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ABSTRACT: The COVID-19 pandemic has motivated researchers all over the world in trying to find effective drugs and
therapeutics for treating this disease. To save time, much effort has focused on repurposing drugs known for treating other diseases
than COVID-19. To support these drug repurposing efforts, we built the CAS Biomedical Knowledge Graph and identified 1350
small molecules as potentially repurposable drugs that target host proteins and disease processes involved in COVID-19. A computer
algorithm-driven drug-ranking method was developed to prioritize those identified small molecules. The top 50 molecules were
analyzed according to their molecular functions and included 11 drugs in clinical trials for treating COVID-19 and new candidates
that may be of interest for clinical investigation. The CAS Biomedical Knowledge Graph provides researchers an opportunity to
accelerate innovation and streamline the investigative process not just for COVID-19 but also in many other diseases.

■ INTRODUCTION

To date, very few treatments have received FDA approval as
therapeutics for COVID-19, while the need for such drugs
remains high. To reduce development time and costs, much
research has focused on repurposing small molecules that have
either already been approved as drugs or have been clinically
studied.1 Because COVID-19 is characterized by the impact of
multiple, interlinked physiological systems, including pulmo-
nary hyperinflammation, severe lung injury, blood coagulop-
athy, renal and neurological problems, and the cellular
pathways that underlie these systems,2,3 it is proposed that a
knowledge graph approach would be of value in identifying the
connections between these systems as well as potential
therapeutics.4−6

Knowledge graphs are a type of database that allow users to
organize and connect pieces of data based on the relationships
that exist between them. Each unit of data can be thought of as
a dot (or node) connected to other units by lines (or edges)
that represent the relationships between the nodes. This type
of database places as much importance on the relationships
that connect data as on the data itself. Knowledge graphs can
also combine data from multiple sources. These features allow

insights that would not be possible using the individual data
sources and traditional databases. One small, highly simplified
example is:

• Alpelisib (unit of information, or node, and a small
molecule) inhibits (relationship, or edge) tumor protein
p53 (unit of information, or node)

• Tumor protein p53 upregulates transcription factor Fos
• Transcription factor Fos upregulates transcription factor

STAT3
• Transcription factor STAT3 is associated with vascular

inflammation

This simple knowledge graph is depicted visually in Figure 1.
If a user were to query the knowledge graph to predict what
drugs might inhibit vascular inflammation, the graph could
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provide the answer of alpelisib. This may not be obvious from
traditional databases, which might show only direct inhibitors
of transcription factor STAT3 or of vascular inflammation
itself, but because a knowledge graph links multiple nodes via
relationships, the second-level inhibitor alpelisib can also be
found. This example illustrates how knowledge graphs can be
used to manage, explore, and navigate through the interactions
and connections between disparate pieces of information to
gain insights and make predictions. As a result of their value,
knowledge graphs have grown in importance in the last 10
years in both industry and academia.7

It is important to note that knowledge graphs are both
scalable and modular, so they can be used in many different
areas of research or other activities. For example, a
pharmaceutical researcher could use a knowledge graph to
identify potential drug candidates or drug targets for diseases.
In other fields, material scientists could use a knowledge graph
to identify the best compounds for inclusion in designing a
new type of material. A graph could also power the hunt for
new light-absorbing compounds to use in creating more
efficient solar cells. Combined with nutritional data, a
knowledge graph could assist food scientists in identifying
ingredients that could promote health or improve a recipe.
These are just a few of the many possible uses that knowledge
graphs could provide.
In this CAS Biomedical Knowledge Graph, we incorporated

human diseases, proteins, small-molecule inhibitors, virus, and

COVID-19-specific data for identifying small molecules that
show potential for repurposing as COVID-19 therapeutics.
This CAS Biomedical Knowledge Graph features the human-
curated substance data in the CAS Content Collection linked
to biomedical data from both CAS and external databases. The
information units, or nodes, in this graph are human proteins
(denoted by their gene names), biological processes, diseases,
and small molecules, including drugs and drug candidates. The
links, or edges, between them are relationships such as drug X
targets protein Y and protein Y is involved in biological process
Z. A novel algorithmic method was also developed for ranking
the most promising drug candidates. It prioritized those
identified molecules that target unique proteins involved in
COVID-19 disease pathways, while minimizing side effects.
The most highly ranked substances are discussed in terms of
their possible relevance to COVID-19.

■ RESULTS

The CAS Biomedical Knowledge Graph was constructed using
data from the CAS Content Collection and public repositories.
In total, the graph contains over 6 million nodes and 18 million
relationships. A simple visual schema is shown in Figure 2.
Genes and gene products (i.e., proteins or microRNAs) are all
referenced by their respective gene node in the graph. A
detailed description of the knowledge graph and its

Figure 1. Visual depiction of simplified knowledge graph relating alpelisib to vascular inflammation.

Figure 2. Simple schematic diagram of the CAS Biomedical Knowledge Graph.
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construction can be found in the Materials and Methods
section.
A two-component approach was designed to identify

COVID-19 drug repurposing candidates; a flowchart of this
approach is shown in Figure 3A. The first step of both
components was the collection of biological processes deemed
important in the SARS-CoV-2 infection process and COVID-
19. For the first component, CAS scientists identified a
selection of CAS controlled vocabulary headings and
associated synonyms to search the CAS Content Collection
for SARS-CoV-2 infection-related documents and collected
those containing potential drug targets. Intellectual analysis of
the resulting documents along with author terminology was
then used to gather a list of 20 biological processes deemed
important in the SARS-CoV-2 infection process and COVID-
19, as summarized in Zhou et al.8 Some of the biological
processes identified include viral entry, endocytosis, autophagy,
cytokine storm, and blood coagulation (full list in Table S1).
For the second component, genes that were significantly
upregulated (>2-fold) by SARS-CoV-2 infection as described
in ref 9 were extracted, and the biological processes associated
with four or more of these genes were identified, of which
there were 16 in total. These included, for example,
inflammatory response, angiogenesis, and negative regulation
of RNA transcription (full list in Table S2). The 36 processes
collected in total from both components were then matched
against Gene Ontology (GO), and the corresponding GO
terms were used from this point on. Any SARS-CoV-2-specific
processes were mapped to the corresponding general viral

processes in GO to gather a larger set of potential targets. The
graph was then queried for small molecules that modulate the
genes associated with these biological processes. The resulting
small molecules from both components were then combined,
resulting in a set of 1350 small molecules. The number of
compounds connected to each biological process/disease node
is shown in Figure 3B. The graph queries used for both
components are provided in the Supporting Information.
To rank the identified small molecules, the following

equation was developed and used to score each of the 1350
molecules individually

( )
score

( GR BPR )

LOG(SEP)
2 CS 2 AG

CAS CAS
GREXP BPREXP

5=
∑ + ∑ +

+ × + ×

∑ + ∑

Gene rarity (GR) is a measure of the number of small
molecules that directly connect to a given gene, defined as

GR
1

LOG(count of small molecules connected to the given gene)
=

Biological process rarity (BPR) is a measure of the number of
small molecules that connect to a given biological process
separated by one gene, defined as

BPR
1

LOG(count of small molecules connected to the given bio process)

=

The queries used to calculate GR and BPR are provided in the
Supporting Information.

Figure 3. Identification of small molecules targeting biological processes involved in COVID-19. (A) Flowchart of two-component approach to
identify potential COVID-19 therapeutics. (B) Diagram displaying the number of small molecules that target the biological process/disease nodes
selected from the two-component approach. The larger the circle, the larger the number of small molecules that connect to that node. The total
number of small molecules that connect to the node is also shown below the node description. Note that there is an extensive overlap of small
molecules between the nodes.
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Side effect proxy (SEP) is defined as the number of

biological processes the small molecule is connected to in the

graph. Cytokine storm (CS) is assigned the value of 1 when

the small molecule connects to the cytokine storm node or 0 if

it does not. Likewise, activated gene (AG) is given the value of

1 if the small molecule activates a gene or 0 if it does not.

This scoring equation measures all of the interactions
identified in our two-component approach (GR/BPRCAS

represents the results of component one identified by CAS
scientists, and GR/BPREXP represents the upregulated-
expression results of component two). Importance is given
to genes and biological processes that are not connected to
large numbers of small molecules in the graph (GR + BPR).

Table 1. Top 50 Drug Repurposing Candidates with CAS Registry Number, Drug Name, Drug Class, and Clinical Trial Statusa

Rank CAS Registry Number Drug Name Drug Class Clinical Trial

1 149647-78-9 vorinostat HDAC inhibitors
2 179324-69-7 bortezomib protease inhibitors
3 23214-92-8 doxorubicin DNA metabolism-related
4 284461-73-0 sorafenib kinase inhibitors
5 183321-74-6 erlotinib kinase inhibitors
6 231277-92-2 lapatinib kinase inhibitors
7 114977-28-5 docetaxel microtubule-regulating agents
8 667463-62-9 MLS 2052 kinase inhibitors
9 404950-80-7 panobinostat HDAC inhibitors
10 152459-95-5 imatinib kinase inhibitors yes
11 56-65-5 adenosine 5′ triphosphate other
12 872511-34-7 BGJ 398 kinase inhibitors
13 2447-54-3 sanguinarine other
14 1339928-25-4 fimepinostat other
15 183506-66-3 apicidin HDAC inhibitors
16 58880-19-6 trichostatin A HDAC inhibitors
17 943319-70-8 ponatinib kinase inhibitors
18 112953-11-4 7-hydroxystaurosporine kinase inhibitors
19 1256448-47-1 nanatinostat HDAC inhibitors
20 287383-59-9 scriptaid HDAC inhibitors
21 1210608-43-7 PIM 447 kinase inhibitors
22 477600-75-2 tofacitinib kinase inhibitors yes
23 868540-17-4 carfilzomib protease inhibitors
24 989-51-5 epigallocatechin gallate DNA metabolism-related inhibitors yes
25 23541-50-6 daunorubicin hydrochloride DNA metabolism-related inhibitors
26 870262-90-1 letaxaban coagulation factor Xa inhibitors
27 1195765-45-7 dabrafenib kinase inhibitors
28 25316-40-9 doxorubicin hydrochloride DNA metabolism-related inhibitors
29 491-80-5 biochanin other
30 405169-16-6 dovitinib kinase inhibitors
31 50-65-7 niclosamide other yes
32 957054-30-7 pictilisib kinase inhibitors
33 1108743-60-7 entrectinib kinase inhibitors
34 97-77-8 tetraethylthiuram disulfide other yes
35 75706-12-6 leflunomide other yes
36 726169-73-9 mocetinostat HDAC inhibitors
37 637-03-6 phenylarsine oxide other
38 1951-25-3 amiodarone other yes
39 630-60-4 ouabain other
40 58-00-4 (−)-apomorphine other
41 64-86-8 colchicine microtubule-regulating agents yes
42 90-34-6 primaquine other yes
43 936563-96-1 ibrutinib kinase inhibitors yes
44 31431-39-7 mebendazole microtubule-regulating agents
45 361442-04-8 saxagliptin protease inhibitors
46 1032900-25-6 ceritinib kinase inhibitors
47 446-72-0 genistein kinase inhibitors yes
48 20830-81-3 daunorubicin DNA metabolism-related
49 480449-70-5 edoxaban coagulation factor Xa inhibitors
50 153436-53-4 tyrphostin AG 1478 kinase inhibitors

aDrugs that were difficult to classify are listed as “other”. The numbers of drugs in each class in the top 50 are: 18 kinase inhibitors, 7 HDAC
inhibitors, 5 DNA metabolism-related, 3 microtubule-regulating agents, 2 coagulation factor Xa inhibitors, and 12 in other classes.
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These genes and biological processes were postulated as being
of higher interest because they are targeted by fewer small
molecules. To normalize for the promiscuity of small
molecules, a penalty is applied to all small molecules that
scales with the number of biological processes it connects to in
the graph (SEP). Due to the inherent importance of the
cytokine storm module, a score boost was given to small
molecules that connect to that node (CS). A score boost was
also applied to small molecules that have an activating
relationship with genes as this is a rare relationship (AG).
The values of this equation can be fine-tuned based on the
experimental objectives. In our final equation, the importance
of the upregulated-expression results was lowered by dividing
the score by 5; this number was derived empirically to increase
the presence of clinical trial drugs in the top results. This
adjustment placed more emphasis on the CAS scientist-defined
biological process scores while still allowing the upregulated-
expression scores to influence the final ranking. The 50 top-
ranked potential drug repurposing candidates along with their
drug class and clinical trial status are shown in Table 1. The
individual score components for the top 50 small molecules are
provided in Table S3, and the complete result set is provided

in Table S4. The top 10 small molecules are visualized in the
network diagram in Figure 4.
Among the top 50 drug repurposing candidates, 11 have

been or are in clinical trials for treating COVID-19, thus
supporting the validity of our results.10 An error analysis was
performed by varying constants of the equation to determine
their effect on the number of clinically investigated small
molecules in the top 50. We found that the values chosen for
our constants supplied the highest number of clinically
investigated small molecules within the top 50. Interestingly,
AG had no effect on the number of clinical trial drugs present
in the top 50 results. However, the impact of AG is still
apparent as 46 out of the top 50 feature this rare connection.
The error analysis results are described in the Supporting
Information.
The largest class of drugs found in our results was kinase

inhibitors, which accounted for 36% of the top 50 drug
repurposing candidates in Table 1. The high prevalence of this
drug class can be explained by the fact that kinases are involved
in almost all biological processes, and their activities are
dysregulated in many diseases. As such, kinase inhibitors are
one of the most studied drug classes in pharmacology.11

Figure 4. Network diagram showing the connections of the top 10 scoring drugs from the results. Gene names in red represent genes that have a
greater than 2-fold change in expression in response to SARS-CoV-2 infection. The size of the node corresponds to the number of connections to
other nodes.
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Indeed, it has been estimated that 20−33% of all drug
discovery research involves protein kinases alone.12 Further-
more, kinases have long been shown to be involved in the viral
infection process, including in coronavirus infections.13 For
instance, receptor tyrosine kinases are involved in the cell entry
of many different viruses.14 Bekerman et al. have shown that
kinase inhibitors impair intracellular viral trafficking and exert
broad-spectrum antiviral effects.15 Inhibitors of kinases PKC,
IRAK4, p38,16 and GSK-317 suppress SARS-CoV-2 replication.
Given this, the large number of kinase inhibitors in our top 50
results is within expectations, and the enrichment of this class
is likely due to their high prevalence in drug discovery research.
In this study, the kinase inhibitors we identified include

those affecting receptor tyrosine kinases (RTKs) such as the
EGF, FGF, PDGF, and ALK receptors as well as nonreceptor
tyrosine kinases such as Bruton tyrosine kinase (BTK). Also
included were serine/threonine kinases such as B-RAF, PKC,
PIM, and GSK-3beta and lipid kinases such as phosphatidy-
linositol 3-kinase (PI3K). Four of these, the tyrosine kinase
inhibitors imatinib, tofacitinib, ibrutinib, and genistein, have
been or are in clinical trials for COVID-19. Additionally, Treon
et al. found that ibrutinib (BTK inhibitor) may offer protection
against the severe form of COVID-19 and may mitigate lung
injury due to SARS-CoV-2.18

Another of the larger drug classes from our top 50 results
was histone deacetylase inhibitors (HDIs). This makes sense in
relation to COVID-19 in that (1) HDACs regulate gene
expression by reducing histone deacetylation, and HDIs have
been shown to reduce the expression of both angiotensin-
converting enzyme 2 (ACE2), the main cell surface receptor
for SARS-CoV-2, and the ABO glycosyltransferase, an enzyme-
regulating blood type, a known COVID-19 risk factor;19 (2)
HDACs regulate several of the chemokines and cytokines
involved in the immune response in COVID-19;20 and (3) the
SARS-CoV-2 proteinase MPro directly binds to HDAC2.21

Additionally, Liu et al.22 showed that HDAC inhibitors such as
romidepsin can block SARS-CoV-2 entry in a pseudotyped
SARS-CoV-2 virus model. Further investigation is warranted,
however, because HDACs have also been shown to be required
for the transcription of interferon-stimulated genes and
antiviral responses.23

Microtubules are filaments composed of tubulin subunits.
They are constantly going through the process of assembly and
disassembly at their ends, giving them a dynamic and unstable
quality.24 Many studies have shown that SARS-CoV-2 proteins
interact with microtubules or microtubule-associated proteins.
For example, NSP13 interacts with many proteins in the
centrosome, where microtubule minus ends are organized. The
microtubule-regulating agents, such as docetaxel, colchicine,
and mebendazole, in Table 1, may therefore be of use in
disrupting SARS-CoV-2 infection. In fact, colchicine (ranked
41 in Table 1), a microtubule polymerization blocker, and
VERU-111, an α- and β-tubulin inhibitor/cytoskeleton
disruptor, are currently in clinical trials for the treatment of
COVID-19 patients.
Another drug class shown in our results are protease

inhibitors, most of which are proteasome inhibitors. It has
been previously shown that the ubiquitin-proteasome system
(UPS) is involved in viral replication and the cytokine storm25

including in coronavirus-associated diseases,26 so it seems
rational that proteasome inhibitors would be of value in
treating COVID-19. Several such inhibitors are already being
investigated as COVID-19 therapeutics, and several were

found in our results (bortezomib, carfilzomib, and saxaglip-
tin).27

The category labeled “other” from Table 1 includes drugs
that are difficult to classify. While we will not discuss most of
these in detail, two, (−)-apomorphine and ouabain, were of
interest. The dopamine agonist and aporphine-type alkaloid
(−)-apomorphine is linked in the knowledge graph to the well-
studied COVID-19 drug target called the sigma-1 receptor
(Sigma1R, gene SIGMAR1). Sigma1R is a ligand-regulated
membrane chaperone usually localized to endoplasmic
reticulum (ER)-mitochondrial membrane junctions. It regu-
lates many processes including protein folding, ER and
oxidative stress, autophagy, and ion transport. Viruses often
use cell stress pathways to aid replication, and accordingly,
Sigma1R ligands have been studied as general antiviral agents
for many years and, more recently, as anti-SARS-CoV-2
agents.28 Further, the SARS-CoV-2 NSP6 protein directly
binds to the sigma-1 receptor21 and a sigma-1 receptor ligand,
fluvoxamine, has been shown to reduce the chances of
deterioration in patients with symptomatic COVID-19.29

This suggests that (−)-apomorphine may be a worthwhile
drug repurposing candidate for COVID-19.
Another drug of interest in the other category, ouabain, is a

Na+/K+-ATPase inhibitor. Na+/K+-ATPase is a membrane
transporter that exports cellular sodium in exchange for
importing potassium. It regulates cell−ion concentrations,
cell volume, membrane potential, and reactive oxygen species.
While the mechanisms are not fully understood, many viruses,
including coronaviruses, are known to be inhibited by Na+/K
+-ATPase-inhibiting cardiac glycosides. Indeed, coronavirus
cell entry is inhibited when the Na,K-ATPase alpha1 subunit is
silenced or inhibited.30 Further, a peptide (NaKtide) derived
from the alpha1 subunit of Na+/K+-ATPase reduces the
inflammatory cytokines present in chronic obesity and
therefore may be of value in treating the cytokine storm
often seen in severe COVID-19.31 Indeed, others have recently
provided supporting in vitro32 and in vivo33 evidence for the
effectiveness of Na+/K+-ATPase inhibitors in inhibiting
SARS-CoV-2.

■ DISCUSSION

In this paper, we describe the construction of the CAS
Biomedical Knowledge Graph and its application, along with a
novel results-ranking method, in predicting potential drug
repurposing candidates for COVID-19. The graph contains 6
million nodes and 18 million relationships and is built on data
from the CAS Content Collection and external databases.
Overall, we identified and ranked 1350 small-molecule
repurposing candidates and analyzed the top 50 in greater
detail. The validity of the knowledge graph and ranking
method is supported by the fact that 11 of the top 50 results
have been or are currently in clinical trials for treating COVID-
19 and that many of the drug classes for these small molecules
are well known to play important roles in viral infections.
While we focused on COVID-19 in this study, the CAS
Biomedical Knowledge Graph described here can also be used
to analyze other diseases such as Alzheimer’s, Parkinson’s,
cancer, and even rare, or orphan, diseases. Beyond the life
sciences,knowledge graphs building on our vast collection of
scientific information can be appliedin many areas of science,
including other areas of chemistry, materials science, food
science, energy technology, and environmental research.
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The advantages of knowledge graphs have become more
widely known in the last 10 years. Most importantly, and
beyond their use just as an information management system,
knowledge graphs allow users to grasp information in a visual
and intuitive way. Users can easily zoom in on specific
modules, or subsets, of a large data set and then zoom back out
to see how that subset fits in with the whole of the data. They
can visually navigate through the pathways connecting data to
see how modules, including nonadjacent ones, affect each
other. This allows users a different perspective on a research
problem. Another important advantage of knowledge graphs is
that because they are both modular and flexible, data sources
can be substituted in and out, such as was done here by adding
COVID-19 clinical trial data to the CAS graph.
An example in pharmaceutical research of the nonadjacency

benefit mentioned above is that by linking disease-associated
pathways, the proteins in those pathways, and the small
molecules that regulate them, a knowledge graph can enable a
researcher who has identified a novel interaction between two
proteins to quickly identify which pathways, biological
processes, or diseases this interaction could alter. Use of the
graph in this manner has the potential to greatly increase the
speed of basic biomedical research. This same kind of
approach allows life sciences researchers to identify a wider
variety of drug targets “upstream” or “downstream” of those
already known. Many of these targets may have been
previously overlooked or were not considered to participate
in other disease processes. The present results illustrate this
nicely. If the goal is to reduce the blood coagulation associated
with COVID-19, traditional methods may suggest only blood
coagulation factors and the blood vessel wall proteins they
directly interact with as targets. But our results also suggest
histone deacetylases (HDACs) as possible targets because two
HDACs have been linked to blood coagulation within the
graph. By the same token, using a knowledge graph allows the
prediction of potential upstream and downstream drug
candidates. The widely known HDI vorinostat affects three
proteins/genes involved in blood coagulation and can
therefore be considered a potential repurposing candidate for
treating COVID-19-related coagulopathy. That an HDI may
reduce blood clotting is supported by the evidence that
another HDI, valproic acid, upregulates expression of tissue-
type plasminogen activator and reduces thrombus size after
vascular injury.34 In drug discovery research, therefore, the
wider, more comprehensive view provided by knowledge
graphs can lead to cost- and time-savings in initial drug
screening. Of course, all identified drug candidates would still
have to be validated by experimental and clinical testing.
In addition to their strengths, knowledge graphs have some

of the same limitations common to all data management
systems. For instance, by linking modules in a complex
network, they may give the false visual impression that they
contain a complete picture of what is known about a subject.
However, knowledge is always incomplete, so like all databases,
they must be maintained and periodically updated. Further-
more, the power of a graph depends on the quality and
comprehensiveness of the data sources used to build it.
The equation developed for ranking small molecules in this

study focuses on identifying relevant and significant small
molecule-to-protein relationships. We hypothesized that small
molecules with extensive connections to target proteins would
be more likely to have significant side effects. An inherent
drawback to this approach is that small molecules that could be

effective in COVID-19 therapies may be down-ranked if they
are highly connected. Our two-component query combined
human-designed and data-driven approaches, which we
hypothesize may allow our results to capture potentially
unknown molecular mechanisms of COVID-19. The flexibility
of our equation in combining this two-component approach
allows us to independently adjust the importance of each
component. For our final ranking, the CAS-designed
component was given higher importance as we felt the chosen
biological processes covered a more specific and important
spectrum of COVID-19 pathology. This scoring could be
altered as other applications require. We also explored the use
of machine learning with our results. We employed a decision
tree to determine which of the variables identified in our
equation was most important for the prediction of a small
molecule’s use in a COVID-19 clinical trial. We found that the
side effect proxy was of highest importance followed by gene
rarity and biological process rarity. The machine learning
results also demonstrated the effectiveness of our equation in
ranking the small molecules. The use of machine learning to
improve the returned results could be of great value in a
different application.
While the CAS Biomedical Knowledge Graph contains a

massive wealth of entities and relationships, there is also
potential for improvement. One improvement that could be
made is the addition of a new layer of information within the
protein−protein interaction relationships. If these relationships
included the effect one protein had on another, such as
phosphorylation, activation, and/or physical inhibition, the
graph would allow for more powerful queries. Searching for an
inhibitor of an upstream activator of a protein involved in a
disease is one such line of questioning this data would allow.
Another addition planned for the graph is the expression level
of genes in different tissues and cellular compartments. The
accuracy of our queries for a given disease would increase if we
could limit our search to genes expressed only in the tissue of
interest. An example of this for COVID-19 would be
restraining our results based on gene expression in the lungs.
These are just two of many possible improvements, which will
require additional data analytics work to integrate into the CAS
Biomedical Knowledge Graph. We plan to leverage the data
and expertise of CAS to add these capabilities to the CAS
Biomedical Knowledge Graph in the future.
In conclusion, we have leveraged a century’s worth of CAS

scientific information curation expertise to create the CAS
Biomedical Knowledge Graph, which combines an extensive
list of small molecules, present in the CAS Content Collection,
with external databases of human genes, molecular processes,
pathways, and diseases. We used the CAS Biomedical
Knowledge Graph to identify 1350 small molecules with
potential to be repurposed as COVID-19 therapeutics. Because
knowledge graphs are both scalable and modular, this
application to COVID-19 is only one example of the vast
array of possible uses for CAS-powered knowledge graphs.

■ MATERIALS AND METHODS
CAS Biomedical Knowledge Graph. The CAS Bio-

medical Knowledge Graph was constructed in Neo4j (DBMS
Version 4.1.0). In total, the graph contains over 6 million
nodes and 18 million relationships. During data ingestion, all
references to proteins and genes were normalized to their
NCBI/HUGO gene abbreviation and all small-molecule
references were normalized to their CAS Registry Number.
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Small Molecules and Bioactivity Data. Over 6 million
small molecules were added to the graph from the CAS
Content Collection. All small molecules were cross-referenced
with data from PubChem and ChEMBL. Data scientists at
CAS then connected small-molecule nodes to gene nodes
where experimental assays have been performed linking the
two, with details from these assays stored in the small
molecule-to-gene relationships. These details include informa-
tion about the activity being measured, raw values from the
assay, and the source of the experimental data. Over 10 million
relationships between small molecules and genes are present in
the graph. Side effects associated with the small molecules were
obtained from SIDER (version 4.1) and ingested into the
graph.
Human Genes, Viral Genes, and Viruses. Gene nodes

serve as a representation of a gene’s DNA, RNA, and protein
forms. Over 26 000 human and viral genes were obtained from
the UniProt database and stored in the graph using their
NCBI/HUGO gene abbreviations. Protein−protein interac-
tions between human proteins were obtained from STRING-
DB (version 11.0) resulting in over 5 million protein−protein
interactions (PPIs) with STRING-DB confidence values stored
in each relationship. Over 1000 virus nodes were added from
UniProt, which were linked to the viral genes they express.
Diseases, Pathways, Molecular Functions, and Bio-

logical Processes. Over 24 000 human disease designations,
obtained from NCBI’s MedGen, were added to the graph. A
hierarchy of disease inheritance was established using
MedGen’s parent−child relationships of diseases (over
14 000 links). Disease−gene associations were also obtained
from MedGen, resulting in over 5 million connections.
Pathways and pathway−gene associations were obtained
from NCBI, resulting in over 8000 pathways and over
121 000 links between genes and pathways. Molecular
functions (over 4000) and biological processes (over 12 000)
were obtained from the Gene Ontology knowledgebase along
with their gene associations (over 59 000 and over 138 000,
respectively).
SARS-CoV-2-Specific Data. We identified several data

sources that were used to establish connections between
SARS-CoV-2 and the CAS Biomedical Knowledge Graph. One
such data source measured human gene expression-level
changes in response to SARS-CoV-2 infection.9 This data
was added as a relationship between the SARS-CoV-2 virus
and the human genes where each relationship contains the
expression fold change and p values (over 18 000 links). We
also added SARS-CoV-2- and COVID-19-related clinical trial
information obtained from clinicaltrials.gov. Relationships in
the graph were generated between the clinical trial, the
diseases/viruses being investigated, and the small molecules
used in the trial. In addition, biological processes related to
COVID-19 that were identified in our previous work8 were
included.
Graph Queries and Image Preparation. Graph queries

were performed in Neo4j using the Cypher query language.
Small-molecule results were filtered to ensure they fit the
following three criteria: (1) the small molecule has been
identified by CAS scientists as having pharmacological activity;
(2) the assay that generated the small molecule-to-gene
relationship measured IC50, EC50, Kd, or potency values; and
(3) the raw value results from the assay were 10 μM or lower.
Query code and returned results can be found in the

Supporting Information. All network graph images were
generated using Cytoscape (version 3.8.2).
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from UniProt. Diseases and links to genes were obtained from
NCBI MedGen. Protein−protein interactions were obtained
from STRING-DB. Molecular functions and biological process
were obtained from the Gene Ontology knowledgebase.
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