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Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory
response and apoptosis and plays an important role in the development and progression of athero-
sclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1,
possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged
endothelial cells and the potential mechanisms have not been elucidated.
Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl
tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant
protein-1, tumor necrosis factor-a, intercellular adhesion molecule-1, and vascular cell adhesion
molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mito-
chondrial membrane potential (AWm) was detected using JC-1. The cell apoptotic percentage was
measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3
expression. Apoptosis-related proteins, nuclear factor (NF)-kB, and mitogen-activated protein kinases
(MAPK) signaling pathways protein expression were quantified by Western blotting.
Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein
endothelial cells (HUVECs) inflammation and apoptosis, NF-kB nuclear translocation, and the phos-
phorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK,
significantly abolished the anti-apoptotic effects of CK.
Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and
apoptosis through inhibiting the NF-kB, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate
drug for atherosclerosis treatment.

© 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Endothelial dysfunction is an early pro-atherogenic process asso-
ciated with various risk factors [2]. Oxidized low-density lipopro-

Atherosclerosis, a chronic inflammatory disease, is one of the tein (ox-LDL) is a key inducer in endothelial injury, which
most widespread and dangerous cardiovascular diseases [1]. stimulates endothelial cells inflammation, oxidative stress, and
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apoptosis [3]. Lectin-like ox-LDL receptor-1 (LOX-1), an ox-LDL-
specific receptor in endothelial cells, is a major endothelial
dysfunction marker [4,5]. Moreover, ox-LDL damages endothelial
cells through various complex mechanisms, which are involved in
mitogen-activated protein kinase (MAPK) and nuclear factor-kB
(NF-kB) signaling pathways [5,6].

Ginseng, the root of Panax ginseng Meyer, an important tradi-
tional Chinese medicine, has been used for millennia in Asia. Gin-
senosides, the main active components isolated from ginseng,
possess multiple pharmacological activities. Ginsenoside com-
pound K [CK; 20-O-D-glucopyranosyl-20(S)-protopanaxadiol,;
Fig. 1A] is a metabolite of ginsenoside Rb1 [7]. Recent in vitro and
in vivo studies have shown that CK exerts various pharmacological
properties [7—14]. Moreover, it blocks tumor necrosis factor alpha
(TNF-a) -induced monocyte—endothelia interaction and trans-
migration and thereby possesses anti-atherogenic activity [15].
Nevertheless, whether or not CK prevents human umbilical vein
endothelial cells (HUVECs) from ox-LDL-induced inflammatory
injury and the potential mechanisms have not been studied.

The current study explored the protective effects and mecha-
nisms of CK against HUVECs inflammatory responses and apoptosis
induced by ox-LDL. Results showed that CK significantly amelio-
rated the inflammation and apoptosis of endothelial cells. More-
over, CK pretreatment downregulated the expression of LOX-1 and
reduced the activation of p38, c-Jun N-terminal kinase (JNK) MAPK,
and NF-kB signaling pathways. Thus, our study demonstrates that
CK protects HUVECs against ox-LDL-induced injury partly via LOX-
1-dependent NF-kB, p38, and JNK MAPK signaling pathways.

2. Materials and methods
2.1. Ethics statement

The research method was permitted by the Ethics Committee of
Peking Union Medical College (SYXK-2013-0023, Beijing, China)
and was administrated in accordance with the Declaration of
Helsinki.

2.2. Materials

CK (molecular weight, 622.87; purity, 99%) was acquired from
Shanghai Winherb Medical Science Co., Ltd (Shanghai, China). Ox-
LDL (by copper ion-induced LDL oxidation, malondialdehyde > 40
nmoL/mL) was acquired from Peking Union-Biology Co., Ltd. (Bei-
jing, China). Vasculife Basal Medium was acquired from Lifeline Cell
Technology (Carlsbad, CA, USA). Dimethylsulfoxide (DMSO), and 3-
(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide
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(MTT) were acquired from Sigma-Aldrich (St. Louis, MO, USA). The
annexin V/ propidium iodide (PI) staining kit was acquired from
Invitrogen (Eugene, OR, USA). JC-1 fluorescent dye was acquired
from Invitrogen (Eugene, OR, USA). Lactate dehydrogenase (LDH)
detection kit was acquired from Nanjing Jiancheng Institute of
Biological Engineering (Nanjing, China). Caspase-3 activity kit was
acquired from BioVision (Milpitas, CA, USA). Human interleukin-6
(IL-6), monocyte chemoattractant protein-1 (MCP-1), and TNF-a
enzyme-linked immunosorbent assay (ELISA) kits were obtained
from BioLegend (CA, USA). Primary antibodies against p-IkBa, p-
JNK, p-P38, p-ERK, p-IKKB, IkBa, JNK, P38, and ERK were obtained
from Cell Signaling Technology (Beverly, MA, USA). Vascular cell
adhesion molecule-1 (VCAM-1), NF-«B, intercellular adhesion
molecule-1 (ICAM-1), Bax, and Bcl2 were derived from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Caspase 3, cyt C, histone H3,
and Lox-1 were acquired from Abcam (Cambridge, England). Ani-
somycin was acquired from Selleckchem (Houston, TX, USA).

2.3. HUVEC culture and treatment

The donated neonate cords were derived from the Maternal and
Child Care Service Centre in Beijing, China. The study protocol was
explained, and written informed consents were obtained from all
the participating donors. Collagenase I (0.1%) was used to isolate
HUVECs from fresh human umbilical veins according to a previous
study [16]. Briefly, the isolated cells were cultured using the Vas-
culife complete medium combined with streptomycin (100 ug/mL)
and penicillin (100 U/mL). After 24 h, the adherent cells were
washed with phosphate-buffered saline (PBS), and fresh medium
was added. Then, the cells were continuously incubated at 37°C and
5% CO,. HUVECs from passages 2 to 5 were used for the experi-
ments. CK was dissolved in DMSO as the stock solution. HUVECs
were treated with CK (0.625uM, 1.25uM, and 2.5uM) for 12 h, and
80 pg/mL ox-LDL for additional 24 h.

2.4. Cell viability measurement

MTT assay was used to detect cell viability. Briefly, the cells were
cultured on 96-well cell culture plates for 24 h and then incubated
with different concentrations of CK for 12 h before exposure to 80
ug/mL ox-LDL. To measure the cell viability, 1 mg/mL MTT assay
solution was added before incubation for another 4 h. After
removing the supernatant, 150 pL. DMSO was added to dissolve the
formazan crystals. Next, the absorbance was determined by a
microplate reader (Tecan, Switzerland) at 570 nm. The ratio of
living cells was analyzed by the ratio of optical density compared
with that of normal cells.
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Fig. 1. CK reduces ox-LDL-induced cytotoxicity. (A) Molecular structure of CK. (B) HUVECs were incubated with CK alone (0.625uM, 1.25uM, and 2.5 uM) for 12 h, and cell viability
was assayed by the MTT assay. (C) HUVECs were pretreated with various concentrations of CK (0.625uM, 1.25uM, and 2.5uM) for 12 h and incubated with ox-LDL (80 pg/mL) for an
additional 24 h. Then, cell viability was assessed by the MTT assay. Values are expressed as mean =+ SD, n = 3. **p < 0.01 versus control group; “p < 0.01 versus ox-LDL group. CK,
compound K; HUVECs, human umbilical vein endothelial cells; MTT, 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide; NS, no significance; ox-LDL, oxidized low-

density lipoprotein; SD, standard deviation.
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Fig. 2. CK attenuates ox-LDL-induced HUVEC inflammation. (A—C) HUVECs were pretreated with various concentrations of CK (0.625uM, 1.25uM, and 2.5uM) for 12 h and incubated
with or without ox-LDL (80 pg/mL) for an additional 24 h. The levels of IL-6, MCP-1 and TNF-« in the culture supernatant were assayed with enzyme-linked immunosorbent assay.
(D) HUVECs were pretreated with CK (2.5uM) for 12 h, followed by treatment with ox-LDL (80 pg/mL) for another 24 h. VCAM-1, ICAM-1, and B-actin were evaluated by Western blot
analysis. (E) Densitometric analysis was used to quantify the levels of VCAM-1 and ICAM-1. Values are expressed as mean =+ SD, n = 3. #p < 0.05, #p < 0.01 versus control group;
“p < 0.05, "p < 0.01 versus 0x-LDL group. CK, compound K; HUVECs, human umbilical vein endothelial cells; ICAM-1, intercellular adhesion molecule-1; IL-6, interleukin-6; MCP-1,
monocyte chemoattractant protein-1; ox-LDL, oxidized low-density lipoprotein; SD, standard deviation; TNF-¢, tumor necrosis factor-o.; VCAM-1, vascular cell adhesion molecule-1.

2.5. Mitochondrial membrane potential determination

Cells were pretreated with or without different concentrations
of CK (0.625uM, 1.25uM, 2.5uM) for 12 h and then exposed to 80 pg/
mL ox-LDL for another 24 h. After the treatments, the cells were
cleaned twice with PBS, and 2uM JC-1 was loaded. The cells were
incubated for 30 min in the dark at 37°C, cleaned twice with PBS,
and then photographed under a fluorescence microscope (Carlsbad,
CA, EVOS FL Color, Life Technologies).

2.6. FITC-Annexin V/PI assay

HUVEC apoptosis was determined using an FITC-Annexin V/PI
kit in compliance with the manufacturer’s instructions. Cells were
treated with or without different concentrations of CK (0.625uM,
1.25uM, 2.5uM) for 12 h, followed by 80 ug/mL ox-LDL for another
24 h. The cells were acquired and cleaned thrice with PBS; then, 5
uL of FITC-Annexin V was dyed for 30 min, and 1 pL of PI working
solution (100 pg/mL) was added for 5 min in the dark at room
temperature. Apoptotic cells were measured using a flow cytome-
ter (FACSCalibur, BD Biosciences, CA, USA).

2.7. LDH release detection

HUVECs were pre-incubated with different concentrations of CK
(0.625uM, 1.25uM, and 2.5uM) for 12 h before exposing to ox-LDL.
After incubation for 24 h, the supernatant was collected to test LDH
release using the LDH assay kit based on the manufacturer’s
brochures.

2.8. Caspase-3 activation analysis

The caspase-3 activity was detected by a fluorometric assay kit
in accordance with the manufacturer’s descriptions. In brief, the
cells were pretreated with different concentrations of CK (0.625uM,
1.25uM, 2.5uM) for 12 h, followed by 80 pg/mL ox-LDL for addi-
tional 24 h. The cells were incubated with 50 uL iced cell lysate
buffer for 10 min. Then, the cells were incubated with caspase-3

substrate (DEVD-AFC, 1uM) at 37°C for 2 h. The fluorescence in-
tensity was read at wavelengths of 400 nm excitation and 505 nm
emission using a microplate reader (Tecan, Switzerland). The re-
sults are calculated as fold changes compared with the control
group.

2.9. Immunofluorescence assay

NF-kB translocation was determined using immunofluorescence
assay. The cells were incubated in 24-well plates for 24 h and fixed
with 4% paraformaldehyde (Sigma, St. Louis, MO, USA) for 10 min.
After all treatments, the cells were cleaned twice with PBS, incu-
bated in 0.1% Triton X-100 for 30 min and then washed twice. The
goat serum was used to block the reaction for 1 h and subsequently
incubated with mouse anti-NF-kB p65 primary antibody (1:100
dilution) overnight at 4°C. Subsequently, the cells were cleaned and
incubated for 2 h with the FITC-conjugated anti-mouse IgG at a
1:100 dilution at room temperature. To visualize the nuclei, the
cells were incubated with DAPI for 3 min. Images were photo-
graphed under a fluorescence microscope (EVOS FL Color, Life
Technologies).

2.10. ELISA assay

HUVECs were seeded in 6-well plates at 2 x 10° cells/well. The
cells were incubated with different concentrations of CK for 12 h.
After incubation with ox-LDL for 24 h, the supernatant was
collected to measure IL-6, MCP-1, and TNF-a levels with ELISA kits
in accordance with the manufacturer’s descriptions.

2.11. Western blot analysis

Protein expression levels were measured by Western blot assay.
When the HUVECs reached 80% confluence of culture plates, the
cells were incubated with CK (2.5uM) for 12 h, with or without
anisomycin (1uM) for another 1 h. Then, cells were exposed to 80
ug/mL ox-LDL for additional 24 h. Total cellular, cytoplasmic, and
nuclear proteins were extracted. The protein concentrations were
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Fig. 3. CK inhibits ox-LDL-induced HUVECs apoptosis. HUVECs were treated with ox-LDL (80pg/mL) in the presence or absence of various concentrations of CK (0.625uM, 1.25uM,
and 2.5uM) for 12h, and incubated with or without ox-LDL (80 pg/mL) for additional 24 h. (A) A scatter diagram of apoptotic HUVECs was detected through annexin V/PI double
staining by flow cytometry. (B) Quantity analysis of the percentages of apoptotic cells. (C) Caspase-3 activity was measured using a fluorometric assay. (D) The effect of CK on LDH
level in HUVECs was measured using an LDH assay kit. (E) Cells were dyed with JC-1 and then detected using a fluorescence microscope. (F) Quantitative analysis of JC-1 red/green
rates. (G) HUVECs were treated with ox-LDL (80ug/mL) in the presence or absence of CK (2.5uM) for 12h, and incubated with or without ox-LDL (80 pg/mL) for additional 24 h. Bcl-2,
Bax, cleaved caspase-3, cyt C, and B-actin were evaluated by Western blot analysis. (H) Densitometric analysis was used to quantify the levels of bcl-2, bax, cleaved caspase-3, and
cyt C. Values are expressed as the mean =+ SD, n = 3. #p < 0.05, *p < 0.01 ox-LDL group versus control group; “p < 0.05, “p < 0.01 versus ox-LDL group. CK, compound K; HUVECs,
human umbilical vein endothelial cells; LDH, lactate dehydrogenase; ox-LDL, oxidized low-density lipoprotein; SD, standard deviation; V/PI, Annexin V/ propidium iodide.
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measured by a BCA kit (Pierce Corporation, Rockford, IL, USA).
Furthermore, 10% or 12% sodium dodecyl sulfate polyacrylamide gel
was used to separate the protein sample through electrophoresis
and then electrotransferred onto nitrocellulose membranes (Mil-
lipore Corporation, Bedford, MD, USA). Membranes were blocked
for at least 2 h in 5% skim milk at room temperature and then
incubated overnight with the primary antibodies at 4°C. After
washing with Tris-buffered saline and Tween 20 for 30 min, the
membranes were incubated with the horseradish peroxidase-
conjugated secondary antibodies for 2 h at room temperature.
The membranes were washed and developed with an enhanced
chemiluminescence solution. The protein expression levels were
calculated using the Gel Pro software (Media Cybernetics, Rockville,
MD, USA).

2.12. Statistical analysis

Data were calculated as mean = SD of at least three independent
experiments. Statistical comparisons between various groups were
performed using a one-way analysis of variance or the Tukey test
with GraphPad Prism 5.0 (SPAA, Inc., Chicago, Illinois, USA). A value
of p < 0.05 was considered to be statistically significant.

3. Results
3.1. CK prevented ox-LDL-induced HUVECs injury

First, we explored the ameliorative effects of CK against ox-LDL-
damaged endothelial cells using MTT assay. As shown in Fig. 1B, the
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results revealed that treatments with various concentrations
(0.625puM, 1.25uM, and 2.5uM) of CK alone for 12 h did not influence
cell viability, indicating the nontoxicity of CK. Furthermore, the
endothelial cell protective effect was assessed. As shown in Fig. 1C,
pretreatment with CK for 12 h obviously increased cell viability in a
concentration-dependent manner. These data suggest that CK can
prevent ox-LDL-induced HUVECs injury. Also, 2.5uM CK concen-
tration was used in the subsequent experiments.

3.2. CK inhibited inflammatory cytokine production in ox-LDL-
treated HUVECs

Excessive inflammatory factors, such as MCP-1, and adhesion
molecule, such as ICAM-1 are the features of early AS. Thus, the
levels of inflammatory cytokines were determined by ELISA and

Western blot analysis. The levels of IL-6, MCP-1, and TNF-o. were
significantly higher in the ox-LDL-treated cell culture supernatants
than in the control group. CK pretreatment inhibited the expression
of these cytokines by a dose-dependent manner (Fig. 2A—C).
Moreover, as shown in Fig. 2D and E, CK inhibited the expression
levels of VCAM-1 and ICAM-1, indicating that CK may directly
reduce the adhesion molecule expression.

3.3. CK decreased ox-LDL-induced HUVECs apoptosis

Based on the above results, we next assessed the anti-apoptotic
effects of CK. Phosphatidylserine externalization is a characteristic
of cells suffering apoptosis. Annexin V/PI double staining was
applied to detect the cell apoptosis. After 24 h stimulation with ox-
LDL (80 pg/mL), the ratio of Annexin V/PI-labeled cells remarkably



S. Lu et al | CK protects endothelial cell injury 101

*%

idid $$

A = 120-
o
|-
T
S oo{fii
i G
) L
2 e
< 60+ :-:-:-:g:-:-n::
> i
= E
= G
S 304 EEEE
S i
T
= i
-
o 0 i
N
’60
&
@)

B
Bax -— ey o= ==y
Bcl2 T - -
Cleaved
o D o - G
caspase 3
cytC — e —
pactn | A DD S
ox-LDL (80ug/mL) = 4 + "
CK (2.5uM) - - + +
AM (14M) - - = .

& & S
A
L
: \%
oF Q
°+
C
Control
E=3 ox-LDL
300q E= ox-LDL+CK #
[0 ox-LDL+CK+AM . $

2004

1001 ¢h

Proteins relative expression
(of control, %)

Fig. 6. Anisomycin reverses the anti-apoptotic activity of CK. (A) HUVECs were treated with CK (2.5uM) in the presence or absence of anisomycin (1uM) for 1 h, followed by
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group. AM, anisomycin; CK, compound K; HUVECs, human umbilical vein endothelial cells; MTT, (4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide; ox-LDL, oxidized

low-density lipoprotein; SD, standard deviation.

increased. Incubation with different CK concentrations sharply
decreased the number of early apoptotic cells, whereas CK alone
had no effects on HUVECs apoptosis compared with the control
group (Fig. 3A and B).

Caspase-3, an effect molecule, mediates cell apoptosis. As indi-
cated in caspase-3 fluorometric assay (Fig. 3C), CK treatment
sharply decreased the caspase-3 expression. LDH release indicates
endothelial injury. As shown in Fig. 3D, in the ox-LDL-treated
group, LDH release was increased compared with the control
group, whereas CK treatment markedly decreased. The protective
effects of CK against ox-LDL-induced cytotoxicity were similar to
those determined by the MTT assay.

The mitochondrial membrane potential (MMP; AWm) disrup-
tion is an early event in the apoptotic cascade. To further investigate
the effects of CK on MTP, a JC-1 assay was used to evaluate MMP
depolarization. We found that MMP was depolarized in the cells
treated with ox-LDL through decreasing the ratio of red and green

fluorescence compared with the control group. However, different
CK concentrations pretreatment significantly reversed these effects
(Fig. 3E and F).

Next, we determined the expression levels of apoptosis-related
proteins. As shown in Fig. 3G, CK pre-incubation decreased Bcl-2
downregulation and Bax upregulation in the ox-LDL-exposed
HUVECs. Caspase-3 is an essential execution of apoptosis in ox-
LDL-exposed HUVECs. As shown in Fig. 3G and H, ox-LDL remark-
ably increased the cleaved caspase-3 expression in HUVECs; how-
ever, this effect was restrained by CK incubation. Furthermore, CK
pretreatment inhibited the cytosolic cyt C expression when
exposed to ox-LDL.

3.4. CK mitigated ox-LDL-induced HUVECs NF-kB translocation

The NF-kB translocation in HUVECs is activated after endothelial
dysfunction during atherosclerosis. First, the immunofluorescence
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assay showed that CK could significantly inhibit ox-LDL-augmented
p65 translocation from the cytoplasm to the nucleus (Fig. 4A). As
shown in Fig. 4B, NF-kB p65 increased in the nucleus and decreased
in the cytoplasm after ox-LDL treatment. However, CK treatment
significantly decreased the p65 translocation to the nucleus and
reduced IkBa and IKKB phosphorylation as opposed to ox-LDL.
Moreover, CK obviously ameliorated LOX-1 expression.

3.5. CK modulated the MAPK pathway in ox-LDL-treated HUVECs

Next, we investigated the protective mechanism of CK against
ox-LDL-induced endothelial cell apoptosis. The MAPK signaling
pathway is important in endothelial cell inflammation and
apoptosis; therefore, we tested the expression levels of p38, JNK,
and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2)
activation. As shown in Fig. 5A and B, CK pretreatment notably
ameliorated ox-LDL-induced p38 and JNK phosphorylation. Inter-
estingly, CK exerted no effect on ERK1/2 phosphorylation. To assess
whether the protective effect of CK is related to p38 and JNK in-
hibition, we pretreated HUVECs with anisomycin, a p38 and JNK
activator. Results showed that the inhibitive effect of CK was
remarkably abolished by anisomycin pretreatment (Fig. 5C and D).
Moreover, we also measured cell viability upon anisomycin pre-
incubation. As shown in Fig. 6A, the cell viability was reduced by
anisomycin compared with the CK group. We further detected the
apoptosis-related protein expression; anisomycin pretreatment
significantly downregulated the anti-apoptosis protein Bcl-2 and
upregulated the pro-apoptosis proteins Bax, Caspase 3, and cyt C
expression levels compared with the CK group (Fig. 6B and C).
Taken together, CK protects ox-LDL-induced endothelial cells
apoptosis via the inhibition of NF-«kB, p38, and JNK MAPK pathways.

4. Discussion

Atherosclerosis is a major risk factor for coronary heart disease
events. It is generally accepted that the atherosclerosis progression
is associated with chronic inflammation in the vessel wall [17]. Ox-
LDL-injured endothelial cell is an initial step in atherosclerosis [18].
LOX-1, the specific receptor for ox-LDL in endothelial cells, con-
tributes to the induction of endothelial dysfunction via several
mechanisms, including MAPKs [19] and NF-kB [19—21] pathways.
To the best of our knowledge, this study is the first to demonstrate
the anti-inflammatory and anti-apoptotic roles of CK in ox-LDL-
treated HUVECs. CK inhibited ox-LDL-induced HUVECs damage by
decreasing pro-inflammatory protein expression and increasing
anti-apoptotic protein expression through LOX-1-mediated NF-«B,
p38, and JNK pathways.

When endothelial cells are damaged by ox-LDL, the secretion of
various cytokines, such as ICAM-1, VCAM-1, and MCP-1 are elevated
[22]. In the present study, CK decreased IL-6, MCP-1, TNF-a, VCAM-
1, and ICAM-1 expression levels in the stimulated HUVECs. Our
findings suggest that alleviation of the ox-LDL-stimulated
dysfunction of HUVECs is attributable to the anti-inflammatory
effects of CK.

Many studies have shown that LOX-1 mediates the pro-
inflammatory effect of ox-LDL. Ox-LDL increases LOX-1 expres-
sion, which causes endothelial injuries [23—25]. In the current
study, our results showed that CK opposed ox-LDL-induced LOX-1
expression. Moreover, the NF-kB signaling pathway is implicated in
endothelial dysfunction, which regulates the expression of various
chemokines and adhesion molecules [26]. Ox-LDL could aggravate
IkBa. degradation and phosphorylation as well as accelerate p65
translocation to the nucleus [20,24]. Therefore, the anti-
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inflammatory effects of CK prompted us to further investigate the
potential role on NF-«kB activation. In our research, CK down-
regulated the ox-LDL-stimulated degradation and phosphorylation
of IkBa, thereby inhibiting the NF-kB p65 activation. The phos-
phorylation of IkBa is regulated by the IKK complex, and the IKK/
IkB/NF-kB pathway is involved in the palmitic acid-induced
dysfunction of HUVECs [27]. In the present study, the p-IKKJ
expression significantly increased in the stimulated HUVECs,
whereas CK pre-treatment could reduce the expression of p-IKKp.
The above result further indicates that the alleviative effect of CK on
the ox-LDL-stimulated dysfunction of HUVECs may be mediated via
the LOX-1-dependent IKK/IkB/NF-kB signaling pathway.

Cell apoptosis plays a considerable role in the pathogenesis of
atherosclerosis. Vascular endothelial cell apoptosis is critical for the
development of atherosclerosis. Moreover, ox-LDL is a vital risk
factor that can induce endothelial cell apoptosis [28—30]. Previous
studies have demonstrated that ox-LDL causes endothelial
apoptosis mainly through Bcl-2 and caspase-9 dependent way [28].
In addition, LOX-1 antibody can block the pro-apoptotic effects of
ox-LDL [28]. These data demonstrate that LOX-1 plays an important
role in ox-LDL-induced endothelial cell apoptosis. In the present
study, CK significantly ameliorated A¥m and caspase-3 activity,
reduced LDH release, and modulated the expression of apoptosis-
related proteins. We first demonstrated that CK could ameliorate
ox-LDL-induced HUVECs apoptosis.

MAPK signaling pathway, including p38, JNK, and ERK, serve
various biological functions, including apoptosis. Previous studies
have proved that ox-LDL could activate p38 [31] and JNK phos-
phorylation in endothelial cells [32]. Furthermore, ]NK and p38
activations participated in ox-LDL-induced HUVECs apoptosis
[28,33]. Consequently, we hypothesized that the protective effects
of CK against ox-LDL-induced apoptosis in HUVECs are related to
MAPK signaling cascades. As expected, ox-LDL induced p38 and JNK
phosphorylation which was inhibited by CK pretreatment. Inter-
estingly, CK has no effect on ERK1/2 phosphorylation. To assess
whether the protective effect of CK is related to p38 and JNK in-
hibition, we pretreated HUVECs with anisomycin, a p38 and JNK
activator. Results showed that the protective effects of CK were
abrogated by anisomycin pretreatment. Moreover, anisomycin
pretreatment significantly increased the apoptosis-related proteins
expression compared with the CK treatment group. The data
showed that CK possessed the anti-apoptosis activity by inhibiting
the p38 and JNK MAPK pathways in ox-LDL-induced HUVECs in-
juries (Fig. 7).

In summary, this study first demonstrated that CK exerts cyto-
protective effects on endothelial cells stimulated by ox-LDL and
elucidated the potential molecular mechanism. Results showed
that CK can reduce the release of inflammatory cytokines and
decrease the cell apoptosis induced by ox-LDL partly via inhibiting
the NF-kB, p38, and JNK pathways.
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