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Abstract

Objective: Our study sought to determine whether metabolites from a retrospective collection 

of banked cord blood specimens could accurately estimate gestational age and to validate these 

findings in cord blood samples from Busia, Uganda.

Study Design: Forty-seven metabolites were measured by tandem mass spectrometry or 

enzymatic assays from 942 banked cord blood samples. Multiple linear regression was performed, 

and the best model was used to predict gestational age, in weeks, for 150 newborns from Busia, 

Uganda.

Results: The model including metabolites and birthweight, predicted the gestational ages within 

2 weeks for 76.7% of the Ugandan cohort. Importantly, this model estimated the prevalence of 

preterm birth <34 weeks closer to the actual prevalence (4.67% and 4.00%, respectively) than a 

model with only birthweight which overestimates the prevalence by 283%.

Conclusion: Models that include cord blood metabolites and birth weight appear to offer 

improvement in gestational age estimation over birth weight alone.

Introduction

Preterm birth (<37 weeks completed gestation) is the leading cause of child death 

worldwide, with the greatest burden in low-resource regions [1]. Precise population 

estimates of gestational age are essential for determining the burden of preterm birth as 

well as identifying regions with greater than average preterm birth rates where interventions 

would have the greatest impact [2]. Additionally, accurate estimation of gestational age is 

important for research studies focused on identifying the risk factors and causes of preterm 

birth.

There are numerous methods for estimating gestational age during pregnancy, with first 

trimester ultrasound being the standard of care in high resource settings [3]. In low resource 

areas where women have limited access to prenatal care, ultrasound imaging may not 

be readily accessible [4, 5]. Additionally, accurate gestational age dating by ultrasound 

is complicated in fetuses that are growth restricted or small for their gestational age 

(SGA) in utero, a common problem in developing areas of the world [6, 7]. In the 

absence of ultrasound, gestational age may be estimated based on a woman’s last known 

menstrual period (LMP). Gestational age estimation based on LMP is significantly inferior 

to ultrasound dating as it heavily relies on a woman remembering the date of her last 

menstrual cycle [8–11].

Gestational age can also be estimated after birth using standardized scoring systems based 

on neuromuscular and physical characteristics including birth weight of the newborn [12, 

13]. These estimates are less precise than obstetric estimation and often overestimate the 
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number of infants born at less than 40 weeks gestation [8, 14–16]. Using cohorts from 

the U.S. and Canada, several research groups, including ours, have demonstrated that 

metabolic and endocrine markers, captured in routine newborn screening, in combination 

with birth weight provide a better estimation of gestational age than birth weight alone 

[17–19]. Furthermore, our group and others, have shown birth weight is a poor surrogate 

for gestational age particularly in the presence of growth restriction which is of importance 

in low-and middle-income countries which have higher rates of infants born SGA [18, 

20–22]. As there are distinct risks for morbidity and mortality associated with SGA, it is 

important for surveillance and research efforts to have accurate measures of gestational age 

that distinguish between infants born SGA at term or preterm.

While these results are promising, particularly for the surveillance of preterm birth and for 

improving estimation of gestational age in studies examining the risk factors and causes of 

preterm birth, newborn screening methodologies are not universal within the United States 

and access to such records proves increasingly challenging. Furthermore, in low resource 

regions of the world, newborn screening is often not performed or only available to high 

income families. Cord blood is readily available at birth and acceptable to parents for 

sampling as no invasive procedures to the infant are required. It thus presents an alternative 

approach to estimating gestational age after birth for methods of preterm birth surveillance 

and research.

A recent study demonstrated the success of metabolite-based methods of gestational age 

estimation using either heel-prick or cord blood measurements in a population from Matlab, 

Bangladesh [23]. Our research team also demonstrated the effectiveness of using U.S. 

based metabolite models as applied to gestational estimation using a heel-prick blood spot 

measurement in Busia, Uganda in East Africa [24]. In this proof-of-concept study we 

aimed to determine if cord blood metabolites could improve estimation of gestational age 

above and beyond birth weight alone. In this study we use banked cord blood specimens 

from a biorepository of samples from Iowa to estimate gestational age and validate this 

model in 150 cord blood specimens from Busia, Uganda. We hypothesize that metabolic 

and endocrine markers captured through cord blood can provide an accurate estimation of 

preterm birth prevalence for surveillance and research purposes.

Methods

Study Population

A retrospective analysis was performed using 938 banked newborn cord blood samples 

collected at the University of Iowa Hospitals and Clinics. These samples were used as a 

model building dataset to create a predictive model. To determine the final performance of 

the predictive model, the model was tested in an independent population of 150 newborns 

from Busia, Uganda.

Exposure and Outcome Variables

Iowa Cohort: Cord blood samples were collected and frozen as part of a biorepository 

at the University of Iowa Hospitals and Clinics. Individuals born between September 
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14, 2001 and April 15, 2016 were consented under the Biorepository IRB (201411731). 

Most of the samples (87.6%) were collected between 2004 and 2012. For this study, 

the 938 cord whole blood samples were thawed and spotted onto Whatman 903 cards 

and tested at the State Hygienic Laboratory of Iowa for the newborn screening analytes. 

Forty-seven metabolites were measured in all subjects during the entire study period. 

These metabolites included free carnitine (C0), 31 acylcarnitines (C2, C3, C3-DC, C4, 

C4-DC, C4-OH, C5, C5:1, C5-DC, C5-OH, C6, C6-DC, C8, C8:1, C10, C10:1, C12, C12:1, 

C14, C14:1, C14:2, C14-OH, C16, C16-OH, C16:1, C16:1-OH, C18, C18-OH, C18:1, 

C18:1-OH, C18:2), 10 amino acids (alanine, arginine, arginosuccinate, citrulline, glutamate, 

isoleucine+leucine, methionine, phenylalanine, tyrosine and valine), 1 enzyme (galactose-1-

phosphate uridyl transferase [GALT]), 2 hormones (thyroid-stimulation hormone [TSH] 

and 17-hydroxyprogesterone [17-OHP]), T cell receptor excision circles (TRECs), and 

succinylacetone. Procedures in Iowa are based on previously established methodology for 

newborn screening [25–27]. Briefly, standardized mass spectrometry (MS/MS) was used 

to measure the amino acids, acylcarnitines, and free carnitine. TSH and 17-OHP were 

measured by high-performance liquid chromatography, and GALT was measured using 

fluorometric enzyme assay. Completeness of metabolic data varied across individuals.

Four hundred ninety-nine cards were made from preterm babies’ samples (gestational 

ages 24 to 36 weeks) and 443 cards were made from term babies’ samples (37 to 41 

weeks). Gestational age was determined by ultrasound for 80% of the samples (N=753); the 

remaining were either determined by LMP or the method of determining the gestational age 

was not mentioned in the electronic medical record (N=189). Birthweight, in grams, was 

obtained from the medical record for each newborn. One hundred twenty-one samples were 

from twins or higher-order multiple births.

Uganda Cohort: Individuals from Uganda were enrolled as participants in the Prevention 

of Malaria in HIV-uninfected Pregnant Women and Infants (NCT02793622), a double-

blinded randomized controlled trial comparing risk of adverse birth outcomes among 

HIV-uninfected pregnant women randomized to receive intermittent preventive therapy 

(IPTp) with monthly sulfadoxine-pyrimethamine (SP) versus monthly dihydroartemisinin-

piperaquine (DP). Individuals were enrolled at a clinic within the Masafu General Hospital. 

Women were included in the study if they were pregnant, had a gestational age estimated 

by ultrasound between 12 weeks 0 days and 20 weeks 0 days at time of enrollment, were 

confirmed to be HIV-uninfected by a rapid test, were 16 years or older, resided in the Busia 

District of Uganda, provided informed consent, agreed to come to the clinic for any febrile 

episode or other illness, avoided medication given outside of the study protocol, and planned 

to deliver at the hospital. Women enrolled in this study also consented for cord blood 

analysis of metabolites. In this proof-of-concept study we used the first 150 births enrolled 

in the cohort to test our developed models. Women were excluded if they had a history 

of serious adverse events to SP or DP, had an active medical problem requiring inpatient 

evaluation at time of screening or chronic medical condition requiring frequent medical 

attention, or had prior SP preventative therapy or any other antimalarial therapy during the 

pregnancy. Infants from Uganda included in this study were born between December 22, 

2016 and April 7, 2017. Birthweight was recorded in grams for each newborn. Cord blood 
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samples from Uganda were obtained following birth, spotted onto Whatman 903 cards, and 

sent within 2 weeks maintaining a temperature of at least −20℃ to the University of Iowa 

for metabolite testing. Samples were tested at the State Hygienic Laboratory of Iowa, for 

the same metabolites as collected on the Iowa population and under the same protocols 

described above.

Statistical Analysis

Forty-seven metabolites were examined. Each metabolite was examined for association with 

gestational age by univariate analysis. The linearity between single metabolite levels and 

gestational age was examined through plots of residuals versus predicted values. To address 

nonlinearity between metabolites and gestational age, squared terms and, subsequently, 

cubed terms were included for each model. Multiple linear regression modeling was 

performed, with gestational age, in weeks, as the outcome measure. Metabolites that 

were found to be significant in the univariate analysis were included as variables in 

the model. Ordinary least squares were used to estimate the regression. In the model-

building dataset, all metabolites significant (p < 0.1) in the univariate analysis were 

included in the initial model. The relationship between gestational age and birthweight was 

inspected visually using plots of residual versus predicted values. Only one individual was 

missing a birthweight measurement and was therefore excluded from models including this 

term. Significant terms (p < 0.05) were maintained for subsequent modeling. Significant 

metabolites’ squared and cube terms were sequentially incorporated into the model, with 

nonsignificant terms (p > 0.05) removed afterwards. Cubic terms were only inspected when 

square terms were significant. Adjusted coefficients of determination (R²), root-mean-square 

error (RMSE) and area under the curves (AUC) were utilized to evaluate models.

Three models (birthweight only, metabolites only, and metabolites plus birthweight) were 

developed to predict gestational age in the Ugandan model-testing dataset (n = 150). 

Predicted gestational age was then compared to the best-known gestational age for each 

individual. All analyses were performed in SAS version 9.4 (SAS Institute Inc, Cary, NC) 

or Stata/SE version 12.1 (StataCorp LP, College Station, TX). We examined performance 

among all preterm newborns (<37 weeks). Prevalence estimates were calculated for 2-

week intervals of gestational age to determine if metabolites improved the prediction of 

gestational age above and beyond birth weight for earlier preterm births which are at the 

highest risk for resulting in neonatal morbidity and mortality.

Results

General characteristics of the Iowa study population and the newborn metabolic model

In the Iowa dataset, there were 938 individuals. Approximately 49% of these individuals 

were born preterm (<37 weeks). Gestational age of the infants ranged from 24 weeks to 

41 weeks. The mean birthweight was 2643.58 grams. Within the model building dataset, 

the full model included 17 metabolites (11 acylcarnitines and 6 amino acids), 12 squared 

metabolite terms, and 6 cubed metabolite terms (Table 1).
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Model performance in the Iowa model-building dataset

The model including only metabolites explained 73.3% of the variation in gestational age in 

the Iowa model-building dataset. The average difference between gestational ages predicted 

by the model and the actual gestational age was 2.3 weeks (Table 2). The metabolite model 

was able to accurately differentiate between infants born preterm (<37 weeks) versus those 

born at term (≥37 weeks; AUC = 94.8%). In the model-building dataset, birthweight alone 

explained 81.8% of the variation in gestational age and the average difference between 

the actual and predicted gestational ages was 1.9 weeks (Table 2). The model utilizing 

birthweight only was also able to distinguish between premature and term infants (AUC 

= 96.7%). Including birthweight in the metabolite model improved the difference between 

predicted and actual gestational age to 1.55 weeks and explained 87.8% of the variation in 

gestational age (Table 2). Inclusion of metabolite measurements explained an additional 6% 

of the variation in gestational age above and beyond birthweight alone. The model including 

both metabolites and birthweight was better able to differentiate preterm compared to term 

infants (AUC = 98.2%) than either the metabolite only or birthweight only models (Figure 

1a). Gestational age was predicted within 1 week or less for 66.2% of individuals and within 

2 weeks or less for 88.0% of individuals in the Iowa model-building dataset.

Model performance in the Ugandan model-testing dataset

Eleven (7.33%) of the 150 infants in the Ugandan model-testing dataset were born 

prematurely. The gestational ages of the Ugandan population ranging from 28 weeks to 

43 weeks. The infants in the model testing dataset had a mean birthweight of 2991.4 

grams. Using the model including metabolites and birthweight, 76.7% of the cohort had 

predicted gestational ages within 2 weeks of their actual gestational age. This is compared 

to 61.3% with accurate gestational age predictions (±2 weeks) for the model including only 

metabolites and 46.0% with accurate gestational age predictions (±2 weeks) for the model 

including only birthweight.

Overall, when differentiating between infants born prematurely (<37 weeks), versus those 

born at term (≥37 weeks), the model containing both metabolites and birthweight performed 

better (AUC=85.1%, 95% CI=72.2%−98.1%) than the model containing only metabolites 

(AUC=76.5%, 95% CI=59.6%−93.5%) or only birthweight (AUC=83.6%, 95% CI=70.6–

96.6%) (Figure 1b). The model with metabolites and birthweight had a sensitivity of 

72.7% and a specificity of 82.7% for differentiating between term (≥37 weeks) and preterm 

(<37 weeks) infants. The model containing only metabolites was able to better classify 

preterm infants (sensitivity=81.8%) but did not perform as well in classifying term infants 

(specificity=61.9%). The model containing birthweight only was also able to better classify 

preterm infants (sensitivity=90.9%) but did not perform as well compared to the model 

including birthweight and metabolites for classifying term infants (specificity=46.8%).

When examining the prevalence of preterm birth in the Ugandan population (Table 3), 

the model containing both metabolites and birthweight comes significantly closer to the 

true population prevalence of preterm birth than the model containing only birthweight or 

only the metabolites. The model containing both metabolites and birthweight overestimates 

the prevalence of preterm birth <37 weeks by 191.1% which is much lower than the 
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model containing only the metabolites (overestimate of 463.8%) or containing only 

birthweight (overestimate of 664.0%). Furthermore, the model containing both metabolites 

and birthweight estimates the prevalence of preterm birth ≤34 weeks almost exactly (4.67% 

for the model versus the actual prevalence of 4.00%) (Table 3). The metabolite only model 

overestimates the prevalence of preterm birth ≤34 weeks by 208.3% and the birthweight 

only model overestimates the prevalence by 283.3%.

Discussion

In this study, we demonstrate that the newborn metabolic profile measured in cord blood 

in combination with birth weight, is as accurate for estimating gestational age as methods 

that use metabolites collected by heel stick for routine newborn screening. The cord blood 

models including only metabolites explained 73.3% of the variation in gestational age in 

the Iowa model building dataset and were able to accurately differentiate between infants 

born preterm (<37 weeks) versus those born at term (≥37 weeks; AUC = 94.8%). This is 

comparable to our previous published work examining metabolite measurements from heel 

stick samples collected 24–72 hours after birth as part of the newborn screening program in 

Iowa and as validated in heel stick samples from Busia, Uganda [18, 24]. While emerging, 

newborn screening is still not offered in all parts of the world. Furthermore, some programs 

around the world find it is easier to collect cord blood as this can be drawn at the time of 

delivery rather than waiting 24–48 hours after birth, when many women will have already 

returned home. While optimal newborn screening must occur 1–2 days following birth; 

our findings show that models using metabolites from cord blood is a feasible method for 

gestational age estimation.

Our cord blood model was validated using a preliminary cohort of infants from Busia, 

Uganda. The model including metabolites and birthweight, predicted the gestational age 

within 2 weeks of the actual gestational age for 76.7% of the cohort. Furthermore, the model 

was able differentiate preterm (<37 weeks) infants from those born at term (≥37 weeks) 

better than a model containing only birth weight (AUC=85.1% vs. 83.6%). The prevalence 

of preterm birth (<37 weeks) when including metabolites to birth weight for gestational 

age estimation was still overestimated (21% versus 7%); although to a lesser extent than 

the birth weight only model (56%). This is similar for what is seen for Ballard score, a 

common method of postnatal gestational age estimation. A study examining 688 singleton 

pregnancies from rural Papua New Guinea found Ballard score estimated preterm birth 

prevalence between 8.2 to 21.3% compared to the actual prevalence of 5.2% [14]. Notably, 

our metabolite and birth weight model was much more effective in correctly estimating the 

prevalence of preterm birth <34 weeks than birth weight alone and this may represent an 

improvement over what is traditionally seen for Ballard score.

While it is unlikely that newborn screening will soon be comprehensively implemented 

in every part of the world, we have demonstrated, that obtaining cord blood samples 

for targeted surveillance of preterm birth is feasible. The cost of newborn screening 

varies but remains reasonable compared to other high-throughput technologies like genome 

sequencing. In our model building dataset of 942 cord blood samples from Iowa we were 

limited in our ability to accurately determine gestational age for 20% of the cohort. While 
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this is a limitation, it likely did not bias our results and future studies using first trimester 

ultrasound dated gestational age will likely see similar if not stronger findings than we 

report here. Our validation cohort in the Uganda sample was a proof-of-concept convenience 

sample and as such was limited to the first 150 births with only 11 preterm births. Future 

studies examining larger cohorts for validation are needed.

This study was strengthened by the ability to validate the predictive models in an 

independent population. Furthermore, while the population used to create these models 

was predominately white and has, in general, good access to resources and healthcare, the 

population used for validation was different [24]. The performance of the model in such a 

population provides further support for its potential utility. Additionally, while the samples 

used for model building were older, which could potentially have resulted in deterioration of 

metabolite levels within them, there was still adequate validation in an independent cohort 

where samples were collected, frozen, and measured within a short time frame to preserve 

sample integrity. Nonetheless future work using population specific, and time of storage 

information could lead to even better predictive algorithms.

Accurate estimation of gestational age is critical for surveillance work and epidemiologic 

research. Models that include cord blood metabolites and birth weight appear to offer 

improvement in gestational age estimation over birth weight alone. The newborn metabolic 

profile, derived from cord blood, in combination with birth weight is an accurate method for 

estimating gestational age and preterm birth prevalence. Future studies, building population-

specific estimates of gestational age are needed to further increase model optimization.
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Figure 1: 
Receiver operator curves of metabolic and birthweight models for identifying those born 

preterm (<37 completed weeks) vs those born term (≥37 weeks) in the Iowa (a) and 

Ugandan (b) cohorts. Curves for birthweight only model (dashed line), metabolites only 

model (dotted line), and birthweight plus metabolites model (solid line).
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Table 1:

Final metabolite model in the Iowa model-building dataset (n = 938) for prediction of gestational age

Metabolite Coefficient Standard 
Error

Metabolite 
Squared 
Coefficient

Metabolite 
Squared SE

Metabolite 
Cubed 
Coefficient

Metabolite 
Cubed SE

Constant 25.60 0.61 N/A N/A N/A N/A

Birthweight 0.003 0.00008 N/A N/A N/A N/A

Arginosuccinate −3.04 1.70 N/A N/A N/A N/A

Isoleucine+Leucine −0.01 0.005 3.08 × 10−5 1.03 × 10−5 N/A N/A

Methionine 0.06 0.01 N/A N/A N/A N/A

Phenylalanine 0.05 0.01 −1.54 × 10−4 5.18 × 10−5 N/A N/A

Tyrosine −0.05 0.02 3.90 × 10−5 1.49 × 10−4 N/A N/A

Valine 0.02 0.01 −4.00 × 10−5 2.08 × 10−5 N/A N/A

C3 −0.45 0.13 N/A N/A N/A N/A

C4 −2.21 0.84 N/A N/A N/A N/A

C4-DC 47.36 9.50 −207.80 74.92 322.72 170.21

C4-OH −18.73 3.32 48.41 10.63 −32.29 7.92

C5 −9.62 2.37 11.57 5.08 −3.45 2.02

C8–1 110.95 25.65 −1918.43 652.22 9986.28 4687.42

C14 −9.00 5.44 15.51 10.09 N/A N/A

C14:1 33.23 9.94 −113.23 48.26 N/A N/A

C16 1.12 0.61 −0.14 0.17 0.004 0.01

C18:OH −20.86 14.14 N/A N/A N/A N/A

C18:1 −5.40 2.20 2.91 3.01 −0.12 1.30
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Table 2:

Performance characteristics of models using only birthweight, only metabolites and both metabolites and 

birthweight for predicting gestational age in the Iowa model-building dataset.

Model Parameter number Adjusted R² RMSE AUC
(95% confidence interval)

Model testing population

Birthweight only 1 81.78 1.90 96.73
(95.58, 97.89)

Metabolites only 36 73.28 2.30 94.78
(93.48, 96.07)

Metabolites and birthweight 37 87.84 1.55 98.2
(97.5, 98.9)
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Table 3:

Prevalence of gestational age groups in the Ugandan model-testing dataset, n = 150

Actual Gestational Age Birthweight only Model Metabolic Model Metabolites and Birthweight Model

Gestational Age n % Cum% N % Cum% N % Cum% N % Cum%

≤ 32 3 2.00 2.00 6 4.00 4.00 2 1.33 1.33 4 2.67 2.67

33–34 3 2.00 4.00 17 11.33 15.33 16 10.67 12.00 3 2.00 4.67

35–36 5 3.34 7.33 61 40.67 56.00 44 29.33 41.33 25 16.67 21.34

37–38 44 29.34 36.67 51 34.00 90.00 57 38.00 79.33 75 50.00 71.34

39–40 80 53.33 90.00 14 9.33 99.33 28 18.67 98.00 35 23.33 94.67

>40 15 10.00 100.00 1 0.67 100.00 3 2.00 100.00 8 5.33 100.00
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