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Abstract

Shigella are ranked among the most prevalent aetiologies of diarrhoeal disease worldwide, disproportionately affecting

young children in developing countries and high-risk communities in developed settings. Antimicrobial treatment, most

commonly with fluoroquinolones, is currently recommended for Shigella infections to alleviate symptoms and control disease

transmission. Resistance to fluoroquinolones has emerged in differing Shigella species (S. dysenteriae, flexneri and sonnei)

since the turn of the 21st century, originating in endemic areas, and latterly spreading into non-endemic regions. Despite

occurring independently, the emergence of fluoroquinolone resistance in these different Shigella species shares striking

similarities regarding their epidemiology and resistance mechanisms. Here, we review and discuss the current epidemiology

of fluoroquinolone-resistant Shigella species, particularly in the light of recent genomic insights.

INTRODUCTION

Shigella, a pathogenic genus within the extensive Gram-
negative family Enterobacteriaceae, is a major cause of
diarrhoeal disease worldwide [1, 2]. The global burden of
shigellosis is estimated to be 125million cases per year, of
which 160 000 lead to death [2, 3]. The disease dispropor-
tionately affects young children in low-income tropical set-
tings, where malnutrition, inadequate sanitation and limited
access to clean water appear to facilitate the transmission of
the infecting organisms. The genus Shigella does not com-
prise a monophyletic group of organisms but is formed of
multiple discrete Escherichia coli lineages, all of which
harbour a signature virulence plasmid responsible for the
distinctive invasive pathogenesis [4, 5]. Current serology
classifies the genus into four species or serogroups (S. dysen-
teriae, boydii, flexneri and sonnei), which differ significantly
in their epidemiology. Toxigenic S. dysenteriae serotype 1
(Sd1) is the causative agent of the now rare, often fatal, epi-
demic bacillary dysentery. S. boydii is only sporadically
isolated from diarrhoeal cases in the Indian subcontinent
[6–8]. The overwhelming majority of shigellosis cases are
presently attributed to S. flexneri and S. sonnei, which pre-
dominantly circulate in developing and developed regions,
respectively [9].

Shigellosis usually results in profuse diarrhoea, often
accompanied by mucous or bloody discharge. This clinical

presentation is associated with disruption of the intestinal

epithelium, which is mediated by intracellular proliferation

of the infecting Shigella. Although the disease is self-

limiting, antimicrobial treatment is recommended to pre-

vent further complications, assist recovery and restrict faecal

shedding [10, 11]. One of the most commonly prescribed

groups of antimicrobials for shigellosis is the fluoroquino-

lones, which directly interact with the bacterial DNA gyrase

(encoded by gyrA and gyrB) and topoisomerase IV (encoded

by parC and parE) to inhibit functional replication and

induce bacterial cell death [12]. Routine surveillance has

documented dramatic increases in the frequency of fluoro-

quinolone-resistant (FQR) Shigella, estimating that resis-

tance increased from 0.6% in 1998–2000 to 29% in 2007–

2009 of the endemic shigellosis in Asia and Africa [9, 13]

(Fig. 1). The genetic mechanism(s) underlying resistance is

commonly attributed to mutations in the quinolone resis-

tance determining region (QRDR), ultimately diminishing

the interaction between the antimicrobial and its target

proteins [14]. Resistance to fluoroquinolones narrows

ever-dwindling treatment options, placing those who are

vulnerable at the increased risk of complications and ham-

pering the efficient management of outbreaks. These factors

have placed FQR Shigella on the list of global priority

pathogens that urgently need focused development of novel

antimicrobials [15]. This review aims to summarize the

epidemiology of various FQR Shigella species, highlighting

insights provided through genome sequencing and

Received 23 October 2017; Accepted 20 March 2018
Author affiliation: Enteric Infections, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
*Correspondence: Hao Chung The, haoct@oucru.org
Keywords: Shigella; fluoroquinolone resistance; Asia; quinolone resistance determining region (QRDR); epidemiology; genomic.
Abbreviations: FQR, fluoroquinolone-resistant; PFGE, pulse field gel electrophoresis; QRDR, quinolone resistance determining region; Sd1, Shigella
dysenteriae serotype 1; MSM, men who have sex with men.

MINI REVIEW

Chung The and Baker, Microbial Genomics 2018;4

DOI 10.1099/mgen.0.000171

000171 ã 2018 The Authors
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original
author and source are credited.

1

http://www.microbiologysociety.org/
http://mgen.microbiologyresearch.org/content/journal/mgen/
http://creativecommons.org/licenses/by/4.0/


phylogenetic reconstruction. Due to its low prevalence and
research focus, S. boydii will be excluded from this
discussion.

Shigella dysenteriae

Resistance against fluoroquinolones had not been previously
observed in Sd1 until FQR organisms were isolated during a
dysentery outbreak arising in India and Bangladesh in
2002–2003 [16, 17] (Fig. 2). Molecular characterization by
pulse field gel electrophoresis (PFGE) revealed that all con-
temporaneous FQR Sd1 isolates, causing either the outbreak
or sporadic episodes across South Asia, belonged to a single
clone [18–20]. However, fluoroquinolone resistance was
attributed to two different QRDR mutation profiles: gyrA-
S83L/D87G and S83L/D87N, which were associated with
different geographical distributions [19]. These data sug-
gested that the clone may have first acquired a gyrA-S83L
mutation as early as 1994, later diverging into two FQR sub-
populations, which were then characterized by differing sec-
ondary mutations. Indeed, a genomic investigation of the
global phylogeny of Sd1 concluded that resistance to
fluoroquinolones was acquired only once during the species’
evolutionary history, conferred by the co-occurrence of
parC-S80I, gyrA-S83L and a secondary gyrA-D87 mutation
between 1995 and 2002 [21]. This FQR clone belonged to
the internationally successful lineage IV, which has wit-
nessed at least nine independent single QRDR mutational
events since the 1970s. The emergence of FQR Sd1 was fol-
lowed by an abrupt decline after the outbreak, hampering
routine monitoring and making the prospect of future FQR
Sd1 outbreaks unpredictable [20, 22]. Information regarding

resistance in alternative S. dysenteriae serotypes is limited,
probably due to their low prevalence, even in regions where
the disease was once highly endemic.

Shigella flexneri

The majority of epidemiological research on S. flexneri has
been conducted in South Asia and China, where the patho-
gen’s burden remains significant. The first incidences of
FQR in S. flexneri were documented in eastern and northern
China in 2001–2002 [23, 24], and a detailed genetic screen
revealed that the majority of these organisms possessed
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Shigella is a genus of human-adapted bacterial patho-

gens that cause dysenteric diarrhoea (shigellosis) in

developing and developed countries. A specific class of

antimicrobials, known as the fluoroquinolones, is recom-

mended for the treatment of shigellosis, but resistance

to this group of antimicrobials is rising rapidly within this

genus. Here, we have combined available epidemiologi-

cal and high-resolution genomic data to outline common

themes that define the emergence and circulation of flu-

oroquinolone-resistant Shigella species. The information

gathered in this review will be useful for determining

optimal shigellosis treatment regimens and to tailor pub-

lic health measures for alerting, containing and prevent-

ing the future spread of these antimicrobial-resistant

enteric pathogens.

Fig. 1. Worldwide distribution of FQR Shigella. Countries are coloured where different FQR Shigella species have been reported in the

literature (see key). Black filled circles indicate specific regions where FQR Shigella have been isolated. Countries with no information

or have not reported isolation of FQR Shigella are coloured grey. HCMC, Ho Chi Minh city.

Chung The and Baker, Microbial Genomics 2018;4

2



gyrA-S83L, gyrA-D87G and parC-S80I QRDR mutations
[22]. Subsequently, a thorough examination of >2000 Ban-
gladeshi S. flexneri underlined a worrying rising trend of flu-
oroquinolone resistance, which was almost exclusively
found in serotype 2a [22]. Although it initially appeared in
2005, fluoroquinolone resistance escalated rapidly and its
prevalence was >40% of all native S. flexneri by 2010. These
Bangladeshi isolates differed from their Chinese counter-
parts by a secondary QRDR mutation, harbouring gyrA-
D87N instead of G. Furthermore, FQR S. flexneri with
identical mutation profiles were recovered during a decade-
long surveillance in Switzerland, highlighting the occurrence
of fluoroquinolone resistance in non-endemic regions [25].

Routine dysentery surveillance in China has reported a
steady increase of FQR S. flexneri of various serotypes,
including 1a, 1c, 2a, 2b, 2av, 4a, 4c and X [26–31]. This
observation suggests that the FQR phenotype has either
emerged on numerous independent occasions across several
serotypes or was acquired once, prior to subsequent inten-
sive serotype switching events. Previous genomic studies
reported that serotype conversion within a lineage is a com-
monly observed phenomenon for S. flexneri [32, 33]. Avail-
able literature provides greater support for the role of
serotype switching on creating multiple FQR S. flexneri
serotypes. Despite being present in a wide range of serotypes
and locations, identical QRDR mutations have been fre-
quently encountered in S. flexneri in China, encompassing
gyrA-S83L, gyrA-D87G/N and parC-S80I. Furthermore,
these mutations are commonly accompanied by an unusual
mutation (gyrA-H211Y), which was also present in the
aforementioned Bangladeshi FQR isolates [22, 28, 31, 34].
FQR S. flexneri from these two countries were also found to
exhibit a close genetic relationship via PFGE [22]. This
combined evidence indicates that spatially dispersed FQR
S. flexneri probably belong to one dominant widespread
clone, where the gyrA-H211Y, gyrA-S83L and parC-S80I
mutations arose prior to geographical divergence. Later, a
secondary mutation in gyrA delineated the Bangladeshi

(gyrA-D87N) and the Chinese (gyrA-D87G) FQR isolates.
However, the increasing isolation frequency of the gyrA-
D87N variant in parts of China may be the result of a higher
degree of trans-border dissemination from South Asia and/
or the separate, indigenous emergence of a competent FQR
subclone [31]. Due to the degree of genetic diversity and the
complex population structures within S. flexneri, the true
nature of such events cannot be easily measured using low-
resolution molecular typing methods.

Shigella sonnei

A shift in species dominance (from S. flexneri to S. sonnei)
has been observed concurrently in multiple Asian countries
as they undergo rapid economic transition; this has been
recorded in Bangladesh, China, Thailand and Vietnam [35–
39]. This intriguing trend greatly increases the burden of
S. sonnei worldwide, making antimicrobial resistance in this
species a focal target for monitoring. Surveillance studies in
developed countries have identified strong epidemiological
links between FQR S. sonnei and a travel history to India
[40, 41]. Moreover, despite disparate spatial distributions,
these isolates share the same pulsotype (via PFGE) with
FQR S. sonnei recovered in South Asia [36, 42–44]. These
results suggest that contemporaneous FQR S. sonnei are
clonal and have evolved and spread in the region before dis-
seminating intercontinentally. Indeed, phylogenetic analysis
on representative extant FQR S. sonnei confirmed this
hypothesis, concluding that South Asia was the most likely
origin of these organisms [45]. Furthermore, this study
identified two distinct regional diversifications of the FQR
clone out of South Asia, with one circulating in Southeast
Asia and another appearing to instigate sustained transmis-
sion within Europe and America. These observations concur
with frequent reports of native FQR S. sonnei circulating in
Cambodia, Vietnam and California [46–48]. Fluoroquino-
lone resistance in S. sonnei is generally determined by the
sequential accumulation of three mutations: gyrA-S83L,
parC-S80I and gyrA-D87G [45, 49]. However, other

Fig. 2. Timeline detailing the emergences of FQR Shigella species. The dashed lines represent the first occurrences of the initial

QRDR mutation in the FQR clone if known, as described by epidemiological or genomic data. The solid lines indicate the first reports of

FQR Shigella species as well as the QRDR mutations that became incorporated into these clones by this designated time. The pre-

sumed order of occurrence for these mutations is from top to bottom.
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resistance mechanisms, including differing mutations in
QRDR (gyrA-D87N instead of D87G) and the synergy
between the plasmid-mediated qnrB gene and gyrA muta-
tions, have also been identified [50, 51]. It is of particular
concern that the transmission of the FQR clone is intensi-
fied in high-risk contact networks, such as those reported
among MSM (men who have sex with men) communities in
non-endemic Canada and Taiwan [52, 53]. Therefore, the
propagation of FQR Shigella should be closely monitored in
MSM networks, especially in the wake of increased shigello-
sis incidence, HIV infection and resistance to other antimi-
crobials, such as azithromycin, within this high-risk group
[54].

OUTLOOK

The presented evidence reveals striking similarities between
the emergence of fluoroquinolone resistance among the dis-
crete Shigella species. (1) FQR is almost exclusively deter-
mined by sequential QRDR mutations in the following
order: gyrA-S83L, parC-S80I and gyrA-D87G/N. (2) To
date, the majority of FQR isolates identified within an indi-
vidual species are clonal despite their wide geographical dis-
tribution. (3) South Asia, and potentially China, serve as
likely reservoirs for the rise and spread of resistant clones.
These interpretations are currently deduced from genomic
insights into Sd1 and S. sonnei, and are subjected to various
confounders, including geographical bias in sample collec-
tion. However, the extensive genetic diversity within S. flex-
neri may present an alternative scenario, which will benefit
from large-scale molecular epidemiology data generated
through whole-genome sequencing.

The first widely used fluoroquinolone, ciprofloxacin, was
introduced to clinical practice in 1987. However, resistance
in Shigella only began to emerge in the early 2000s. The
intervening period witnessed the emergence of Shigella
exhibiting resistance to multiple antimicrobials including
co-trimoxazole, ampicillin and nalidixic acid [55]. There-
fore, fluoroquinolones, such as ciprofloxacin, began to be
deployed more commonly to manage drug-resistant shigel-
losis, and its use became routine, as recommended by the
World Health Organization in 2005 [11, 56]. Recent experi-
mental and modelling work into the evolution of fluoro-
quinolone resistance could offer explanations for the
observed pattern between the various Shigella species. The
ordered QRDR mutations are selected in favour of those in
efflux regulatory machinery due to their co-optimization for
non-susceptibility (MIC levels) and fitness cost [57, 58]. For
both in vitro generated and clinical isolates, resistance to flu-
oroquinolones almost exclusively commences with an initial
mutation, gyrA-S83L. This mutation has arisen indepen-
dently on multiple occasions for different Shigella lineages,
possibly as an adaptive strategy for resistance against the
first-generation quinolone, nalidixic acid [21, 32, 59]. How-
ever, the key determining factor in this stepwise evolution is
the subsequent mutation, parC-S80I, which occurs much
less frequently during evolution but gives the bacterium a
significant increase in fluoroquinolone MIC and potentially

a non-inferior fitness. Such a mutation is suggested to be
favourably selected in abundance of mutation supply, ful-
filled either by a large population size or a high mutation
rate, when antimicrobial pressure is high [58]. Given that
the mutation rate of the bacterium Shigella is relatively sta-
ble, the first scenario appears to be more plausible [21, 32,
49, 59]. High population densities in South Asia could pro-
mote extensive and sustained Shigella transmission, result-
ing in a large bacterial population. Suboptimal public health
measures in the region, exemplified by the fact that only
40% of the Indian population has access to improved sani-
tation [60], further amplify the transmission cycle of Shi-
gella. This expansion has arisen on a backdrop of rapidly
increasing fluoroquinolone use for treatment of multiple
enteric and febrile diseases since the turn of this century
[56, 61]. Indeed, India, with 12.9 billion units, was ranked as
the world’s largest antimicrobial consumer in 2010 [62].
These contributing factors might render South Asia a
unique focal point for the emergence of human-restricted
FQR enteric bacteria, including Shigella and Salmonella
Typhi [63].

CONCLUSION

The emergence of FQR Shigella has been quickly followed
by the expansion and, for S. sonnei, rapid international
spread. Furthermore, co-resistance to other first-line anti-
microbials, such as the macrolides and third-generation
cephalosporins, is frequently identified among these bacter-
ia [47, 50]. These antimicrobial resistance combinations
present a serious public health threat for the effective treat-
ment and management of shigellosis. It has been experi-
mentally demonstrated that the described QRDR mutations
may carry no detrimental or limited fitness cost to the resis-
tant Enterobacteriaceae, even in the absence of fluoroquino-
lone pressure [57, 64]. Alternatively, fluoroquinolone
resistance has been coupled with the successful clonal prop-
agation of several multi-drug-resistant pathogens, including
Staphylococcus aureus, Klebsiella pneumoniae, E. coli, Clos-
tridium difficile and Neisseria gonorrhoeae [65, 66]. All these
major FQR clones were found to harbour specific QRDR
mutation combinations, indicating that these resistance gen-
otypes induce a minimal fitness disadvantage. Although lit-
tle is known about the impact of alleviating fluoroquinolone
pressure on the clonal dominance of FQR bacteria in nature,
we speculate that withdrawal of such pressure in clinical set-
tings is unlikely to discontinue the dominance of FQR Shi-
gella in the transmission chain. However, future research is
warranted to challenge this hypothesis, as well as to develop
the best practices for controlling and treating new emerging
antimicrobial-resistant clones.
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