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Objective: Endometriosis is a chronic inflammatory estrogen-dependent

disease with the growth of endometrial tissues outside the uterine cavity.

Nevertheless, the etiology of endometriosis is still unclear. Integrated

bioinformatics analysis was implemented to reveal the molecular

mechanisms underlying this disease.

Methods: A total of four gene expression datasets (GSE7305, GSE11691,

GSE23339, and GSE25628) were retrieved from the GEO, which were

merged into a meta-dataset, followed by the removal of batch effects via

the sva package. Weighted gene co-expression network analysis (WGCNA) was

implemented, and endometriosis-related genes were screened under normal

and endometriosis conditions. Thereafter, characteristic genes were

determined via Lasso analysis. The diagnostic performance was estimated via

receiver operating characteristic curves, and epigenetic and post-

transcriptional modifications were analyzed. Small molecular compounds

were predicted. Unsupervised clustering analysis was conducted via non-

negative matrix factorization algorithm. The enriched pathways were

analyzed via gene set enrichment analysis or GSVA. Immune features were

evaluated according to immune-checkpoints, HLA, receptors, chemokines, and

immune cells.

Results: In total, four characteristic genes (BGN, AQP1, ELMO1, and DDR2) were

determined for endometriosis, all of which exhibited the favorable efficacy in

diagnosing endometriosis. Their aberrant levels were modulated by epigenetic

and post-transcriptional modifications. In total, 51 potential drugs were

predicted against endometriosis. The characteristic genes exhibited

remarkable associations with immunological function. Three subtypes were

classified across endometriosis, with different mechanisms and immune

features.
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Conclusion: Our study reveals the characteristic genes and novel molecular

subtyping of endometriosis, contributing to the early diagnosis and intervention

in endometriosis.
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Introduction

Endometriosis is a chronic inflammatory estrogen-

dependent disease caused by functional endometrial tissue

that grows outside the uterine cavity (Hung et al., 2021).

Typical symptoms involve chronic pelvic pain and abnormal

menstruation as well as dyspareunia (Bunis et al., 2021).

Endometriosis is frequent among women of childbearing

age, with an incidence of about 10% (Symons et al., 2018).

About 40–60% of endometriosis cases have dysmenorrhea,

while 20–30% have infertility (Bedaiwy, 2022). The present

therapies of endometriosis comprise surgery and medicines.

Conservative surgery not only enables to remove

endometriotic deposits but also enhances the risks of

compromising ovarian reserve, which harms other organs

as well as imposes postoperative relapse (Hey-Cunningham

et al., 2022). Medicines that contain hormonal or

nonhormonal therapies depend upon distinct factors

(severity of symptoms, willingness to conceive, and

comorbidities, etc.) (Brichant et al., 2021). Currently, no

drugs are capable of curing endometriosis, and symptoms

recur once the drug is discontinued. As a consequence, it is

crucial to uncover the aberrant molecular pathways during

endometriosis progression as well as determine and develop

novel pharmaceuticals for endometriosis.

Endometriotic lesions contain an extremely complex and

dynamic environment dominated by inflammation,

angiogenesis, and endocrine signaling (Hirakawa et al.,

2016). A variety of pathogenic mechanisms result in

endometriosis initiation, with much research exploring the

reason behind its progression, containing physical factors

(uterine tissue injury or scars, residual cell populations in

menstrual blood, stem cell populations, and uterine

environment, etc.) as well as biochemical factors

(angiogenesis, etc.) (Kapoor et al., 2021). It is of

importance to probe the key mechanisms responsible for

endometriosis. Through illustrating the molecular

mechanisms underlying endometriosis, it is of possibility

to determine the future candidate pathways for

endometriosis therapies. Our study determined

characteristic genes of endometriosis via integration of

weighted gene co-expression network analysis (WGCNA)

and Lasso approaches, as well as classified endometriosis

into three distinct subtypes via a non-negative matrix

factorization (NMF) clustering approach, assisting to

comprehend the mechanisms underlying endometriosis.

Materials and methods

Endometriosis datasets and preprocessing

Human endometriosis gene expression datasets were

retrieved from the Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/gds/). In total, four available

datasets (GSE7305 (10 normal endometrium tissues and

10 diseased endometrium tissues) (Hever et al., 2007),

GSE11691 (9 normal endometrium tissues and 9 diseased

endometrium tissues) (Hull et al., 2008), GSE23339 (9 normal

endometrium tissues and 10 diseased endometrium tissues)

(Hawkins et al., 2011), and GSE25628 (6 normal

endometrium tissues and 16 diseased endometrium tissues)

(Crispi et al., 2013)) were collected. The raw “CEL” files of

aforementioned datasets were downloaded, which were

adjusted for the background and normalized with affy

(Gautier et al., 2004) and simpleaffy (Wilson and Miller,

2005) packages. Thereafter, these datasets were merged into a

meta-dataset, and then the batch effects were removed via the

sva package (Supplementary Figures S1A,B) (Leek et al.,

2012). Additionally, the GSE7846 dataset comprising

expression profiling of endometrial endothelial cells from

five endometriosis patients and five controls was utilized as

an external verification set.

WGCNA

The WGCNA package (Langfelder and Horvath, 2008) was

employed for constructing the co-expression networks as well as

determining the endometriosis-related modules. Hierarchical

clustering analysis was implemented, followed by the removal

of outlier specimens. The appropriate soft-thresholding power

was computed, and the scale-free networks were built. The co-

expression modules were clustered with a dynamic tree-cut

approach. The endometriosis-related genes in the modules

that were highly correlated to endometriosis were determined.

Thereafter, correlation analysis of module membership with gene

significance was implemented.
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Functional and pathway enrichment
analysis

Functional annotation of endometriosis-related genes

was implemented via the clusterProfiler package (Yu et al.,

2012). p < 0.05 indicated significant enrichment of Gene

Ontology and KEGG. Through the GSVA package

(Hänzelmann et al., 2013), the enrichment analysis was

conducted for ascertaining the difference in pathways

among distinct clusters. The gene sets of “c2.

cp.kegg.v7.5.1. symbols” and “c5. go.bp.v7.5.1. symbols”

were acquired from the Molecular Signatures Database to

run GSVA enrichment analysis (Liberzon et al., 2015).

Screening characteristic genes

Through Lasso Cox regression algorithm, over-fitting risk

was minimized with the glmnet package. The alteration

trajectory of each variable was assessed and 10-fold cross-

validated. Thereafter, characteristic genes were determined,

which were subjected to the generation of receiver operating

characteristic (ROC) curves.

Construction of a nomogram

A predictive nomogram was constructed with the rms

package. In the nomogram, each variable corresponded to a

score, and the total score was computed through adding the

scores for all variables (Chen et al., 2021). A calibration diagram

of the nomogram was implemented for depicting the diagnostic

value of the nomogram-predicted and virtually observed

outcome.

Gene set enrichment analysis

To analyze the biological pathways enriched in high or low

level of each characteristic gene, GSEA software was employed

with default parameters (Subramanian et al., 2005). The cutoff

point of each gene was determined as the median expression

value. The most enriched pathways were visualized.

Analysis of epigenetic and post-
transcriptional modifications

Associations of DNA methylation and m6A regulators with

characteristic genes were evaluated with Pearson correlation

tests. MiRNAs with differential expression between normal

and diseased endometrium tissues were screened with the

false discovery rate (FDR) < 0.05. Thereafter, targeted mRNAs

of these miRNAs were then predicted, which were intersected

with characteristic genes.

Prediction of potential drugs

Genes with differential expression between normal and

diseased endometrium tissues were determined in accordance

with |log fold-change| >1 and FDR <0.05 via the limma package

(Ritchie et al., 2015). The up- or downregulated genes were

uploaded onto the Connectivity Map (Cmap) database (Yang

et al., 2013). Scores that ranged from −1 to 1 demonstrated the

correlations of compounds with the aforementioned genes.

Compounds with scores ≤ −0.75 were considered potential

drugs against endometriosis.

Evaluation of immune features

The gene sets of immune-checkpoints, HLA, receptors, and

chemokines were collected. Through running CIBERSORT

algorithm, the relative proportions of 22 immune

compositions were estimated (Newman et al., 2015). On the

basis of a gene expression matrix as well as specific gene sets of

22 immune cell compositions, the simulation calculation was

implemented 1,000 times. The relative composition ratios of

these immune cells across each tissue were computed. Immune

and stromal scores of each tissue were computed with the

ESTIMATE algorithm (Yoshihara et al., 2013).

Non-negative matrix factorization
clustering analysis

Endometriosis-related genes were utilized for NMF

clustering analysis, and clusters were determined in the meta-

cohort. The k-value where the magnitude of the cophenetic

correlation coefficients began to fall was determined as the

optimal number of clusters. The heatmaps of endometriosis-

related genes and basis component as well as connectivity matrix

of NMF in each cluster were evaluated via the NMF package (Pan

and Gillis, 2021). Principal component analysis (PCA) was

depicted with the ggplot2 package.

Statistical analysis

Statistical analysis was implemented with R version 4.1.0,

with two-sided p-value ≤0.05. Student’s t, Wilcoxon,

Kruskal–Wallis, or one-way ANOVA test was utilized for

estimating the differences of variables between groups. The

area under the curve (AUC) values were computed for

estimating the predictive power of each characteristic gene.
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FIGURE 1
Co-expression analysis in the GSE7305 dataset. (A) Clustering dendrograms of specimens. (B) Determining the weighted value β that satisfied a
scale-free network. (C) Co-expression module clustering. Each branch represented each gene, and genes clustered into the same module were
assigned the same color. (D) Correlations of modules with normal endometrium and endometriosis conditions. (E,F) Scatter plots for the
relationships of module membership in the turquoise module with gene significance for (E) endometriosis or (F) normal endometrium.
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FIGURE 2
Co-expression analysis in the GSE11691 dataset. (A) Clustering dendrograms of samples. (B) Identifying β-value that satisfied a scale-free
network. (C) Co-expression module clustering. (D) Correlations of modules with normal endometrium and endometriosis conditions. (E,F) Scatter
plots for the relationships of module membership in the blue module with gene significance for (E) endometriosis or (F) normal endometrium.
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FIGURE 3
Identification of shared endometriosis-related genes in two datasets. (A) Venn diagram for shared endometriosis-related genes in the
GSE7305 and GSE11691 datasets. (B–E) Biological processes, cellular components, molecular functions, and KEGG pathways enriched by shared
endometriosis-related genes.
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The Spearman or Pearson correlation test was conducted to

estimate the relationships between variables.

Results

Co-expression analysis of endometriosis
and normal endometrium tissues

Co-expression analysis was implemented in two public

datasets: GSE7305 and GSE11691. For the GSE7305 dataset,

we first conducted clustering dendrograms of 10 normal

endometrium tissues and 10 diseased endometrium tissues,

with no outliers (Figure 1A). The weighted value β satisfied a

scale-free network (Figure 1B). The seven co-expression modules

were merged (Figure 1C), containing blue module (847 genes),

brown module (273 genes), red module (129 genes), green

module (156 genes), yellow module (231 genes), turquoise

module (1,283 genes), and gray module (93 genes). Among

them, the turquoise module had the strongest positive

association with endometriosis (r = 0.99, p = 9e-18) as well as

the strongest negative association with normal endometrium (r =

-0.99, p = 9e-18) (Figure 1D). Additionally, the module

membership in the turquoise module was strongly linked to

gene significance for endometriosis or normal endometrium

(Figures 1E,F). Hence, the genes in the turquoise module were

identified as endometriosis-related genes in the GSE7305 dataset.

For the GSE11691 dataset, no outliers were detected among

nine normal endometrium tissues and nine diseased

endometrium tissues (Figure 2A). The β-value was set at 3,

which satisfied a scale-free network (Figure 2B). Eight co-

expression modules were identified (Figure 2C), turquoise

module (1,315 genes), red module (111 genes), green module

(229 genes), black module (110 genes), pink module (74 genes),

brown module (298 genes), blue module (632 genes), and yellow

module (251 genes). Among them, the blue module displayed the

strongest positive correlation with endometriosis (r = 0.78, p =

1e-04) as well as the strongest negative correlation with normal

endometrium (r = −0.78, p = 1e-04) (Figure 2D). As depicted in

Figures 2E,F, the module membership in the blue module was

strongly associated with gene significance for endometriosis or

normal endometrium. Thus, the genes in the blue module were

identified as endometriosis-related genes in the

GSE11691 dataset.

Identification of shared endometriosis-
related genes in two datasets

By taking the intersection of endometriosis-related genes in

GSE7305 and GSE11691 datasets, we determined 172 shared

endometriosis-related genes (Figure 3A, Supplementary Table

S1). The shared endometriosis-related genes might mediate tube

development, angiogenesis, and endometriosis-related pathways

(PI3K-Akt pathway and extracellular matrix (ECM), etc.),

demonstrating the crucial functions of the aforementioned

genes in endometriosis (Figures 3B–E).

Identification of four characteristic genes
in endometriosis

Through Lasso algorithm, four characteristic genes were

determined among the shared endometriosis-related genes,

containing BGN, AQP1, ELMO1, and DDR2 (Figures 4A,B).

In the meta-dataset, their levels were significantly upregulated in

endometriosis than normal endometrium tissues (Figure 4C).

The AUCs (95%CI) of AQP1, BGN, DDR2, and ELMO1 were

0.96 (1.00–0.89), 0.98 (1.00–0.95), 1.00 (1.00–0.99), and 0.99

(1.00–0.98), respectively, demonstrating that each characteristic

gene enabled to diagnose endometriosis accurately and

sensitively (Figures 4D–G).

Construction of a nomogram scoring
system to diagnose endometriosis

Considering the convenience clinical utility, a nomogram

incorporating all characteristic genes was constructed to

diagnose endometriosis (Figure 4H). Calibration plots showed

that the proposed nomogram exhibited the similar performance

in comparison to an ideal model (Figure 4I), demonstrating the

excellent predictive accuracy in endometriosis diagnosis.

Verification of levels and diagnostic
efficacy of characteristic genes in
endometriosis

The GSE23339 and GSE25628 datasets were employed for

further verifying the levels and diagnostic efficacy of four

characteristic genes in endometriosis. In the two datasets, higher

levels of BGN, AQP1, ELMO1, and DDR2 were confirmed in

endometriosis than normal endometrium tissues (Figures 5A,B).

In the GSE23339 dataset, the AUCs (95%CI) of AQP1, BGN,

DDR2, and ELMO1 were 0.81 (1.00–0.57), 0.97 (1.00–0.89), 0.69

(0.94–0.44), and 0.88 (1.00–0.70), respectively (Figures 5C–F).

Meanwhile, in the GSE25628 dataset, the AUCs (95%CI) of BGN,

AQP1, ELMO1, and DDR2 were 0.90 (1.00–0.69), 0.85 (1.00–0.68),

0.81 (1.00–0.62), and 0.81 (1.00–0.59), respectively (Figures 5G–J).

Additionally, in the GSE7846 external verification set, the AUCs

(95%CI) of the aforementioned characteristic genes were 0.68

(1.00–0.27), 0.68 (1.00–0.27), 0.84 (1.00–0.52), and 0.52

(0.97–0.07), respectively (Figures 5K–N). Following verifications,

the four characteristic genes exhibited the well performance in

diagnosing endometriosis.
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Signaling pathways involved in
characteristic genes

Through GSEA, signaling pathways involved in

characteristic genes were analyzed. A low AQP1 level was

linked to oocyte meiosis, cell cycle, base excision repair, and

ubiquitin-mediated proteolysis (Figure 6A), and its high

level was linked to VEGF signaling pathway, PPAR

signaling pathway, complement and coagulation cascades,

and systemic lupus erythematosus (Figure 6B). Homologous

recombination, DNA replication, cell cycle, mismatch repair,

base excision repair, oocyte meiosis, and p53 signaling

pathway were correlated to the low BGN level

(Figure 6C). Additionally, a high DDR2 level was

associated with PPAR signaling pathway, VEGF signaling

pathway, systemic lupus erythematosus, complement and

coagulation cascades, and vascular smooth muscle

contraction (Figure 6D), while its low expression was in

relation to aminoacyl tRNA biosynthesis, oocyte meiosis,

cell cycle, and p53 signaling pathway (Figure 6E). Also,

VEGF signaling pathway, viral myocarditis, and PPAR

signaling pathway were enriched in the high ELMO1 level

FIGURE 4
Identification of four characteristic genes and construction of a nomogram scoring system for endometriosis. (A) Lasso regression coefficients.
Different colors represented different shared endometriosis-related genes. (B) Cross-verification for tuning the parameter selection. (C) Levels of
four characteristic genes in endometriosis and normal endometrium tissues. ****p < 0.0001. (D–G) ROCs of four characteristic genes: AQP1, BGN,
DDR2, and ELMO1. (H) Construction of a nomogram incorporating four characteristic genes. (I) Calibration plots showing the relationships
between a nomogram and an ideal model in diagnosing endometriosis.
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(Figure 6F), while base excision repair, homologous

recombination, endometrial cancer, oocyte meiosis, cell

cycle, and O-glycan biosynthesis were enriched in the low

ELMO1 level (Figure 6G). Altogether, characteristic genes

might exert crucial roles in endometriosis through mediating

the aforementioned signaling pathways.

Post-transcriptional and epigenetic
modifications of characteristic genes

At the post-transcriptional level, AQP1 was mainly regulated

by hsa-miR-133a-3p, hsa-miR-133b, and hsa-miR-1306-5p;

ELMO1 was modulated by hsa-miR-182-5p, hsa-miR-216a-3p,

FIGURE 5
Verification of levels and diagnostic efficacy of characteristic genes in endometriosis. (A,B) Levels of four characteristic genes in endometriosis
and normal endometrium tissues in GSE23339 and GSE25628 datasets. *p < 0.05; **p < 0.01; and ***p < 0.001. (C–F) ROCs of four characteristic
genes: AQP1, BGN, DDR2, and ELMO1 in the GSE23339 dataset. (G–J) ROCs of four characteristic genes in the GSE25628 dataset. (K–N) ROCs of
four characteristic genes in the GSE7846 external verification set.
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hsa-miR-218-5p, hsa-miR-1-3p, hsa-miR-128-3p, hsa-miR-145-

5p, hsa-miR-206, hsa-miR-30e-5p, hsa-miR-613, hsa-miR-1271-

5p, hsa-miR-3681-3p, and hsa-miR-5195-3p; and DDR2 was

targeted by hsa-miR-28-3p (Figure 6H). The epigenetic

modifications of characteristic genes were evaluated through

calculating the associations of characteristic genes with DNA

and m6A methylation regulators. As illustrated in Figure 6I, the

characteristic genes were negatively linked to DNA methylation

regulators DNMT3B, DNMT1, MBD2, MBD4, NTHL1, and

TDG but positively linked to MECP2. Moreover, there were

negative relationships of characteristic genes with m6A

methylation regulators WTAP, RBM15B, YTHDF1, and

YTHDF2 (Figure 6J). The aforementioned evidences

demonstrated that the characteristic genes were modulated by

post-transcriptional and epigenetic modifications in

endometriosis.

FIGURE 6
Signaling pathways and epigenetic and post-transcriptional modifications of characteristic genes and potential small compounds for
endometriosis. (A–H) Signaling pathways significantly enriched by high or low levels of four characteristic genes: (A,B) AQP1, (C) BGN, (D,E) DDR2,
and (F,G) ELMO1. (H) Regulatory network of miRNAs and characteristic genes. (I,J) Correlations of characteristic genes with (I) DNA and (J) m6A
methylation regulators. (K) Shared mechanisms of action of small molecular inhibitors.
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TABLE 1 Potential drugs against endometriosis with scores ≤ −0.75.

Score ID Name Description

−99.05 BRD-K15402119 Huperzine-a Acetylcholinesterase inhibitor

−97.96 BRD-K35687265 ON-01910 PLK inhibitor

−97.45 BRD-K13927029 Retinol Retinoid receptor ligand

−95.78 BRD-K05926469 Lenalidomide Antineoplastic

−94.82 BRD-K20152659 Gamma-homolinolenic-acid Cholesterol inhibitor

−94.28 BRD-K64785675 TG100-115 -666

−93.71 BRD-A69636825 Diltiazem Calcium channel blocker

−93.57 BRD-A74771556 Nikkomycin Chitin inhibitor

−93.51 BRD-A84174393 Meloxicam Cyclooxygenase inhibitor

−92.66 BRD-K29733039 Deforolimus MTOR inhibitor

−92.26 BRD-K22631935 Neurodazine Neurogenesis of non-pluripotent C2C12 myoblast inducer

−92.21 BRD-A51393488 Noscapine Bradykinin receptor antagonist

−90.8 BRD-K48427617 U-0124 MEK inhibitor

−89.23 BRD-K91696562 Orantinib FGFR inhibitor

−89.16 BRD-A36267905 Buphenine Adrenergic receptor agonist

−88.64 BRD-K91623615 ABT-751 Tubulin inhibitor

−88.14 BRD-A44551378 LFM-A12 EGFR inhibitor

−87.64 BRD-K86003836 Flubendazole Tubulin inhibitor

−87.43 BRD-K98426715 Tubacin HDAC inhibitor

−86.45 BRD-K47659338 EMD-386088 Serotonin receptor agonist

−86.25 BRD-K19416115 Sitagliptin Dipeptidyl peptidase inhibitor

−85.19 BRD-K33453211 Levocabastine Histamine receptor antagonist

−85.09 BRD-K14550461 Doxercalciferol Vitamin D receptor agonist

−85.02 BRD-A68631409 Evodiamine ATPase inhibitor

−84.49 BRD-A62057054 MDL-11939 Serotonin receptor antagonist

−83.64 BRD-A18043272 Phensuximide Succinimide antiepileptic

−83.63 BRD-K57546357 Prunetin Breast cancer resistance protein inhibitor

−82.59 BRD-M30523314 Vinorelbine Tubulin inhibitor

−82.49 BRD-K55420858 Mirin MRE11A exonuclease inhibitor

−81.82 BRD-K26997899 SA-792574 Microtubule inhibitor

−81.18 BRD-K18895904 Olanzapine Dopamine receptor antagonist

−80.84 BRD-K54256913 MK-1775 WEE1 kinase inhibitor

−80.31 BRD-K20285085 Fostamatinib SYK inhibitor

−79.76 BRD-K40213712 SAL-1 Adenosine receptor antagonist

−79.76 BRD-A00267231 Hemado Adenosine receptor agonist

−79.76 BRD-K90382497 GW-843682X PLK inhibitor

−79.71 BRD-K06878038 Deferiprone Chelating agent

−79.6 BRD-A04756508 Norgestimate Progesterone receptor agonist

−79.35 BRD-K29582115 Ziprasidone Dopamine receptor antagonist

−78.81 BRD-A67438293 Treprostinil Prostacyclin analog

−78.73 BRD-K99451608 Lopinavir HIV protease inhibitor

−78.67 BRD-A74667430 Etodolac Cyclooxygenase inhibitor

−78.22 BRD-K81376179 TCS-359 FLT3 inhibitor

−77.36 BRD-K67847053 Guanabenz Adrenergic receptor agonist

−77.31 BRD-K27141178 SB-203186 Serotonin receptor antagonist

−77.14 BRD-A32836748 Leu-enkephalin Opioid receptor agonist

−77.01 BRD-K53123955 Niridazole Phosphofructokinase inhibitor

−76.48 BRD-K51318897 Fenbendazole Tubulin inhibitor

(Continued on following page)
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Prediction of potential drugs against
endometriosis

In total, 413 genes with upregulation and 334 genes with

downregulation were determined in endometriosis than normal

endometrium (Supplementary Table S2). With scores ≤ −0.75,

51 drugs against endometriosis were determined (Table 1).

Figure 6K depicted the shared mechanisms of action. For instance,

ABT-751, flubendazole, and vinorelbine shared tubulin inhibitor.

Differences in immune features between
endometriosis and normal endometrium

Immune features were evaluated in accordance with the levels of

immune-checkpoints, HLAs, receptors, and chemokines as well as

the abundance levels of immune cells. Most immune-checkpoints,

HLAs, receptors, and chemokines displayed increased levels in

endometriosis compared with normal endometrium tissues

(Figures 7A–D). Utilizing the CIBERSORT algorithm, we

estimated the relative proportions of 22 immune compositions

across endometriosis and normal endometrium tissues, with

macrophages occupying the highest proportion (Figure 7E).

Figure 7F illustrated the tight interplay between these immune

compositions, especially the macrophages were linked to most

immune compositions. Moreover, most immune cells exhibited

higher abundance levels in endometriosis than in normal

endometrium tissues (Figure 7G).

Associations of characteristic genes with
immune features in endometriosis

Further analysis indicated that four characteristic genes: AQP1,

BGN, DDR2, and ELMO1 exhibited positive correlations with most

immune-checkpoints, HLAs, receptors, and chemokines (Figures

8A–D). Additionally, these characteristic genes were significantly

linked with immune cell compositions, especially macrophages, NK

cells activated, and follicular helper T cells (Figures 8E–H).

Development of three subtypes for
endometriosis

Utilizing the NMF algorithm, we classified endometriosis

samples in the meta-dataset on the basis of endometriosis-related

genes. Following cophenetic coefficients, k = 3 was determined as

the optimal clustering number (Figure 9A). Figure 9B showed the

NMFmatrix when k = 3, containing 13 samples in C1, 16 samples

in C2, and 7 samples in C3. The expression patterns of

endometriosis-related genes were visualized in Figure 9C. PCA

further complemented the distinction among three subtypes at

transcription levels (Figure 9D). Additionally, four characteristic

genes: BGN and ELMO1 levels were the highest in C3, followed

by C2 and C1 (Figure 9E); no significant differences in AQP1 and

DDR2 were detected among three subtypes.

Differences in signaling pathways and
immune features across three subtypes

To uncover the signaling pathways underlying three

subtypes, we evaluated the differences in signaling pathways

among them. Upregulated pathways were as follows:

ribosome, butanoate metabolism, drug metabolism

cytochrome P450, valine, leucine, and isoleucine degradation,

propanoate metabolism, spliceosome, metabolism of xenobiotics

by cytochrome P450, and glycosaminoglycan biosynthesis

heparan sulfate in C1 subtype; cell cycle, proteasome, basal

cell carcinoma, and Wnt signaling pathway in C2 subtype;

lysosome, allograft rejection, systemic lupus erythematosus,

graft versus host disease, intestinal immune network for IgA

production, hematopoietic cell lineage, leishmania infection, type

I diabetes mellitus, autoimmune thyroid disease, and chemokine

signaling pathway in C3 (Figure 10A). Downregulated pathways

were as follows: graft versus host disease, intestinal immune

network for IgA production, primary immunodeficiency,

asthma, allograft rejection, autoimmune thyroid disease,

natural killer cell-mediated cytotoxicity, type I diabetes

mellitus, and lysosome in C1; complement and coagulation

cascades, and drug metabolism cytochrome P450 in C2;

ribosome, spliceosome, cell cycle, RNA polymerase, DNA

replication, Parkinson’s disease, base excision repair,

butanoate metabolism, glycosaminoglycan biosynthesis

chondroitin sulfate, and Huntington’s disease in C3

(Figure 10B). C3 exhibited the highest of immune-checkpoint

levels, immune cell infiltrations, and immune and stromal scores,

followed by C2 and C1 (Figure 10C). Additionally, the levels of

most chemokines, HLAs, and receptors were the highest in

C3 along with C2 and C1 (Figures 10D–F). The

aforementioned evidence demonstrated the differences in

signaling pathways and immune features across three subtypes.

TABLE 1 (Continued) Potential drugs against endometriosis with scores ≤ −0.75.

Score ID Name Description

−76.15 BRD-K11158509 Tyrphostin-B44 EGFR inhibitor

−75.99 BRD-K86465814 HO-013 PPAR receptor agonist

−75.51 BRD-K36324071 NF-449 Purinergic receptor antagonist
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FIGURE 7
Differences in immune features between endometriosis and normal endometrium. (A–D) Heatmaps of the levels of (A) immune-checkpoints,
(B) HLAs, (C) receptors, and (D) chemokines in endometriosis and normal endometrium tissues. (E) Fractions of 22 immune cell types across
endometriosis and normal endometrium tissues. (F) Associations between immune cell types. (G) Abundance levels of immune cell types in
endometriosis and normal endometrium tissues. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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Discussion

WGCNA is a system biology approach applied to describe

gene association patterns between various samples, which can be

applied to identify gene sets with highly coordinated changes,

and to determine candidate organisms based on the

interconnectivity of gene sets and the association between

gene sets and phenotypes, thereby identifying marker genes or

therapeutic targets. Through integrating GSE7305 and

GSE11691 datasets, we determined 172 endometriosis-related

genes utilizing WGCNA algorithm. Previously, endometriosis-

related genes were determined utilizing the differential

expression approach (Wang et al., 2021). Compared with only

focusing on differentially expressed genes, WGCNA may use the

information of thousands of genes with the greatest variations to

identify gene sets of interest and implement significant

association analysis with phenotypes (Wu et al., 2021). One is

to make full use of the information, and the other is to convert the

association between thousands of genes and phenotypes into

associations between several gene sets and phenotypes,

eliminating the problem of multiple hypothesis testing and

correction. The endometriosis-related genes were linked to

tube development, angiogenesis, and endometriosis-related

pathways (PI3K-Akt pathway and ECM, etc.). Evidence

proposes that angiogenesis, PI3K-Akt pathway, and ECM

contribute to growth and progression of endometriotic cells

within ectopic sites (Hung et al., 2021), demonstrating the

crucial functions of the endometriosis-related genes in

endometriosis.

Through the Lasso approach, we determined four

characteristic genes among endometriosis-related genes,

containing BGN, AQP1, ELMO1 and DDR2. All of them

exhibited upregulated levels in endometriosis compared with

normal endometrium tissues, which were modulated by post-

transcriptional and epigenetic modifications. ROCs

demonstrated that each characteristic gene enabled to

diagnose endometriosis accurately and sensitively. Previously,

upregulated BGN associated with estrogen metabolism and

action in endometriosis was confirmed through

immunohistochemical staining (Vouk et al., 2011).

Suppression of AQP1 alleviates adhesion and angiogenesis of

ectopic endometrial cells for murine endometriosis models via

activation of the Wnt pathway (Shu et al., 2019). ELMO1 enables

to increase the activity of extracellular matrix proteins as well as

reduce cell adhesions to ECM (Shimazaki et al., 2006).

Histological evidence demonstrates that endometriosis

contributes to the increased incidence of ovarian cancer

(Hermens et al., 2021). ELMO1 (Wang et al., 2014) and

DDR2 (Jeong et al., 2021) have been demonstrated to mediate

ovarian cancer progression. Altogether, the four characteristic

genes we proposed might improve the early diagnosis as well as

management of endometriosis cases.

FIGURE 8
Associations of characteristic genes with immune features in endometriosis. (A–D) Heatmaps for the relationships of characteristic genes with
(A) immune-checkpoints, (B) HLAs, (C) receptors, and (D) chemokines. (E–H) Correlations between characteristic genes: AQP1, BGN, DDR2, and
ELMO1 and immune cell compositions.
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In total, 51 drugs against endometriosis were determined. Among

them, ABT-751, flubendazole, and vinorelbine shared tubulin

inhibitor. The novel discovered small molecule compounds might

exert a significant effect on the treatment of endometriosis.

Endometriosis is a chronic neuroinflammatory disorder.

Endometriosis exhibited increased levels of most immune-

checkpoints, HLAs, receptors, and chemokines as well as enhanced

infiltrations of most immune compositions compared with normal

endometrium tissues (Peng et al., 2021). Consistent with the previous

research, macrophages occupy the highest ratio among 22 immune

cell components (Zhong et al., 2021). Recently, M2 macrophage-

associated genes have been determined in endometriosis, reflecting

the impact of M2macrophages on the etiology of endometriosis (Cui

et al., 2021). The four characteristic genes were positively correlated

withmost immune-checkpoints, HLAs, receptors, and chemokines as

well as significantly linked with immune cell compositions, especially

macrophages, NK cells activated, and follicular helper T cells,

demonstrating that these characteristic genes might mediate

immunological function during endometriosis progression.

Determining the molecular subtypes of endometriosis is of

importance for personalized treatment. With the NMF algorithm,

we classified endometriosis as three subtypes that were linked to

distinct signaling pathways and immune features.

The aforementioned findings might be beneficial for probing

the pathogenesis of endometriosis as well as providing the

foundation to determine novel biomarkers and subtypes for

endometriosis. We believe that our findings will assist future

research endeavors in the direction.

Conclusion

Altogether, our research determined four characteristic

genes (BGN, AQP1, ELMO1, and DDR2) with the favorable

FIGURE 9
Development of three subtypes for endometriosis. (A) Cophenetic coefficients of the NMF clustering number from 2 to 7. (B) NMF matrix
heatmap when k = 3. (C) Heatmaps of the expression patterns of endometriosis-related genes across three subtypes. (D) PCA of endometriosis-
related genes. (E) Levels of four characteristic genes across three subtypes. *p < 0.05.
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efficacy in diagnosing endometriosis. The characteristic genes

were remarkably linked with immunological functions, and

their aberrant levels were modulated by epigenetic and post-

transcriptional modifications. Additionally, endometriosis

was classified into three subtypes, with different

mechanisms and immune features. The aforementioned

findings might contribute to the early diagnosis and

intervention in endometriosis.

FIGURE 10
Differences in signaling pathways and immune features across three subtypes. (A) Upregulated pathways in each subtype. (B) Downregulated
pathways in each subtype. (C) Heatmaps of immune-checkpoint levels, immune cell infiltrations, and immune and stromal scores across three
subtypes. (D–F) Differences in (D) chemokines, (E) HLAs, and (F) receptors among three subtypes. *p < 0.05; **p < 0.01; and ***p < 0.001.
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