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The adverse effects to humans and environment of only few chemicals are well
known. Absorption, distribution, metabolism, and excretion (ADME) are the steps of
pharmaco/toxicokinetics that determine the internal dose of chemicals to which the
organism is exposed. Of all the xenobiotic-metabolizing enzymes, the cytochrome P450
(CYP) enzymes are the most important due to their abundance and versatility. Reactions
catalyzed by CYPs usually turn xenobiotics to harmless and excretable metabolites, but
sometimes an innocuous xenobiotic is transformed into a toxic metabolite. Data on
ADME and toxicity properties of compounds are increasingly generated using in vitro
and modeling (in silico) tools. Both physics-based and empirical modeling approaches
are used. Numerous ligand-based and target-based as well as combined modeling
methods have been employed to evaluate determinants of CYP ligand binding as well
as predicting sites of metabolism and inhibition characteristics of test molecules. In silico
prediction of CYP–ligand interactions have made crucial contributions in understanding
(1) determinants of CYP ligand binding recognition and affinity; (2) prediction of likely
metabolites from substrates; (3) prediction of inhibitors and their inhibition potency. Truly
predictive models of toxic outcomes cannot be created without incorporating metabolic
characteristics; in silico methods help producing such information and filling gaps in
experimentally derived data. Currently modeling methods are not mature enough to
replace standard in vitro and in vivo approaches, but they are already used as an
important component in risk assessment of drugs and other chemicals.
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Introduction

Modern life is based on the use of chemicals, i.e., substances and their mixtures. The current
count of individual substances (compounds) is now approaching 100 million1. Therefore the
chemical cocktail to which humans and environmental species is exposed contains a great number
of different compounds. There is little knowledge on the adverse effects of the vast majority
of chemicals. Even drugs (pharmaceuticals) cause sometimes unexpected serious adverse effects
despite being subject to extensive non-clinical and clinical studies before reaching the market.

1www.cas.org
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Toxicological risk assessment is mandatory for certain
chemicals such as drugs, food additives, pesticides, biocides,
industrial chemicals, and the most hazardous natural substances.
The manufacture and release of chemicals is strictly regulated
in the European Union (EU) by the REACH legislation
(Registration, Evaluation, Authorization and restriction of
Chemicals). REACH is now the paradigm of a deliberate
shift toward a more responsible, sustainable, and green
use of chemicals. Companies must today report extensive
toxicological information about their chemicals. Novel methods
for testing have been developed as a direct response to
legislative requirements (Scholz et al., 2013; Nicolotti et al.,
2014).

Traditional evaluation of chemicals and drugs for toxicological
effects has relied heavily on testing with experimental animals.
However, today it is widely acknowledged that to assess all
commonly used chemicals, animal testing will not solve the
challenge. There is great societal pressure to find alternative
testing methods. Computational (in silico) models are often cited
as methods to reduce animal tests. In silico approaches are today
widely applied for evaluatingmultiple aspects of chemical toxicity
in man and environment (Cronin and Madden, 2010; Raunio,
2011).

Role of Metabolism in Biological Effects
of Chemicals

To understand the actions, either beneficial or adverse, of
substances in the human body, one must know how much of
the external dose will reach the sites of action (internal dose),
and how soon it will be eliminated from the body. Absorption,
distribution, metabolism, and excretion (ADME) are the four
steps of pharmacokinetics (or toxicokinetics) that determine the
internal dose and the concentration in the target sites of the body.
Together metabolism and excretion take care of elimination
of xenobiotics, compounds foreign to the body. The common
practice of adding the letter T for toxicity in the acronym
(ADMET) emphasizes the tight connection between ADME
properties and toxic outcomes.

Most living organisms have developed systems to prevent
absorption of xenobiotics, to eliminate them and to repair
and adapt to damages. The ability of our body to clear
xenobiotics involves specific enzymatic pathways developed
during evolution to handle natural constituents in the diet.
Xenobiotics are subjected to one or multiple enzymatic pathways
constituting phase 1 oxidation, reduction and hydrolysis, and
phase 2 conjugation reactions. Metabolism usually converts
lipophilic compounds into more hydrophilic derivatives that
can be easily eliminated from the body, usually via urine.
Transporter proteins play an important role in xenobiotic
ADME by moving compounds and their metabolites through cell
membranes and across different body compartments (Gonzalez
et al., 2011).

The phase 1 reactions are mediated by the versatile
cytochrome P450 (CYP) enzymes and the more structurally
selective flavin-containing monooxygenases (FMO), epoxide

hydrolases (EH) and other phase 1 enzymes (other oxidizing,
reducing, and hydrolyzing enzymes). The CYP enzymes
constitute a large superfamily of heme proteins that metabolize
a vast number of exogenous and endogenous compounds.
Out of 57 different CYP forms, about 10 hepatic CYPs are
responsible for the oxidative metabolism of xenobiotics
in humans, and as few as seven CYPs are responsible for
metabolism of nearly 90% of all drugs. The CYPs metabolize
for example polycyclic aromatic hydrocarbons, aromatic
amines, heterocyclic amines, pesticides, and herbicides, and
the vast majority of drugs. The most common CYP reaction
involves a single oxygen atom insertion from molecular
oxygen into an organic molecule in reactions such as
hydroxylation, sulfoxidation, epoxidation, N-dealkylation,
O-dealkylation, etc.; hence the name ‘monooxygenase.’ However,
the enzyme performs a variety of other transformations,
such as desaturation, oxidative dehalogenation, reductive
dehalogenation, deformylation, peroxidation, and so on
(Pelkonen et al., 2008; Testa et al., 2012; Guengerich and Munro,
2013).

The phase 2 enzymes contain several superfamilies of
conjugating enzymes. Among the most important are glutathione
S-transferases (GST), UDP-glucuronosyltransferases (UGT),
sulfotransferases (SULT), N-acetyltransferases (NAT), and
methyltransferases (MT). These enzymes are mostly involved
in inactivation reactions, but may also catalyze formation of
toxic metabolites (Gonzalez et al., 2011; Testa et al., 2012). The
main metabolizing organ in humans is the liver, with some
contribution by the small intestine. Many other tissues contain
also xenobiotic metabolizing enzymes. These extrahepatic
enzymes usually do not contribute to systemic elimination of
drugs, but may produce metabolites with significant local effects
(Sevior et al., 2012).

There are two facets to metabolism. First, metabolism leads
to termination of the action of a compound and allows
excretion of metabolites from the body. Second, the same
enzymes sometimes produce metabolites that are reactive and
toxic. In these cases parent compounds are often transformed
into reactive electrophiles, which react with nucleophilic sites
of proteins and DNA and form adducts with them. DNA
damage caused by reactive metabolites is the main initial
mechanism of chemical carcinogenesis and reactive metabolites
also explain a large proportion of the so-called idiosyncratic
adverse drug reactions (Park et al., 2011; Bessems et al., 2014).
An extensive survey (Testa et al., 2012) of commercial drugs
showed that on average each xenobiotic can be converted into
six different metabolites. Normally 3% of these retain the original
activity of the parent compound, while 7% demonstrate toxic
effects. If a single compound is metabolized into 10 or more
metabolites, the chances that one of these is toxic are very
high.

Information on compound’s ADME properties is critical for
risk assessment of chemicals. It is acknowledged that absence of
metabolism is a key bottleneck in the development of in vitro
toxicity tests. External exposure must be translated into internal
doses and compared with in vitro cell exposure associated with
effects (in vitro–in vivo comparison). Data on ADMET properties
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of compounds are increasingly generated using in vitro and in
silico tools. Recent advances in molecular modeling of CYPs and
other critical proteins demonstrate that it is possible to generate
realistic models for them (DeLisle et al., 2011; Pelkonen et al.,
2011; Carosati, 2013; Bessems et al., 2014).

In this reviewwe focus on in silicomethods used for evaluating
interactions between xenobiotics and human CYP enzymes.
Modeling approaches have been applied also to other phase
1 enzymes, including FMOs (Cruciani et al., 2014) and EHs
(Lonsdale et al., 2012) as well as phase 2 conjugating enzymes,
including UGTs (Sorich et al., 2008), SULTs (Leyh et al., 2013),
and various transporters (Ravna and Sylte, 2012). The important
field of in silico tools for predicting general ADMET properties is
extensively covered in recent reviews (Cronin andMadden, 2010;
Pelkonen et al., 2011; Di et al., 2013; Roncaglioni et al., 2013).

Modeling Methods

Several different types of in silico methods have been developed;
the simplest way to classify them is to distinguish physics-
based and empirical models (Figure 1). Physics-based methods
include for example molecular dynamics and the prediction of
binding affinity by methods such as free energy perturbation
and quantum chemical (QC) calculations. Empirical methods,
based on existing experimental data without knowledge of the
physics of the system, may be divided to ligand-based and
target-based approaches. In ligand-based methods, structures of
known active and inactive compounds are modeled to derive
quantitative structure-activity relationships (QSARs) and other
properties such as sites of metabolism (SOM), i.e., specific
atoms in a substrate where metabolic reactions occur. Also
various rule-based expert systems belong to this category. In

target-based methods, the structure of the enzyme is the starting
point for model generation. Models integrating both ligands
and enzymes are known as combined or mechanism-based
methods.

Quantitative structure-activity relationship methods have
evolved from a linear relationships method (Free Wilson method
and Hansch analysis) to multiple linear regression methods
using grid-based 3-dimensional (3D) QSAR approaches such as
Comparative Molecular Field Analysis (CoMFA), Comparative
Molecular Similarity Analysis (CoMSIA), and GRID/GOLPE.
More statistical intensive methods include neural networks,
subsequent variants, and decision trees (Höltje et al., 2003;
Sridhar et al., 2012). In CoMFA, ligand-receptor interactions are
represented by standard potential energy fields such as steric and
electrostatic interactions. Differences in these interaction field
intensities in a set of molecules are related to differences in
their biological response. Calculation of steric and electrostatic
fields is carried out by placing aligned molecules from a
dataset into a cubic lattice in which probe atoms surround the
molecules. CoMFA uses a partial least-squares (PLS) method
in the analysis to predict activity from energy values at the
grid points. The results of the PLS analysis are often presented
as a 3D coefficient contour map which show favorable and
unfavorable steric and electrostatic regions. CoMSIA is based on
similarity indices calculated between probe atoms and groups
in the same manner as CoMFA fields are calculated. CoMSIA
uses a Gaussian function to calculate similarity indices for a data
set of pre-aligned molecules at regularly spaced grid points. The
similarity indices determine the dependence between the probe
atom and the atoms of the molecules in the data set (Höltje et al.,
2003).

Expert systems mimic human reasoning and formalize
existing knowledge. These are programs in which a computer

FIGURE 1 | Types of in silico models. Numerous specific methods exist in each category.
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solves problems by applying rules from a knowledge base.
Such rules may be a combination of factual and heuristic
types, and are usually non-numerical. In most cases, 3D
structures of compounds are not required. Metabolic pathways
are sometimes very different even in closely related mammalian
species, thus some expert systems allow filtering of specific
subsets of the data to a specific species (Kirchmair et al., 2012;
Long, 2013). Expert systems exploit the extensive databases of
experimentally derived metabolic pathways. Examples of such
databases include the Accelrys Metabolite database2 and Fujitsu
ADME database3.

Of the target-based methods, docking analysis mimics the
binding of a ligand to a biological macromolecule, usually a
protein. Typically, in docking simulation the conformational
space of the ligand is sampled within the ligand binding
cavity of the target protein to identify the most likely
binding conformation(s) for the ligand. The binding affinity
or fitness of the ligand is estimated rapidly for all sampled
conformations with a scoring function. In principle, docking
predicts energetically favorable conformations of ligands and
also reveals key groups or atoms for binding. With crystal
structures available for the major human CYPs, protein-ligand
docking methods are suitable for the analysis and prediction of
CYP–ligand interactions. However, docking accounts poorly for
substrate reactivity (Kirchmair et al., 2012; Roncaglioni et al.,
2013).

Presentation of details of all the in silico methods is
outside the scope of this review; we will provide here a
general view of the state-of-art. Several recent reviews cover
the technical aspects extensively (Shaik et al., 2010; Kirchmair
et al., 2012; Testa et al., 2012; Cumming et al., 2013; Long,
2013). Today in silico methods used to evaluate CYP–ligand
interactions typically combine techniques from physics-based
and empirical models. With appropriate combinations, the
strengths of individual in silico methods complement each
other.

Modeling of CYPs

Selectivity of Ligand Binding
We focus here on the nine most important human liver
CYP forms: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP2D6, CYP2E1, and CYP3A4. The crystal
structures of all these CYP enzymes have been elucidated.
Ligands to these CYP enzymes are either substrates that are
metabolized or inhibitors that decrease substrate turnover.
Elucidation of the binding cavities of individual CYPs to their
ligand profiles has revealed that the size and shape of the binding
cavity are critical for selective ligand binding. A good ligand
is able to complement the binding cavity in size, shape, and
electrostatic interactions.

Numerous in silico models on these nine CYPs have been
published since the 1990s using various approaches. The very

2http://accelrys.com/products/databases/bioactivity/metabolite.html
3www.fujitsu.com/jp/group/kyushu/en/solutions/industry/lifescience/
admedatabase

first studies used simple QSAR analyses of small numbers
of molecules, and today highly complex combined methods
involving 3D-QSAR are routinely employed. Together, these
studies have yielded a fairly detailed picture on the main
features of ligand-enzyme interactions. The following text and
Table 1 summarize the main characteristics of these CYPs:
typical substrates and inhibitors, common features of the ligands,
and main characteristics of the enzyme binding cavities and
active sites, i.e., the region of binding cavity that is critical for
catalysis.

CYP1A2
The binding cavity of CYP1A2 [Protein Data Bank (PDB) ID
2HI4] is relatively planar and small, with an estimated volume of
375 Å3. This binding cavity fits closely with planar compounds,
such as the typical CYP1A2 substrates theophylline, caffeine,
and melatonin, and the potent inhibitor α-naphthoflavone
(Korhonen et al., 2005; Zhou et al., 2010).

CYP2A6
The binding cavity of CYP2A6 (1Z10 + others) is rather
compact, with a volume of only 260 Å3, which is consistent
with the fact that CYP2A6 catalyzes the metabolism of small
planar substrates, such as coumarin and nicotine (mw 146
and 162 Da, respectively). Coumarin fits excellently in the
narrow binding cavity of CYP2A6. The CYP2A6 active site
contains three phenylalanines enabling π–π interactions with
aromatic compounds and an asparagine forming hydrogen
bonding (Yano et al., 2005; Raunio and Rahnasto-Rilla,
2012).

CYP2B6
The substrates of CYP2B6 (3QOA + others) are usually non-
planar molecules, neutral or weakly basic, fairly lipophilic with
one or two hydrogen-bond acceptors; a good example is the
antidepressant drug bupropion (Korhonen et al., 2007; Shah et al.,
2011; Turpeinen and Zanger, 2012).

CYP2C8
CYP2C8 (1PQ2 + others) oxidizes large substrates, such as taxol
(mw 854 Da). The binding cavity of CYP2C8 is rather large with
a unique shape; its volume is approximately 1450 Å3 (Niwa and
Yamazaki, 2012; Xiaoping et al., 2013). There are basic residue(s)
in the active site as acidic compounds are oxidized efficiently
or inhibit the enzyme, for example the acyl glucuronides of
gemfibrozil and clopidogrel (Ogilvie et al., 2006; Tornio et al.,
2014).

CYP2C9
CYP2C9 (1OG5 + others) metabolizes medium-sized acidic
molecules with 1–2 hydrogen bond acceptors. The crystal
structure of CYP2C9 shows that Arg108 plays a significant role
in the binding of acidic substrates such as flurbiprofen (Mo et al.,
2009a,b; Niwa and Yamazaki, 2012).

CYP2C19
Typical substrates of CYP2C19 (4GQS) are medium-sized
molecules, mostly basic with 2–3 hydrogen bond acceptors.
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TABLE 1 | Cytochrome P450 (CYP) ligands and their common features.

Form Substrates Inhibitors Common features

1A2 Drugs: caffeine, lidocaine, melatonin, theophylline,
tizanidine
Other: ethoxyresorufin, polycyclic aromatic
hydrocarbons, nitroarenes, heterocyclic aromatic
amines/amides

Furafylline,
ciprofloxacin, enoxacin,
α-naphthoflavone

Small, aromatic/planar, lipophilic, acid or
neutral, polyaromatic hydrocarbons

2A6 Drugs: nicotine
Other: coumarin,

Methoxsalen, tranylcypromine, pilocarpine,
3-(pyridine-3-yl)-1H-5-yl)methanamine

Diverse, relatively small neutral or basic
molecules usually containing one aromatic ring

2B6 Drugs: bupropion, cyclophosphamide,
efavirenz
Other: n-hexanes, monoterpenes

Thio-TEPA, ticlopidine,
2-phenyl-2-(1-piperidinyl)propane,
4-benzylpyridine,
2-phenyl-2-(1-piperdinyl)propane

Medium molecular size, hydrophobic; at least
one hydrogen bond acceptor possibly near
SOM

2C8 Drugs: paclitaxel, amodiaquine, rosiglitazone,
repaglinide
Other: fatty acids

Trimethoprim, montelukast, acyl glucuronide of
gemfibrozil,
acyl glucuronide of clopidogrel

Promiscuous hydrophobicity/hydrophilicity
features

2C9 Drugs: S-warfarin, tolbutamide, diclofenac,
flurbiprofen
Other: organic solvents

Sulfaphenazole,
fluconazole, amiodarone,

Aromatic, lipophilic/non-polar, acid or neutral;
possible secondary binding site

2C19 Drugs: omeprazole, S-mephenytoin, lansoprazole,
diazepam

Omeprazole, ticlopidine Aromatic, lipophilic, acidic, neutral or basic
molecules with site of oxidation a discrete
distance from 2 H-bond acceptor heteroatoms

2D6 Drugs: dextromethorphan, bufuralol, codeine,
desipramine, atomoxetine
Other: tryptamine, insecticides

Quinidine, terbinafine, paroxetine, fluoxetine,
sertraline

Flat, positively charged
aryl-alkyl-amines with site of oxidation a
discrete distance
from a protonated nitrogen

2E1 Drugs: chlorzoxazone
Other: ethanol, aniline, p-nitrophenol, nitrosamines

Pyridine, disulfiram Small (mw < 100), neutral, hydrophobic
molecules, relatively low logP

3A4 Drugs: midazolam, triazolam, nifedipine, felodipine,
atorvastatin, lovastatin, ciclosporin A
Other: polycyclic aromatic hydrocarbons,
endogenous steroids, bile acids

Itraconazole, ketoconazole, indinavir, ritonavir,
saquinavir, diltiazem, erythromycin, clarithromycin,
gestodene,
CYP3cide, SR-9186,
mifepristone, raloxifene

Relatively large, lipophilic, structurally diverse
molecules, positively charged or neutral with
site of oxidation often nitrogen or allylic
positions

Data sources: Rendic, 2002; Lewis and Ito, 2010; DeLisle et al., 2011; Khojasteh et al., 2011; Dong et al., 2012; Sridhar et al., 2012; Johnson and Stout, 2013; Zientek
and Youdim, 2015. A comprehensive list of drugs metabolized by CYPs can be found at http://bioinformatics.charite.de/supercyp.

The tertiary structures of 2C19 and CYP2C8 are highly similar,
although their binding cavities differ greatly due to amino
acid differences that directly alter the topography and the
hydrophobic and polar landscapes of the cavities (Niwa and
Yamazaki, 2012; Reynald et al., 2012).

CYP2D6
CYP2D6 (2F9Q + others) binds substrates containing a basic
nitrogen and a planar aromatic ring as its active site contains
acidic residues. A crystal structure of CYP2D6, in combination
with mutagenesis data, indicates that the negatively charged
residues, Asp301 and/or Glu216, are involved in substrate
recognition and binding (de Groot et al., 2009; Wang et al.,
2009).

CYP2E1
The binding cavity of CYP2E1 (3E4E + others) deduced from
first two crystal structures for this enzyme is the smallest (190 Å3)
yet observed for a human CYP. This structural knowledge has
helped in understanding why CYP2E1 generally catalyzes small
molecular substrates, such as acetaminophen and halothane
(Porubsky et al., 2008; Yamazoe et al., 2011; Martikainen et al.,
2012).

CYP3A4
CYP3A4 (1W0G + others) is a very versatile enzyme capable
of oxidizing bulky substrates, such as cyclosporine and
erythromycin (mw 1203 and 734 Da, respectively). The substrate-
free CYP3A4 crystal structure displays a large substrate-binding
cavity with a volume of about 1400 Å3 (Zhou, 2008; Sevrioukova
and Poulos, 2013).

Numerous in silico models have given important insights
into the nature of interactions between individual CYP forms
and their ligands (substrates and inhibitors). These studies
have revealed that the rate of CYP-mediated metabolism is
likely to be represented by a combination substrate logP and
ionization energy, whereas substrate binding can be described
by linear combination of several terms, including logP, number
of hydrogen bonds and number of π–π stacking interactions
between ligand and enzyme, together with the number of
rotatable bonds on the substrate molecule which are restricted on
binding to CYP (Lewis and Ito, 2010).

To be of practical use, the main parameters to be predicted
for CYP-mediated metabolism are: (1) reactions catalyzed,
and SOMs and Km and Vmax values for the reaction, and
(2) inhibition of CYP-specific reactions and the inhibition
mechanism and key constants (e.g., ki).
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SOM Prediction
Ability to predict and identify metabolites of candidate drug
molecules is essential to modern drug discovery, because it is
crucial to know if the metabolites are active or inactive or possibly
reactive and thus toxic. Unfavorable metabolic pathways may
exclude a drug candidate from further development, as they
may cause toxicity in later, more costly phases of development.
The same information is also critical when elucidating the
possible effects of any xenobiotic in the body. Many bioactivation
pathways to reactive metabolites are known; therefore specific
structural alerts are scrutinized especially in drug candidates
(Kalgutkar et al., 2005; Stepan et al., 2011).

Oxidation of substrates by CYPs is a multistep process. The
rate-determining step involves hydrogen or electron abstraction
from the substrate followed by oxygen rebound or a concerted
oxygenation via formation of a complementary interaction
between the substrate and amino acid residues in the active
site near the oxygen coordinated to heme iron. Thus, hydrogen

abstraction energy is an important determinant for SOM of a
substrate. However, the most reactive site of a substrate may
not be the predicted SOM, because different sizes, shapes, and
electrostatic forces of complementary interaction in the active
sites of various CYPs determine the orientation of substrate
toward to the activated oxygen coordinated to heme. Active site
differences make the regioselectivity of oxygenation reactions
CYP form-specific. It is thus necessity to consider substrate-
enzyme recognition in predicting SOMs (Stjernschantz et al.,
2008; Lewis and Ito, 2010; Kirchmair et al., 2012; Cruciani et al.,
2013).

Various ligand-based and target-based as well as combined
methods have been used for SOM prediction. Examples of
these methods are given in Table 2. Ligand-based methods
concentrate on finding common trends and patterns of size,
shape, and atomic or physicochemical environment of the
substrates and their relation to SOM. Methods used include
pharmacophore and QSAR models, fragment analysis and

TABLE 2 | Examples of in silico programs for SOM prediction.

Program/reference Description Homepage

Target-based methods

Tarcsay et al. (2010) SOM selection is based on docking and binding energies of
substrates’ metabolites.

–

Vasanthanathan et al. (2009) Active conformations of CYP1A2 substrates are recognized by
docking and binding energy calculation.

–

Ligand-based methods

META-PC Predicts the structure of likely metabolites; uses a genetic algorithm
to prioritize a large biotransformations dictionary; uses also QC
descriptors.

multicase.com/meta-pc

MetabolExpert Predicts the structures of likely metabolites using a database
containing rules including substrate and metabolite listings; also
contain lists of substructures which inhibit or promote the reaction

compudrug.com/metabolexpert

Meteor Nexus Knowledge-based software; integrated to SMARTCyp. lhasalimited.org/products/meteor-
nexus.htm

MetaPrint2D (Boyer and Zamora, 2002; Boyer
et al., 2007; Adams, 2010)

A data-mining tool that identifies SOMs based on circular
fingerprints and fragment-based substrate-metabolite occurrence
ratios.

www-metaprint2d.ch.cam.ac.uk/

RS-WebPredictor (Zaretzki et al., 2011, 2012) Generates pathway-independent, CYP form-specific
regioselectivity. Models built with machine learning techniques using
numerous QC and topological descriptors.

reccr.chem.rpi.edu/Software/RS-WebPredictor/

SMARTCyp (Rydberg et al., 2010, 2013;
Rydberg and Olsen, 2011, 2012)

SOM prediction tool that utilizes fragment-based reactivity and
accessibility factors.

farma.ku.dk/smartcyp/

XenoSite (Zaretzki et al., 2013) Uses both atomic and molecular descriptors in CYP form-specific
models built with machine learning methods.

http://swami.wustl.edu/xenosite/

Tyzack et al., 2014 Form-specific machine learning models that use only 2D topological
fingerprints as descriptors.

–

Combined methods

MetaSite (Zamora et al., 2003; Cruciani et al.,
2005, 2013, 2014)

Identifies likely SOMs by considering reactivity and complementarity
of substrate and CYP catalytic site 3D fingerprints; not training set
dependent.

moldiscovery.com/software/metasite/

Tyzack et al. (2013) Utilizes tethered docking, QC activation energies and molecular
dynamics.

–

DR-Predictor (Huang et al., 2013) Combines docking-derived binding energies to atomic descriptors
in CYP form-specific models built with machine learning methods.

–

StarDrop P450 Uses AM1 hydrogen atom transfer energy calculations combined
with accessibility descriptors.

optibrium.com/stardrop/stardrop-p450-
models.php

IMPACTS (Campagna-Slater et al., 2012) Combination of docking, transition state modeling, and rule-based
substrate reactivity prediction.

molecularforecaster.com/products.html
fitted.ca/impacts.html
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atomic environment fingerprints, often in combination with
rule systems. Target-based methods focus on discovering active
conformations for substrates in the CYP active site. Target-based
SOM prediction utilizes docking, homology modeling, molecular
dynamics simulations and fingerprints.

Two basic assumptions are made when docking is used to
find active conformations for substrates. First, the SOM or at
least one of multiple SOMs should be at close proximity to the
heme iron. Second, the binding energy of the substrate should
be low. These basics are taken into account when the success of
the method is validated. Further requirements are that there are
no other atoms between the heme iron and the target oxidized
atom. Docking is always CYP form-specific, since it relies on
the 3D structure of the binding cavity of the particular enzyme.
However, as docking predicts only the active conformation of a
substrate, performing it alone is not enough to predict specific
SOMs.

The flexibility of CYP enzymes needs to be taken into account
in modeling. However, the fastest and most basic way is to use
rigid CYP crystal structures, which often leave little space of
freedom for active conformations. The physical space of rigid
structures is often specific for the cocrystallized ligand due
to the induced fit effect, and this may mask the true active
conformation of the enzyme for another substrate. Induced fit
effects have been considered by docking substrates to multiple
structures crystallized with varying ligands, flexible structures,
or ensembles of a CYP enzyme from molecular dynamics (Hritz
et al., 2008; Danielson et al., 2011; Kingsley et al., 2014).
Ensemble docking is a time-consuming process and thus it is
rational to use only a few target protein structures. Although
computationally expensive, molecular dynamics on enzyme-
substrate complexes is also a valuable tool for confirming active
conformations and flexibility of CYP binding cavities (Park and
Harris, 2003).

A common approach to identify a successful docking pose is to
require that a substrate’s SOM is within a specific distance from
the heme iron in a conformation of lowest binding energy. Often
the maximum distance is 6 Å (Hritz et al., 2008; Vasanthanathan
et al., 2009). A long radius from the iron leads to a wide
accepted area above the heme plane in many CYP structures,
leaving space for other substrate atoms besides a SOM. Having
multiple substrate atoms in the accepted space leaves the method
very error-prone if one wants to define the primary SOM at
atomic precision. One approach to overcome this inaccuracy
is tethered docking, which forces a specific atom close to the
iron, sampling all possible SOMs in a substrate (Tyzack et al.,
2013).

Docking is a valuable tool for predicting active conformations
for CYP substrates and form-specific regioselectivity. The major
drawbacks of docking result from insufficient scoring functions,
the flexibility of CYP enzymes, and the inability to predict
SOMs precisely. Hydrophobic interactions are important binding
forces in many CYP enzymes, but many binding energy
algorithms take them poorly into account. The complex CYP
reaction cycle involving reactions of oxygen in the active
site also makes the estimation of favorable substrate binding
more complex. Inaccuracies of docking methods have been

compensated by combining docking with different ligand-based
methods. Many of these offer atom-specific information. This is
a valuable addition to docking, since the individual properties of
substrate atoms can then be considered together with favorable
conformations of the whole substrate in the active site. Combined
methods account for both steric and physicochemical hindrances
of the protein and common patterns and reactivities of the
substrates and their substructures. Pharmacophore and QSAR
models have been used for docking and rescoring predocked
substrates to confirm active conformations. SOM prediction
is often more accurate if the activation energies of different
metabolic reactions are considered in scoring functions (de Groot
et al., 1999a,b, 2002; Park and Harris, 2003; Campagna-Slater
et al., 2012; Kingsley et al., 2014). Docking and scoring of all
possible phase 1 metabolic products of CYP substrates also
gives valuable information on regioselectivity (Tarcsay et al.,
2010).

Besides docking, target-based SOM prediction can be based
on comparison of the active site and substrate fingerprints.
Mono-dimensional histogram fingerprints, called correlograms,
are generated for all substrate atoms and the heme iron in
the CYP active site (Boyer and Zamora, 2002; Zamora et al.,
2003; Cruciani et al., 2005). A single correlogram describes
distances from an atom to hydrophobic, hydrogen bond donor,
and hydrogen bond acceptor atoms or surface areas, respectively,
for substrates and the active site. The atomic fingerprint of a
substrate that gives the best match for the active site is predicted
as the top SOM. Fragment-based reactivity has also been applied
to the scoring function, and 3D fingerprints have proven to
be even more accurate in this approach (Cruciani et al., 2005,
2013).

Chemical reactivity is an important factor in CYP
regioselectivity. Hence, many methods have used activation
energies for SOM prediction. The basic principle in estimating
the reactivity of different atomic regions in a CYP substrate is
to calculate the energy differences between the substrate and
all possible reaction intermediates. The traditional approach is
to calculate energies for each molecule as a whole (Korzekwa
et al., 1990; Jones et al., 2002). Since these QC calculations
are slow to perform and have to be done for each substrate
separately, more recent methods use fragment-based approaches
for calculating activation energies (Singh et al., 2003; Rydberg
et al., 2010). The reactivities are precalculated for small
molecular fragments, such as an aromatic ring or a methyl
group. Substrate substructures can be matched to fragments
and assigned activation energies based on the matching
fragment.

Both whole-molecule QC calculations and fragment-based
reactivities correlate well with experimental activation energies.
However, considering reactivity alone is not sufficient for SOM
prediction. This is true especially for CYP forms that have
fairly constrained binding cavities with orienting amino acid side
chains. Substrates of these CYPs require more consideration of
the enzyme-substrate interactions when SOM predictions are
made. Since the orientation of an atom to the heme iron is
an important factor for CYP regioselectivity, solvent accessible
surface areas of substrate and relative distances from the center
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of the molecule have yielded useful additions to SOM prediction
methods that are based on reactivity (Singh et al., 2003; Rydberg
et al., 2010, 2013). Substrates for certain CYP forms have
common functional groups that interact with particular amino
acid residues in the active site; thus, these residues position
the substrate into a certain binding conformation in the active
site. For these substrates, the intramolecular distance of each
potential SOM to the functional group can be taken into account
in form-specific scoring functions (Rydberg and Olsen, 2011,
2012).

In addition to reactivities, fragments, and accessibility factors,
SOMs can be depicted with a vast amount of other topological
and QC atomic descriptors. Descriptors can be used to build
rules of different complexities for SOM prediction. In human-
built expert systems, different descriptors are examined by an
expert to build rules of typical SOM characteristics. Manual
gathering of rules can be demanding and time-consuming
and complex descriptor dependencies can be difficult to build.
Data mining methods utilize automated statistical analysis more
extensively, while machine learning is a fully automated method
for building complex rules. An example of a data mining method
uses statistics to find occurrence ratios of substrate fragments
and their metabolites from a vast substrate-metabolite database
(Boyer and Zamora, 2002; Boyer et al., 2007; Adams, 2010).
These ratios are used when SOMs are predicted for novel
compounds, the assumption being that the fragment of substrate
that corresponds to the highest substrate-metabolite occurrence
ratio has the highest chance of being metabolized. Recently,
many machine learning methods have been used for creating
more complex rules for SOM prediction. The complexity of
descriptor sets in these approaches vary significantly from a
few to several hundred descriptors (Sheridan et al., 2007; Zheng
et al., 2009; Hasegawa et al., 2010; Zaretzki et al., 2011, 2012;
Kirchmair et al., 2013). Most descriptors are atom-specific and
illustrate the topological and QC properties of an atom and
its close environment, such as reactivity, charge and solvent
accessibility. Some investigators have reported combinations of
atomic and molecular descriptors, including binding energies
from docking as well as the flexibility, solubility, and volume
of substrate (Huang et al., 2013; Zaretzki et al., 2013). The
probably most simple descriptor sets include only atomic
environment fingerprints (Rudik et al., 2014; Tyzack et al.,
2014).

The main drawback of expert, data mining and machine
learning systems is that they require training sets or
previous knowledge of substrates and their SOMs. To
achieve comprehensive rules for a wide array of metabolic
reactions, the training set should be big and diverse, which is
not always possible. Also, the training set should be free of
errors, especially inaccurate structures (chemical composition,
ionization, chirality, etc.). To decrease the presence of errors
and inconsistencies in the training set, compounds must clear a
chemical curation workflow. There are several ones published
in the literature and they ensure the correctness of compounds
prior to QSAR analysis. When the rules for SOM prediction
are based on restricted chemical space, the models might not
be sufficient to cover rules for novel compounds that do not

have corresponding structures in the training set. Thus, it is
crucial to have large databases to train the models. On the other
hand, CYP form or reaction specific models are relatively fast to
generate, provided that there is sufficient knowledge about the
respective substrates and their SOMs. As could be expected, CYP
form-specific models are most useful since the most important
descriptors vary between different forms (Sheridan et al., 2007;
Huang et al., 2013).

A shortcoming of most current methods of SOM prediction
is their inability to predict the relative abundance of the various
metabolites. The latest version of the popular MetaSite program
(MetaSite 4) deals with this basic problem (Cruciani et al.,
2013). Another novel method, developed in the framework
of the Human Cytochrome P450 Consortium Initiative4, is
based on automatic structure elucidation (MassMetaSite). This
method is capable of predicting both phase 1 and phase 2
reactions in biomatrices; it also reads experimental data to
compare predictions with experiments to automatically elucidate
structures, rate of formation, pathways, phenotyping, and kinetic
analysis (Zamora et al., 2013).

Prediction of CYP Inhibition
Inhibition of CYPs can lead to unwanted drug–drug interactions
due to the resulting large variations of drug concentrations
between patients at target and off-target sites. Within drug
discovery, CYP inhibition can cause delays in the progression
of candidate drugs and premature closure of projects. Therefore
inhibition potency and mechanism need to be predicted early
in drug development. The European Medicines Agency (EMA)
and the US Food and Drug Administration (FDA) have
issued guidance about drug interaction studies. These outline
recommendations about a range of studies to evaluate drug–
drug interaction potential. Although the most recent versions
of these guidances suggest ways to assess potential interactions
mediated by phase 2 enzymes and transporter proteins, the
main focus is still on CYP enzymes (Prueksaritanont et al.,
2013).

One common way to evaluate metabolizing CYPs is in vitro
incubation of test compounds with microsomes isolated from
human liver. By including CYP form-selective inhibitors in
the reaction, one can assign the observed metabolism to a
particular CYP form. Although there are very potent and selective
inhibitors for some CYP forms, for example sulfaphenazole for
CYP2C9, the standard inhibitors for some other CYPs need
to be improved especially regarding CYP selectivity (Pelkonen
et al., 2008, 2011). Inhibiting a specific CYP reaction with a
series of structurally related compounds is a fast and economical
strategy to obtain SAR information about the CYP binding
cavity. However, it has turned out to be more challenging to
build in silico models for prediction of CYP inhibition than
SOMs. There are several reasons for this. (1) As the binding
cavities of CYPs can be large and flexible, inhibitor molecules can
coordinate directly to heme, bind close to heme or at a distant
site in the protein. (2) Several ligands may bind simultaneously.
(3) The inhibitor may be oxidized to an electrophilic reactive

4www.moldiscovery.com/consortia/CYP
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intermediate, which forms covalent bonding with the CYP
protein causing mechanism-based inhibition. The most notable
cases of drug–drug interactions have resulted from a perpetrator
drug causing such mechanism-based irreversible inhibition of a
CYP enzyme mediating the metabolic clearance of a target drug
(Pelkonen et al., 2008; Orr et al., 2012).

A recent review by Sridhar et al. (2012) provides a
comprehensive account of QSAR studies on CYP–inhibitor
interactions. Studies on the major human CYPs 1A1, 1A2, 1B1,
2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and some other CYP forms
are detailed in the review. These QSAR analyses have provided
important insights into the nature of the compounds that can
act as inhibitors of the individual CYP enzymes. However,
QSAR models are unable to deal with properties involving
multiple inhibitory mechanisms and non-linear correlations.
Attempts have been made recently to develop general CYP
inhibitor docking protocols with enough accuracy and speed
to be used in the drug discovery setting. In a recent paper
Brändén et al. (2014) show cases where structural information
on complexes with CYP2C9/CYP3A4 and inhibitors have been
successfully applied in drug discovery projects. By solving the
CYP structure crystallized with a test compound, key features
of the CYP-inhibitor interactions can be deduced that are
not evident from QSAR or general understanding of CYP
binding.

There are numerous common substructures mediating
mechanism-based inhibition of CYPs (Fontana et al., 2005).
Their orientation toward heme is crucial for inhibition. The
importance of the non-productive binding mode leading to
mechanism-based CYP inactivation is discussed recently by
Kamel and Harriman (2013). They illustrate the utility of in
silico approaches to address bioactivation with emphasis on
general mechanistic aspects of mechanism-based inactivation.
A recently published technology provided predictions of
CYP inhibition, metabolic stability and form selectivity
(Carosati, 2013). Three hundred compounds were evaluated
in vitro for CYP inhibition, metabolic stability, and form
selectivity using CYP2C9, CYP2D6, and CYP3A4. Different
orientations of a compound within the binding cavity were
used to define productive binding modes which differentiate
metabolite production and non-productive binding modes
which imply that the compound occupies the catalytic site
without reacting, causing reversible and often potent CYP
inhibition.

We have used the CoMFA method to evaluate the key
molecular interactions between inhibitory compounds and
several human liver CYPs, including CYP1A2 (Korhonen et al.,
2005), CYP2A6 (Rahnasto et al., 2008, 2011; Tani et al., 2014),
CYP2B6 (Korhonen et al., 2007), and CYP2E1 (Martikainen
et al., 2012). Several predictive CoMFA models created for
CYP2B6 facilitated the discovery of novel potent and selective
CYP2B6 inhibitor molecules [4-(4-chlorobenzyl)pyridine and
4-(4-nitrobenzyl)pyridine; Korhonen et al., 2007]. Figure 2
illustrates key electrostatic and steric properties in the CYP2B6
CoMFA model with 4-(4-chlorobenzyl)pyridine as the model
compound. These compounds were later used by others to
elucidate the CYP2B6 crystal structure (Shah et al., 2011).

FIGURE 2 | A CYP2B6 CoMFA model created with 41 training set and
seven test set compounds. The predictive power of the model was very
good (r2 = 0.85). Red and green in the color contour map represent areas
where more negative partial charge and bulkier groups increase inhibition
potency, respectively. Blue and yellow represent areas where more negative
partial charge and bulkier groups decrease inhibition potency, respectively.
The reference structure is 4-(4-chlorobenzyl)pyridine. Reproduced with
permission from John Wiley & Sons (Korhonen et al., 2007).

We have also identified several novel inhibitors of CYP2A6
using CoMFA/CoMSIA and docking methods together with
virtual screening of compound databases (Rahnasto et al.,
2008, 2011; Tani et al., 2014). Our experience is that when
constructed for relatively small series of structurally related
molecules and involving specific individual CYPs, 3D-QSAR
models are able to predict inhibitory potencies of unknown
compounds with good accuracy. As an example, a CoMFA
model for CYP2A6 predicted quite accurately the inhibition
potency of compounds in an external test set, even though
some of the test compounds were structurally different
from those in the training set (Figure 3; Rahnasto et al.,
2011).

FIGURE 3 | Plots of observed versus predicted CYP2A6 inhibitory
activities of the test (closed circle, n = 85) and training (open circle,
n = 10) set compounds in a CoMFA model. The outlier molecules differed
structurally from the test set molecules. pIC50 value refers to inhibition
potency. Reproduced with permission from Elsevier (Rahnasto et al., 2011).
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Metabolism as Part of ADMET Prediction
Models

From the critical role played by metabolism in the effects and
toxicity of drugs and other chemicals it is clear that any prediction
of compound outcomes must take into account its metabolic
pathways. Most in silico methods still focus on CYPs, but it is
obvious that CYP-mediated metabolism is only one component
in clearance, which itself is just one aspect contributing to overall
effects of xenobiotics.

Multiple in vitro methods are today successfully used
to generate various ADMET parameters, and this data is
increasingly being integrated into models of whole body
pharmacokinetics. Prediction of metabolic clearance is an
example of a mature in vitro–in vivo extrapolation (IVIVE)
area. Clearance prediction, and IVIVE in general, is increasingly
combined with physiologically based pharmacokinetic (PBPK)
models to allow prediction not limited to specific parameters but
to generate a time course of compound pharmaco/toxicokinetics.
PBPK models are built either ‘bottom–up’ using in vitro
data on ADME or ‘top–down’ based on observed in vivo
pharmacokinetic parameters. The utility of in vitro data to
provide quantitative prediction of real-life pharmacokinetic
behavior is well established. PBPK models have been used in
environmental toxicology and are becoming a vital component
of modern drug development (Rowland et al., 2011; Rostami-
Hodjegan, 2012; Houston, 2013).

Data from in silico approaches are being increasingly used
as input to PBPK models. However, although considerable
advances have been made, there is still a general lack of
quantitative correlation of in silico data to in vivo ADME
parameters. For example, prediction of accurate Vmax and Km
values (and thus intrinsic clearance Vmax/Km) and hepatic
or renal clearance parameters in the human body is still
impossible using only data from in silicomodels. The knowledge
obtained in in silico metabolism of drugs has not yet been
transferred to predict the rate of metabolism in PBPK models of
toxicological interest because of the differences in the key CYPs
involved in metabolism and physicochemical properties of target
compounds. Consequently, predictability of hepatic clearance of
toxic compounds is limited, mostly focusing of a chemical class
or closely related chemicals (Pelkonen et al., 2009, 2011; Coecke
et al., 2013; Bessems et al., 2014).

In environmental toxicology, a number of attempts have been
made to develop quantitative property-property relationships
(QPPRs) based on steric/hydrophobic characteristics, molecular
connectivity indices, QC calculations, and so on. These
QPPRs have either focused on modeling Vmax or Km and not
both parameters for a given set of chemicals. Furthermore,
these approaches appear to show the promise in modeling
single enzyme substrates or a specific reaction and thus
are of limited predictive ability (Peyret and Krishnan,
2011).

Several efforts have been made to integrate in silico data of
CYP-mediated metabolism into prediction of toxic endpoints.
One such approach is the VirtualToxLab (Vedani et al., 2014),
a system which evaluates the toxic potential of chemicals with

endpoints such as endocrine and metabolic disruption, and some
aspects of carcinogenicity and cardiotoxicity. The technology
involves an automated protocol that simulates and quantifies the
binding of small molecules to a series of 16 proteins, known or
suspected to trigger adverse effects: 10 nuclear receptors, four
CYP enzymes (1A2, 2C9, 2D6, 3A4), a cytosolic transcription
factor (aryl hydrocarbon receptor) and a potassium ion channel
(hERG). The toxic potential of a compound is derived from
its computed binding affinities to these proteins. Thus, this
particular technology takes into account metabolism by some key
CYPs.

The OECD QSAR Toolbox is a public program for
identification of relevant structural characteristics and potential
mechanism or mode of toxic action of a chemical. A crucial
feature of the Toolbox is grouping chemicals into chemical
categories, allowing the ‘read-across’ of information from one
chemical to another. Notably, a search is made of the Toolbox
databases for known liver or skin metabolites. If these are not
found they can be predicted using the metabolism simulators
within the program (Sullivan et al., 2014).

A recent paper by Toshimoto et al. (2014) describes a
model to predict the major clearance pathways of drugs based
on their basic physicochemical properties and descriptors
for selected CYP-mediated metabolism, transporters, and
renal excretion. These types of studies will take us closer
to being able to predict clearance of test compounds
based on in silico data without need for in vitro/in vivo
input.

Conclusion

We briefly reviewed the various in silico approaches used for
predicting outcomes of CYP-mediated metabolism and how this
information is integrated into estimation of ADMET endpoints.
Evaluation of therapeutic or toxic effects of a xenobiotic should
always take into account its ADME properties as those define
the internal dose at the site of action. Only after quantitatively
combining all ADME aspects one might be able to predict a real-
life therapeutic or toxic endpoint. CYP enzymes are key players
among the many enzyme and transporter systems affecting
compound’s ADMET properties.

In silico prediction of CYP-ligand interactions have made
crucial contributions in understanding

(1) determinants of CYP ligand binding recognition and affinity
(2) prediction of likely metabolites from substrates
(3) prediction of inhibitors and their inhibition potency

The advantages of in silico approaches in assessment of
ADMET parameters are clear: they offer very high throughput
with reasonable cost. Ligand-based, target-based, and combined
methods have yielded very precise information about key
features in ligands and binding cavities of all major human
xenobiotic-metabolizing CYP enzymes. In drug development,
metabolic stability and SOMs of lead molecules can be predicted
in silico very early in the process. Accurate prediction of
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SOMs is helpful in optimizing lead molecules for metabolic
stability and identifying putative toxic metabolites. However, in
silico SOM prediction methods cannot yet replace traditional
experimental assays, but there is no doubt that they can
provide significant insight; hence they are widely used in
drug discovery projects within the pharmaceutical industry.
Other in silico approaches are able to predict drug–drug
interaction liabilities due to inhibition of CYP enzyme
activity.

Although a lot of progress has been made to address
metabolic activation of xenobiotics, a challenge is still presented
by the lack of complete understanding of the biological
mechanisms of cellular toxicity following exposure to some,
but not all, chemically reactive metabolites. Models that predict
compound bioavailability and metabolism in particular are now
recognized as key components in integrative chemical risk
assessment. As greater understanding is obtained about the
physiological processes involved, the more reliable predictions
will become. PBPK models are being increasingly used for
evaluation of compound pharmaco/toxicokinetics. The most
advanced PBPK models use in vitro data as input, but attempts
are made to integrate also in silico data. It is clear that
in the future there will be an expansion of the ability to
link PBPK with improved in silico tools to predict ADMET
properties.

The various in silico procedures for investigating CYP-
mediated metabolism can be viewed as complementing those
from experimental investigations and also representing a means
of interpreting findings from laboratory based studies. The
constant development of new algorithms will empower in
silico analysis methods further leading to the availability of
more information about features affecting CYP enzyme-ligand
interactions. It is widely believed, however, that computational
approaches will not fully substitute in vitro and in vivo methods
in the foreseeable future. Further improvement and regulatory
acceptance of data obtained by in silico methods will inevitably
be determined by experimental confirmation and feedback.

In conclusion, there is a great need to develop and use
reliable in silico models to predict the bioprofile of chemicals.
Information about CYP-mediatedmetabolism of chemicals is just
one piece in a bigger puzzle when making predictions about toxic
outcomes in humans or environmental species. This is, however,
a crucial piece of information without which reliable predictive in
silicomethods cannot be developed.
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