC50 values of 19–42 lM. Treatment of cultured
astrocytes with 25 mM compound 34 for 24 h
resulted in � 60% increase in unsulfated chon-
droitin. The compound is tolerated by mice at an
intravenous dose of 3 mg/kg, with a short half-life
of 1.6 h, and is a promising initial foray intoGAG sul-
fotransferase inhibition.
Inhibitors of sialic acid O-acetylation

Sialic acids can be O-acetylated at various
positions, resulting in altered signaling behaviour
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that influences the many pathways in which sia-
lic acids are key players [245]. Inhibitors of
sialic acid-specific O-acetyltransferases and O-
acetylesterases that add and remove O-acetyl
groups, respectively, have been recently and thor-
oughly reviewed by Visser, Büll, et al. [249] To our
knowledge, compounds described to date were
developed for and tested as inhibitors of influenza
O-acetylesterases, and none have achieved activity
below millimolar concentrations [250]. Inhibitors for
mammalian O-acetyltransferases and O-acetyles-
terases are an unmet need.
Fig. 5. Inhibitors of glycolipid synthesis. Initial steps of
glycolipid biosynthesis. Key inhibitors are shown in red.
Enzymes are shown only for steps for which an inhibitor
is available. Linkage stereochemistry is shown next to
the corresponding bond, in order to differentiate glycol-
ipid series with identical monosaccaride sequences.
Glycolipid inhibitors

Glycosphingolipids make up the majority of
glycolipids that are found in cell membranes in
animals, [251] and are therefore the focus of this
section. Glycosphingolipids consist of one or more
sugar residues that are connected to ceramide.
They are classified based on common core struc-
tures, which in vertebrates are chiefly isoglobo-,
globo-, ganglio-, lacto- and neolacto-series
(Fig. 5). Gangliosides are especially abundant in
nervous tissue, where they modulate neurite out-
growth and myelination, and are implicated in neu-
rodegenerative disorders such as Alzheimer’s
disease and Parkinson’s disease [252]. In addition,
pathological accumulation of glycosphingolipids in
lysosomal storage disorders such as Gaucher type
I and Tay-Sachs disease is functionally implicated
in disease progression and severity [253].
N-Butyldeoxynojirimycin

N-Butyldeoxynojirimycin (NB-DNJ) is a derivative
of the iminosugar nojirimycin and inhibits glyco-
sylceramide synthase, which is essential for the
synthesis of the vast majority of glycosphin-
golipids. Platt, Butters, et al. showed that
glycosphingolipid synthesis in HL-60, K-562, H9
and MOLT-4 cell lines was inhibited by
approximately 90% when incubated with NB-DNJ
at 0.5 mM for three days [254]. NB-DNJ inhibits
human immunodeficiency virus (HIV) replication
in vitro [255–257], but despite demonstrating antivi-
ral potential in humans, it has not been approved
due to adverse side effects arising from off-target
activity [258]. NB-DNJ (miglustat, Zavesca) is cur-
rently an approved drug for the treatment of Gau-
cher type I disease and Niemann-Pick disease
type C, which are lysosomal storage disorders
driven by pathological lipid accumulation
[106,259,260].
In 1998, Overkleeft, Aerts, et al. reported the

synthesis of a novel nojirimycin derivativeN-(50-ada-
mantane-10-yl-methoxy)-pentyl-1-deoxynojirimycin
(AMP-DNJ) and its ability to inhibit gluco-
sylceramide synthase in human melanoma cells
with an IC50 value of 2 nM [261]. Furthermore, glu-
cosylceramide synthase was inhibited in 3T3-L1
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adipocytes by exposure to AMP-DNJ at 10 mM
(reported IC50 value of 150–220 nM) [262]. Admin-
istration of up to 100 mg/kg AMP-DNJ in mice and
rats was tolerated. Note, at concentrations >1 mM
AMP-DNJ can also inhibit lysosomal glucocere-
brosidase [262].
D-PDMP

(+)D-threo-1-phenyl-2-decanoylamino-3-morpho
lino-1-propanol (D-PDMP, the active isomer of the
four possible isomers) is a glucosylceramide
analogue that inhibits glycosphingolipids in
cultured cells at 50 lM [263,264]. Owing to the role
of glycosphingolipids in the aetiology of atheroscle-
rosis, D-PDMP has attracted attention as a potential
therapeutic candidate for this disease. In a mouse
model of atherosclerosis, D-PDMP reduced lipid
accumulation and vascular inflammation [265]. In
a separate study using the same murine model of
atherosclerosis, D-PDMP reversed hair loss and
skin inflammation linked to western diet [266]. DL-
threo-PDMP, the racemic mixture, is in use as well,
and inhibits glycosphingolipids in B16 melanoma
cells at an effective concentration of 25 lM [267].
DL-threo-PPPP

DL-threo-1-Phenyl-2-hexadecanoylamino-3-pyr
rolidino-1-propanol-HCl (DL-threo-PPPP) is a more
potent inhibitor than DL-threo-PDMP [268]. DL-
threo-PPPP was shown to inhibit glycosphingolipid
synthesis in human fibroblasts and rat pheochromo-
cytoma at 1–2 lM [269,270].
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Glycosaminoglycan inhibitors

Glycosaminoglycans (GAGs) are a diverse class
of glycans in which long, linear chains of
polysaccharides are attached to serine residues
initially modified with xylose. GAGs have a wide
range of roles in cell and tissue biology, including
cell cycle progression, the inflammatory response,
and joint lubrification [271,272]. GAG structures
and biosynthetic pathways differ in various regions
of the body, but follow the general steps outlined
in Fig. 6. GAG biosynthetic enzyme inhibitors are
of particular importance for their potential in target-
ing GAG expression in cancer, as well as being anti-
inflammatory drug alternatives to corticosteroids
[273].
Aryl b-D-xylosides

Robinson, Okayama, et al. made the initial
observation in 1974 that administration of D-
xylose b-linked to various hydrophobic groups
primes GAG chain elongation on the exogenously
added molecule [274]. b-D-Xylosides therefore
compete with endogenous cellular proteins as sub-
strates for GAG elongation, causing (i) secretion of
free GAGs initiated on the exogenous molecule and
(ii) inhibition of endogenous GAG chains. In the
years since, b-D-xylosides, often termed xyloside
primers, have found use in both cell and animal
models. Note, though b-D-xylosides can be consid-
ered to be monosaccharide analogues, they act
more specifically than the analogues discussed
above, and we therefore discuss them separately
here.
Fig. 6. Inhibitors of glycosaminoglycan synthesis. (a) In
Phosphorylation of xylose is omitted for clarity. Key inhibitors
which an inhibitor is available. (b) Hyaluronan biosynthesis
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Concentrations and treatment times vary
dramatically depending on the structure of the
hydrophobic group as well as the abundances of
endogenous enzymes and substrates (Table 2).
Additionally, the choice of b-D-xyloside can affect
the structure of the GAGs that are made on the
xyloside [275]. Next generation inhibitors have been
developed from screens of glycone structure, agly-
cone structure, and linkage chemistry. For example,
treatment of cells for 24 h with 0.3–1 mM 4-deoxy-
4-fluoro-xyloside linked through a triazole to napthyl
inhibited GAG biosynthesis by � 80% [276]. Efforts
are ongoing to generate prodrugs to achieve higher
potency [277]. Caution should be exercised when
using xyloside primers, as depletion of monosac-
charides used in GAG biosynthesis can in some
cases influence other glycosylation pathways.
4-Methylumbelliferone

4-Methylumbelliferone (4-MU) is a coumarin
derivative, a class of herbal-derived substances
initially isolated in the seeds of Dipteryx odorata
(cumaru) in Central and South America. In 1995,
Nakamura, Endo, et al. first demonstrated that
incubating human skin fibroblasts with 4-MU, at a
concentration of 0.5 mM for 72 h, inhibits
hyaluronic acid (HA) synthesis [278]. 4-MU appears
to exert its inhibitory effects by suppressing the
levels of HA synthases and depleting UDP-
glucuronic acid, which is necessary for HA synthe-
sis [279,280]. Recently, 4-MU has attracted atten-
tion as an anticancer drug candidate, owing to the
roles it can play in regulating tumour behaviour, pro-
moting tumour metastasis, and prompting tumour
itial steps of glycosaminoglycan (GAG) biosynthesis.
are shown in red. Enzymes are shown only for steps for
and key inhibitors.
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immune evasion [281]. Indeed, 4-MU demonstrated
antitumor effects in several cancer types, both
in vitro and in mouse models, including colon, pan-
creatic, prostate, breast, and ovarian cancers [282–
287]. In mice, its effective antitumor dose range is
1000–3000 mg/kg [284].
Clinically, 4-MU (hymecromone) is approved for

the treatment of bile spasm [288]. Its choleretic
effect is induced at doses of 1500–2200 mg/day in
humans. Unfortunately, its poor pharmacokinetic
properties (e.g., short half-life and poor bioavailabil-
ity) limit its applications outside the biliary tract
[279]. Addressing the toxicological and pharmaco-
logical limitations of 4-MU would enhance its thera-
peutic potential.
Conclusion and outlook

In this review, we have surveyed small molecules
that inhibit well-characterized glycosylation path-
ways. The number of available compounds might
give the impression that the currently available
toolbox is sufficient for precise intervention in a
broad range of scenarios. However, the opposite is
true. As we have discussed, many inhibitors suffer
from significant limitations, among which low
specificity for the target and cytotoxicity stand out
in particular. We hope that future research,
combining insights from glycobiology, organic
chemistry, structural biology, and biochemistry, will
close this gap and provide specific, high-affinity
inhibitors for a broad range of glycosylation
enzymes. Looking ahead, an analogy to another
field that historically faced a similar challenge,
protein kinase inhibitors, may be instructive. For
decades, inhibitors for protein kinases were
regarded as intractable due to their seemingly
broad substrate profiles and structural overlap
[289,290]. However, recent decades have seen
the development of specific and high affinity inhibi-
tors of single kinases, equipping the field with impor-
tant tools. Moreover, dozens of small molecule
kinase inhibitors have reached FDAapproval, mark-
ing a step forward in cancer therapy [291]. There are
many reasons to be optimistic that the near future
will see a similar trend for inhibitors of glycosylation
enzymes. Considering that aberrant glycosylation
is established as a functional driver of cancer pro-
gression, autoimmunity, viral infection, and more,
we are also optimistic that one day wemight employ
glycosylation-targeted small molecules widely in the
clinic.
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