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DPubChem: a web tool for QSAR 
modeling and high-throughput 
virtual screening
Othman Soufan1, Wail Ba-alawi2,3, Arturo Magana-Mora   4, Magbubah Essack   5 &  
Vladimir B. Bajic   5

High-throughput screening (HTS) performs the experimental testing of a large number of chemical 
compounds aiming to identify those active in the considered assay. Alternatively, faster and cheaper 
methods of large-scale virtual screening are performed computationally through quantitative structure-
activity relationship (QSAR) models. However, the vast amount of available HTS heterogeneous data 
and the imbalanced ratio of active to inactive compounds in an assay make this a challenging problem. 
Although different QSAR models have been proposed, they have certain limitations, e.g., high false 
positive rates, complicated user interface, and limited utilization options. Therefore, we developed 
DPubChem, a novel web tool for deriving QSAR models that implement the state-of-the-art machine-
learning techniques to enhance the precision of the models and enable efficient analyses of experiments 
from PubChem BioAssay database. DPubChem also has a simple interface that provides various options 
to users. DPubChem predicted active compounds for 300 datasets with an average geometric mean 
and F1 score of 76.68% and 76.53%, respectively. Furthermore, DPubChem builds interaction networks 
that highlight novel predicted links between chemical compounds and biological assays. Using such 
a network, DPubChem successfully suggested a novel drug for the Niemann-Pick type C disease. 
DPubChem is freely available at www.cbrc.kaust.edu.sa/dpubchem.

Comprehensive and expanding public resources, such as the PubChem BioAssay Database (BioAssayDB)1, provide 
access to biological activity information from high-throughput screening (HTS) experiments. The vast amount of 
available data allows for the development of quantitative structure-activity relationship (QSAR) models to predict 
biological activities of chemical compounds for individual assays, enabling the so-called virtual  
(in silico) screening. QSAR models for virtual screening are derived by the standard ligand-based computational 
technique used in drug discovery to examine the compound libraries and to find potential candidates for binding 
with a specific and known biological target2–4. From a computational perspective, virtual screening involves analy-
sis of large amounts of input data, integration of heterogeneous types of data, different statistical measures, and 
reliable selection of unbiased significant results and predictions2,5,6. These challenges, unless addressed in a care-
fully designed computational setup, cannot be carried out efficiently in later experimental phases in the process of 
drug discovery. Although several QSAR models implemented as web tools for predicting chemical-protein inter-
actions have been developed7–15, they are limited in many aspects, for example, prediction performance is ham-
pered by the imbalanced data in the HTS assays (the number of active compounds is usually significantly smaller 
than the inactive), the type of models available to the user as well as the flexibility to tune their parameters. 
Therefore, tools that possess the ability to reduce these limitations are of interest. Here, we introduce Dragon 
PubChem (DPubChem), a novel web tool to derive QSAR models for virtual screening of biological activity of 
chemical compounds. DPubChem reduces some of the limitations mentioned above by offering a rich set of 
options to the user that are easy to choose from (2 input types × 6 types of chemical features × 6 feature selection 
methods × 7 solutions for addressing class imbalance × 7 types of classifiers). Moreover, by considering the corre-

1Institute of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada. 2Princess Margaret Cancer Centre, 
University Health Network, Toronto, ON, M5G 1L7, Canada. 3Department of Medical Biophysics, University of 
Toronto, Toronto, ON, M5G 1L7, Canada. 4Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan. 5Computational 
Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, 
Saudi Arabia. Correspondence and requests for materials should be addressed to V.B.B. (email: vladimir.bajic@
kaust.edu.sa)

Received: 19 February 2018

Accepted: 31 May 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-8696-7068
http://orcid.org/0000-0003-2709-5356
http://orcid.org/0000-0001-5435-4750
http://www.cbrc.kaust.edu.sa/dpubchem
mailto:vladimir.bajic@kaust.edu.sa
mailto:vladimir.bajic@kaust.edu.sa


www.nature.com/scientificreports/

2SCientifiC REPOrTS |  (2018) 8:9110  | DOI:10.1038/s41598-018-27495-x

lation of the HTS data, DPubChem allows for multi-label learning, where several HTS assays may be simultane-
ously used to derive QSAR models for more enriched virtual screening tasks. Since all the different options 
available in DPubChem tool are easy to use, it is straightforward to run several experiments and compare different 
models in order to select the optimal model. The results obtained from the 300 selected datasets, composed of 
116,751 interactions and characterized by high class imbalance data, show that DPubChem is able to outperform 
existing QSAR models and that it achieved an average geometric mean (GMean) and F1 score (referred as F1, here-
after) of 76.68% and 76.53%, respectively. Half of the considered 300 datasets represent bioassays with hundreds to 
thousands of chemical compounds. Nevertheless, other datasets with a fewer number of compounds were also 
included to show the general applicability of DPubChem and to demonstrate that the implemented recognition 
models in the tool do not require large datasets for deriving robust models (as opposed to other recognition models 
that normally require large training data, such as deep learning models16,17). To the best of our knowledge, 
DPubChem is the only tool that provides: 1) an efficient mechanism to retrieve and analyze PubChem BioAssays, 
2) an implementation of state-of-the-art machine learning algorithms (i.e., class imbalance and multi-label meth-
ods) to build QSAR models, and 3) a tool to rank and visualize unknown activity predictions for hundreds of 
chemical compounds provided by the user. DPubChem aims to provide an easy to use tool that will help biologists, 
biochemists, and experimentalists obtain useful insights about the chemicals and drugs of interest.

Results
The key contribution of our study is the development of DPubChem, a novel and freely available web tool for 
deriving QSAR models for virtual screening of biologically active compounds from PubChem assays. The 
DPubChem tool implements the state-of-the-art methods for mining HTS data and provides users with an exten-
sive but easy to use set of options to build robust models without compromising the simplicity of the interface.

In this section, we compare DPubChem to existing tools and provide an overview of its interface. We then 
show the results obtained when using the-state-of-the-art methods for multi-label classification (MLC) and for 
addressing the data class imbalance. Finally, we provide a case study analysis where we used DPubChem to sug-
gest a drug for the Niemann-Pick type C (NPC) disease.

Comparisons with other web servers and interface overview.  Compared to many existing web serv-
ers for 3D docking18–22, which rely on ligand-protein docking, a smaller number of data-driven online systems 
were developed for virtual screening of chemical activities. As opposed to the 3D docking servers, the data-driven 
approaches do not require any prior knowledge of 3D structures of the target and its ligand. In addition, when 
data-driven models are trained, they can be used for screening the biological activity status of a set of chemicals 
faster than ligand-protein docking approaches23, which is an issue in screening a large number of compounds.

There are several web tools for predicting chemical-protein interactions8,10,15. The OCHEM14 and 
ChemBench12,13 are among the first freely available tools to mine HTS assays and allow users to derive different 
prediction models based on the user’s input. However, these tools require several data processing steps to produce 
a predictive model, and these may not be straightforward for the user. The HitPick10 tool has a simpler interface 
with a fixed model based on 2D molecular fingerprints and a Laplacian-modified naïve Bayes classifier. Later, the 
STITCH tool7–9 was developed to facilitate the search for the interactions of chemicals and proteins from a uni-
fied database extracted from different databases and literature. However, the main aim of STITCH is to provide a 
comprehensive database not specifically for the development of QSAR models. The tools mentioned above have 
certain limitations, for example, they do not address the imbalanced data of HTS assays and thus, are unable to 
reduce the false positive predictions. Moreover, some of these tools offer the flexibility to select different types of 
prediction models and parameters but at the expense of the simplicity. Finally, some of these tools also lack inte-
gration with a chemical compounds database. With all these shortcomings in mind, DPubChem tool focuses on 
the usage simplicity, flexibility, and prediction performance. Table 1 summarizes the characteristics of the QSAR 
tools mentioned above.

The DPubChem tool allows the user to simply provide a bioassay accession number (AID) and the system auto-
matically retrieves all relevant information for processing the HTS data of interest. The user can also provide a set 
of PubChem compound accession numbers (i.e., CID). Although the primary objective of the DPubChem tool is 
to derive QSAR models from PubChem data, the user may also input a list of simplified molecular-input line-entry 
system (SMILES)24 representing compounds of interest with their corresponding labels for target activity to build 
a model. Moreover, a list of AIDs may also be submitted for deriving an MLC model, where the correlation given 
by the common active compounds in different bioassays is exploited. In MLC models, each sample (a chemical 
compound, in our case) is assigned to multiple labels as opposed to just one label in binary or multi-class classifi-
cation models25,26. This can be thought of as predicting properties of a chemical compound that are not mutually 
exclusive, such as, a chemical may be an activator in different bioassays (see Methods). MLC models have been 
applied to solve different problems in the bioscience domain and resulted in improved results compared to single 
label classification models27–31. Additionally, DPubChem implements a set of different feature selection methods to 
find an optimal subset of features and have demonstrated ability to reduce model complexity while, in some cases, 
enhances the prediction performance32–35. Since chemical compounds may be defined by thousands of different 
features (e.g., topological fingerprints, MACCS keys, among others), it is likely that not all of these features are rele-
vant for the recognition of compound activities. Therefore, it is possible to derive simpler and possibly more robust 
QSR models by removing less relevant features from the initial set of features. Although feature selection meth-
ods need not improve the prediction performance for some recognition models, such as random forest (RF), the 
reduced subset of features still shortens training time and enables better model transparency36. Finally, DPubChem 
implements state-of-the-art solutions for addressing the class imbalance problem, which considerably increased 
the precision compared to other QSAR models for virtual screening (see Performance Evaluation subsection). 
Figure 1A shows the screenshot of the DPubChem interface for building a model.
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For building QSAR models and predicting the biological activities of new compounds, DPubChem provides 
the following options: 1) a model is trained by using the parameters specified in the Model Building tab, 2) if 
a model has already been trained, the model is stored on our server and the jobID obtained from the Model 
Building page (Fig. 1A) may be directly used, 3) the user can select from a list of pre-trained models, and 4) the 
user can upload the files of a previously trained model using our system. The implemented options to upload 
model files or to input a jobID of an already trained model facilitate both the collaboration across different 
teams and the reproducibility of the results. Finally, DPubChem can build a visualization graph that measures 
chemical-chemical similarity, protein-protein similarity, bioassay-bioassay similarity, and assign activity screen-
ing scores for chemical-bioassay interactions37. Figure 1B shows a screenshot of the virtual screening page. 
Finally, DPubChem generates several statistical measures, an interactive network and a list of the screening out-
come (Fig. 1C). Supplementary Material 1 shows the steps for building and testing a screening model in the tool.

Performance evaluation.  To evaluate the utility of the DPubChem tool, we first describe the results 
obtained by the state-of-the-art methods for addressing class imbalance and multi-label classification, followed 
by the performance obtained from 300 selected HTS assays.

Tool ChemBench12,13 OCHEM14 HitPick10 MTI-OpenScreen11 DPubChem

Approach HTS assay mining HTS assay mining HTS assay mining Docking based screening HTS assay mining

Input data type SDF SMILES, MOL2, SDF SMILES MOL2, SDF SMILES, PubChem 
CID, BioAssay ID

Prediction model configuration Flexible Flexible Fixed Fixed Flexible

Activity prediction  
(# of screening chemicals) Yes (unlimited) Yes Yes (100) Yes (5,000) Yes (unlimited)

Addressing class imbalance or 
advanced preprocessing No No Yes No Yes

Network visualization No No No No Yes

Table 1.  Characteristics of the virtual screening tools. Note: SDF refers to the structure files which store the 
structural information of one or more compounds in a dataset. MOL2 is a file containing the information to 
reconstruct a SYBYL molecule. SMILES stands for simplified molecular input line entry system and is a string 
of characters that represents a molecule. PubChem CID is a non-zero accession number representing a unique 
chemical structure.

Figure 1.  (A) Screenshot of the Model Building page in DPubChem. Several options are available to build 
different types of machine learning models to predict biological activities of provided chemical compounds. (B) 
Screenshot of the DPubChem virtual Screening page. The user can simply provide Job ID of a previously trained 
model and submit a list of compounds for activity screening. (C) List of the screening outputs.
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In the context of virtual screening, a novel predicted interaction by the QSAR model may require further exper-
imental validation. Therefore, it is crucial for the QSAR models to reduce the number of falsely predicted active 
compounds (false positives). In this case, precision is a meaningful statistical measure since a higher precision 
score indicates a lower number of false positives, or in other words, represents the proportion of all predictions 
denoted as active that are actually active. However, a very stringent QSAR model that only predicts few active com-
pounds may achieve a high precision score while failing to identify most of the active compounds. For this, sensi-
tivity is also important to consider and it represents the proportion of the active compounds correctly identified by 
the model. Therefore, we report the results in terms of the F1, which accounts for both precision and sensitivity. We 
also show the results in terms of the GMean of sensitivity and specificity to summarize prediction accuracy over 
both the true positive as well as the true negative rates. Both F1 and GMean incorporate false positives with differ-
ent weight of importance. Specifically, F1 gives more preference to a lower number of false positives, while GMean 
reflects more the ability to identify the inactive class (i.e., true negatives). These two metrics are defined in Table 2.

As mentioned above, reducing the number of false positive and false negative predictions is of critical impor-
tance for the virtual screening, but also a major challenge for the machine learning methods. As HTS assays 
usually contain a much higher number of inactive than active compounds (imbalanced labels), machine learn-
ing models tend to bias the majority class38. For this, we integrated the-state-of-the-art methods for solving the 
class imbalance problem (see Methods) into the DPubChem tool, namely, the Dragon Oversampling Technique 
(DRAMOTE)39, granular support vector machine for under-sampling (GSVM-RU)40,41, majority weighted 
minority over-sampling technique (MWMOTE)42, synthetic minority over-sampling technique (SMOTE)43, 
and the simple random under-sampling technique (RU). The methods were tested on 11 bioassays represent-
ing 487,557 active and inactive compounds. These datasets are characterized by different class imbalance ratios. 
Figure 2A,B show the average F1 and GMean from six classifiers, namely, support vector machines with linear 
kernel (SVM-L), support vector machine with radial basis function (SVM-RBF), K-nearest neighbor (KNN), 
linear discriminant analysis (LDA), naïve Bayes classifier (NBC), and RF using a 5-fold cross-validation, respec-
tively. Supplementary Table S1 shows the number of compounds and the imbalance ratios of the HTS assays. 
From Fig. 2A, one observes that addressing the class imbalance enhanced the results showing an improvement of 
up to 55% compared to the baseline models (where the class imbalance is not addressed). The DRAMOTE and 
SMOTE, on average, achieved the best results except in assay AID 886. Figure 2B clearly demonstrates the effects 
of the unbalanced class labels when deriving machine learning models. In all the considered HTS assays, address-
ing the class imbalance considerably increased both the specificity and sensitivity and therefore, the GMean of 
the models. Notably, the BenchSet (AIDs 773, 1006, and 1379) showed the largest increase of the GMean by 
247% compared to the baseline model. Although classification models are affected differently by the imbalance 
problem, an improvement of sensitivity (how well the model is able to recognize active compounds) was always 
observed when applying a class imbalance solution for the BenchSet dataset. Supplementary Table S2 shows 
the results obtained for each classification model on the BenchSet dataset. For instance, without addressing the 
class imbalance, we observe that RF was able to recognize all inactive compounds (100% specificity) but failed to 
identify the active compounds (only 4.06% sensitivity). Conversely, the sensitivity of the RF model when the class 
imbalance issue is addressed, increased to ~35–85% while conserving a high specificity (~85–100%).

However, it is not always necessary to address the class imbalance for certain HTS assays as they do not con-
tain significant class imbalances. In these cases, it is possible to further improve the accuracy of the QSAR mod-
els by considering the correlation between assays given by the active compounds that are common in different 
HTS assays. As such, DPubChem implements the state-of-the-art technique Dragon Bayesian Active Learning 
(DRABAL)44, which consists of an MLC for modeling the correlations between several BioAssayDB assays (see 
Methods). The performance of DRABAL was tested on five assays (AIDs 1458, 485297, 485313, 588342, and 
686978) representing 1,448,403 interactions with 7.7% hit rate indicating positive interactions. Using the 5-fold 
cross-validation, DRABAL achieved an F1 and GMean of 51.11% and 61.05%, respectively. These results repre-
sent a relative improvement of 14.27% and 9.91% for F1 and GMean, respectively, compared to the multi-label 
state-of-the-art methods.

Finally, to illustrate the applicability of DPubChem, we derived models for 300 datasets with different imbal-
ance ratios and number of reported activities. The 300 selected datasets, reporting 116,751 activities, include 
bioassays with few compounds up to 11,000 (see Methods for the bioassay selection criteria). The imbalance ratio 
for these datasets ranged from 1:204 to 1:1. For each HTS assay, we used 80% of the data for training the model 
and the remaining 20% for testing with the default DPubChem options. The average F1 and GMean over the 300 
assays are 76.68% and 76.53%, respectively. These results indicate a reasonable performance over the compre-
hensive set of HTS. Supplementary Table S3 shows the performance of the individual HTS assays. It is worth 
noting that the DPubChem tool provides a set of options for testing the QSAR model performance including 
cross-validation technique and holdout settings. The tool generates a report highlighting several performance 
measures, such as Cohen’s kappa coefficient, sensitivity, specificity, F1, and GMean, to help user judge the validity 
of the model and impact of potential noise.

Statistical measure Equation

F1
×

× + +
TP

TP FP FN
2

2

GMean ×
+ +
TP

TP FN
TN

TN FP

Table 2.  Selected statistical measures. TP, TN, FN, and FP refer to true positives, true negatives, false negatives, 
and false positives, respectively.
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Case study analysis.  In order to show the utility of DPubChem and the interaction networks, we screened 
the FDA approved drugs in five HTS assays, namely, AID 1458, AID 485313, AID 485297, AID 588342, and AID 
686978. Based on the interaction network produced by DPubChem, we generated Fig. 3 aiming to highlight the 
interactions of relevance for the case study. Figure 3 shows the interactions between HTS assays and compounds 
with their predicted activity scores (see Methods) that enable us to suggest potential drug-target interactions 
of interest. Specifically, we focused on the results for bioassays AID 485313 (target protein being: Ras-related 
protein Rab-9A) and AID 485297 (target protein being: Niemann-Pick C1 protein precursor) as both of these 
target proteins that could potentially serve as targets of drugs for Niemann-Pick type C (NPC) disease. The pre-
diction of interactions by DRABAL44 component of DPubChem and resultant interaction network showed that 
Thiabendazole (DrugBank Database ID: DB00730) is the strongest common activator of HTS assays AID 485313 
and AID 485297. Since overexpression of both Rab-A9 and NPC1 proteins have been shown to reduce the symp-
toms of the NPC disease45,46, we hypothesized that the common predicted activator (Thiabendazole) may inhibit 
the progression of the NPC disease. Additionally, Thiabendazole is an aryl hydrocarbon receptor ligand that 
has been shown to reduce levels of cathepsin D47, a protein which overexpression has been implicated in some 
of the symptoms of the NPC disease, apoptosis48, and liver fibrosis49. Finally, we note that both Thiabendazole 
(predicted activator) and Benzoic Acid (approved drug DB03793 to target Rab-9A protein) belong to the same 
Benzenoid superclass. Although Thiabendazole is deemed slightly toxic and is actively used as a pesticide, phar-
macokinetics studies of Thiabendazole report that ∼87% of the oral dose in humans excretes within 24 hours and 
similarly in animals50. Therefore, Thiabendazole may be beneficial if administered conservatively44.

Although this case study focuses on Thiabendazole for the potential inhibition of NPC disease, interac-
tion networks are a powerful tool for the identification of other chemical compounds common to multiple 
bioassays. Moreover, while QSAR models predict the activity of a candidate chemical compound for a spe-
cific bioassay, the similarities between these compounds provide another layer of information. Inspired by 
the underlying idea that similar compounds are likely to interact with similar proteins, these networks pro-
vide a graphical representation that may facilitate the identification of similar compounds to those known 
to be active within a given bioassay. Additionally, based on Fig. 3 (bottom right), we may hypothesize that 

Figure 2.  Average performance of the SVM-L, SVM-RBF, KNN, LDA, NBC, and RF from a 5-fold cross-
validation of the implemented methods for reducing the effects of the class imbalance. (A) The results in terms 
of F1 for the 11 considered HTS assays. BenchSet refers to the pooled assays AIDs 773, 1006, and 1379 as 
described by Li et al.70. (B) The GMean results for the 11 HTS assays.
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compound 2-(3,5-Dimethylphenyl)-1,3-Benzoxazole may also have an effect in the NPC disease as it is similar 
to Thiabendazole (similarity score of 0.55) and a has a predicted activity in AID 485297 (activity score of 0.524). 
Clearly, a compound with a higher similarity score to Thiabendazole would indicate a better candidate.

Discussion
With the vast amount of data from public repositories that provide access to biological activity information from 
HTS experiments (e.g., BioAssayDB), there is an opportunity to develop categorical models to predict the biolog-
ical activities of millions of chemical compounds that remain untested. Although several QSAR models have been 
proposed, they remain limited in many aspects. Some of these tools lack flexibility or impose a set of different 
steps for data processing that are complicated and time-consuming. Moreover, these tools have a low precision of 
predictions, i.e., high false positive rates. Consequently, we developed DPubChem, a tool that enables sophisti-
cated virtual screening strategies based on state-of-the-art machine learning methods for feature selection, class 
imbalance, and MLC. The DPubChem tool focuses on the simplicity of the interface without compromising the 
flexibility and in the precision of the QSAR models to reduce false positive predictions. Because DPubChem 
uses a single easy-to-use workflow that supports a different set of models and options, it is straightforward to 
generate different models for the same screening task. Each of these models provides the performance statistics, 
predictions ranking, and the graph visualization, which allows the user to easily select the best performing model. 
The notable ease-of-use of this tool is essential for users. The prediction results from DPubChem may be further 
examined by published results in the literature and other computational techniques like 3D docking simulations. 
Although docking simulations are prone to false positives, they can indirectly support the top predictions from 
our data-driven approach39, especially, if an experimental validation (i.e., in vitro and in vivo based) is prohibi-
tive to run. Currently, DPubChem does not explicitly allow for such docking simulation types of verifications. 
Nevertheless, it provides visualization graphs with reference links that can be used to get more background infor-
mation. We believe that DPubChem will contribute to the progress of bioinformatics and biomedical research.

Methods
The framework in Fig. 4 depicts the core architectural design of DPubChem. In particular, we propose four 
modules to enable virtual screening of HTS assays using machine learning methods. The first module is the data 
collection, in where the user may input 1) a BioAssay accession number (AID), 2) a list of AIDs for an MLC 
model, 3) a list of PubChem compound accession numbers (CID), and 4) a list of SMILES records with their cor-
responding labels. The next is the data preparation module, where the chemical compounds are described by a set 
of features (feature generation), which can be further reduced by a feature selection method. The third module is 
for the model selection, where different classifiers may be selected. Finally, the QSAR models for virtual screening 

Figure 3.  DPubChem interaction network obtained from applying DRABAL on the five selected HTS assays 
(AIDs 1458, 485313, 485297, 588342, and 686978). Thiabendazole (DB00730) is the top common prediction 
for assays AIDs 485297 and 485313. In the graph, red, yellow, and blue colored nodes indicate HTS assays from 
PubChem database, chemicals, and the biological target entities like protein targets, respectively. The interaction 
network is accessible at www.cbrc.kaust.edu.sa/dpubchem/DraPubChemGraph/drapubchemgraph.html and is 
obtained by running DRABAL MLC method on the selected HTS assays.

http://www.cbrc.kaust.edu.sa/dpubchem/DraPubChemGraph/drapubchemgraph.html
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are derived, and the predictions are ranked and visualized in an interaction network. The following subsections 
describe these modules in more details.

Data collection.  The datasets retrieved by DPubChem are based on the PubChem BioAssay protocol, where 
datasets represent HTS assays that can be referenced by a unique AID identifier. We considered bioassays that 
report experimental activity results for a set of chemical compounds over a specific biological target (e.g., a pro-
tein). Therefore, a bioassay dataset contains a list of chemical compounds to which we assign labels, where label 
‘1’ indicates that the compound appears active in the assay, while ‘2’ relates to inactive compounds. The probe 
designation was considered as active (label of 2) as it indicates that the activity of the test result has been tested 
and confirmed through multiple rounds of experimental inquiry1. Inconclusive or unspecified activity types are 
ignored. The criteria for selecting the 300 considered datasets are: 1) since sufficient information about both classes 
is needed to build meaningful recognition models only confirmatory assays with more than five samples for both 
active and inactive classes were considered, 2) to have a reasonable processing time, we selected assays containing 
at most 11,000 reported active compounds, and 3) the 300 datasets were randomly selected. Although some of 
these datasets contain a relatively small number of compounds, models derived from these datasets allow for HTS.

Data preparation and feature selection.  In order the build QSAR models, chemicals are encoded into a 
set of features. The generation and selection of a representative subset of features are critical for developing accu-
rate QSAR models33. DPubChem implements different types of chemical features, namely, 1) the PubChem fin-
gerprints51 (881 features from ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt), 2)  
MACCS keys fingerprints from the toolkit OpenBabel52(166 features), 3) the topological fingerprints from the 
toolkit RDKit53 (1,024 features), 4) chemical descriptors, i.e., the number of H-acceptors and donors, molecular 
weight, and Log-P, among others (166 features), 5) a standard set of features, representing a combination of all 
the previous types of features, and 6) a recommended set of chemical features, DWFS. The DWFS set of features 
is the result of an extensive analysis and feature selection process, which resulted in an optimized subset of 1,064 
chemical features that enabled superior predictor performance39,44,54. However, there is no guarantee that this 
optimized set of features will be optimal for all cases.

Feature selection is crucial for removing irrelevant or redundant features that do not contribute to the per-
formance of the QSAR models. This results in simpler and possibly more accurate models. For this, DPubChem 
provides efficient solutions to select the most relevant features. The current implementation incorporates the 
following state-of-the-art methods for feature selection from the MATLAB Feature Selection Tool (FEAST)55: 
minimum redundancy maximum relevance (mRMR)34, joint mutual information (JMI)34, conditional mutual 
information maximization (CMIM)56, and RELIEF57. Moreover, DPubChem also includes the simpler algorithms 
for feature selection based on the correlation of features and the standard deviation.

Classification model selection.  Seven widely used classifiers are available in DPubChem as a basis for 
building prediction models for PubChem assays. These include SVM-L and SVM-RBF58, K-NN59, decision trees60, 
NBC61, LDA, and ensemble classifiers RF62 and Adaboost63 from the Scikit learn machine learning package64. 
There are several justifications for the selection of the implemented classifications models. Although deep neural 
networks have achieved superior performance over shallow models in some applications38,65, the training and 
tuning of such complex models are computationally-demanding, especially for large datasets as are many in the 
PubChem assays. Therefore, we have included less computationally-demanding models. Additionally, an exten-
sive empirical study66 tested the performance of different classification models over the UCI machine-learning 
repository database67 and showed that SVM and ensemble models (random forest and Adaboost) were among 
the top-ranked models.

Figure 4.  DPubChem framework for virtual screening. Different colors indicate the four modules that 
represent the core architectural design of DPubChem.
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Multi-label classification model.  Since various HTS assays in BioAssayDB are correlated by sharing some portion 
of the same set of active compounds, we have included DRABAL44, an MLC technique for modeling correlations 
between several BioAssayDB assays to enhance prediction performance. DRABAL uses a problem transformation 
method to derive MLC models. This method transforms the MLC problem into a chain of n single label classifiers, 
where n denotes the number of labels assigned to a chemical compound. For this, the first classifier is derived by 
using the input data to fit one label, and then each of the next n classifiers is trained on the original input data and 
the labels of the previous classifiers (i.e., target labels are concatenated to the original set of features). For example, 
the last classifier in the chain, classifier n, would be derived by using the original input data and the n-1 target labels. 
This implies that the order of the labels has to be specified. For this, DRABAL uses a Bayesian network to learn the 
correlation of the target labels of the assays44. Figure 5 shows an example of an MLC model for tree HTS assays.

Class imbalance problem in HTS assays.  Given the nature of HTS assays, which are often characterized by a small 
number of active chemical compounds obtained after screening a big compound set library, we implemented sev-
eral state-of-the-art solutions in DPubChem to address the class imbalance problem. In several cases, addressing 
the class imbalance has shown to overcome possible bias to the majority class and achieved considerably better 
results than without any data preprocessing. Depending on the imbalance ratio and size of active compounds, 
different solutions can lead to different QSAR model performance. DPubChem offers seven combinations that 
can result in a different effect on both sensitivity and precision of virtual screening. The current options include 
the following approaches: RU39, SMOTE43, MWMOTE42, and the precision-aware method called DRAMOTE39.

Interaction networks.  Given a set of chemical compounds = …C c c c{ , , , }n1 2 , a set of proteins 
P p p p{ , , , }n1 2= … , and a set of assays = …A a a a{ , , , }n1 2 , the interaction network can be generated to repre-
sents nodes from C, P, and A and their links. Chemical-chemical links (weighted edges between ∈c c C,1 2 ) and 
protein-protein links (weighted edges between ∈p p P,1 2 ) represent the similarity scores between the two nodes 
and are computed by using the SIMComp68 and Smith-Waterman69 methods, respectively. The chemical 
compound-bioassay interaction links (weighted edges between c C a A,∈ ∈ ) denote the predicted probability of 
a compound to be active by the QSAR model. The similarity scores and the probability of interactions are values 
within the range of [0, 1].
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