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ABSTRACT

Motivation: Methods for computational drug target identification use

information from diverse information sources to predict or prioritize

drug targets for known drugs. One set of resources that has been

relatively neglected for drug repurposing is animal model phenotype.

Results: We investigate the use of mouse model phenotypes for drug

target identification. To achieve this goal, we first integrate mouse

model phenotypes and drug effects, and then systematically compare

the phenotypic similarity between mouse models and drug effect

profiles. We find a high similarity between phenotypes resulting from

loss-of-function mutations and drug effects resulting from the inhib-

ition of a protein through a drug action, and demonstrate how this

approach can be used to suggest candidate drug targets.
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1 INTRODUCTION

Amajor challenge currently faced by pharmacological research is

the high rate of attrition in the development of new compounds,

the increased cost of drug development and increased regulatory

concern about drug safety and efficacy (Sleigh and Barton,

2010). As a result, pharmacological research is beginning to

focus on repurposing existing drugs for new indications, and sev-

eral large national and international research initiatives have

begun to systematically address drug repurposing on a broad

scale (Allison, 2012).

Strategies for drug repurposing can be divided into two main

types: identification of new targets for known drugs and identi-

fication of new indications for a known mechanism of action

(Sleigh and Barton, 2010). Approaches to drug repurposing

include database-driven bioinformatics approaches, in vivo and

ex vivo studies and high-throughput screening methods (Sleigh

and Barton, 2010). Examples of computational approaches to

drug repurposing include side effect-based approaches, in

which similarity between drug effects is used to suggest drug

targets and drug indications (Campillos et al., 2008), data

mining of clinical records (Tatonetti et al., 2012) and approaches

based on analysis of GWAS data (Sanseau et al., 2012).

Computational approaches to drug repurposing have the highest

chance of succeeding if multiple independent data sources and

analysis approaches are combined so that data from several

independent domains and studies can be used to identify

strong evidence for novel drug indications. Based on integrating

multiple complementary datasets, integrative computational

approaches can use multiple measures to prioritize candidate

targets and drugs (Chen et al., 2012b; Gottlieb et al., 2011;

Thorn et al., 2010).
One set of resources that has been relatively neglected for drug

repurposing is animal model phenotype (Hoehndorf et al., 2012;

Hurle et al., 2013). The use of non-human species to investigate

physiology and pathobiology, and the creation of animal models

of human diseases amenable to experimental investigation, has

become a successful paradigm in the biomedical sciences

(Rosenthal and Brown, 2007). The development of high-

throughput phenotyping has further increased the available

amount of phenotype data resulting from targeted mutations

in animal models, and pan-genomic projects such as the

International Mouse Phenotyping Consortium (IMPC) (Brown

and Moore, 2012) aim to delete every protein-coding gene in an

organism and to identify the phenotypes resulting from these

mutations. It has now become a challenge to systematically ana-

lyze the resulting data and use them to provide insights into

human health and novel intervention strategies.
In the past, several studies have used animal model data to

suggest candidate genes for genetically based diseases (Chen

et al., 2012a; Hoehndorf et al., 2011b), and one study also sug-

gests that mouse model phenotypes can be used to provide

insights into drug actions and drug effects in humans despite

experimental differences between the two species (Kuhn et al.,

2013). Here, we use a phenome-wide approach to systematically

compare drug effects with mutant mouse phenotypes (Fig. 1).

We provide strong supporting evidence for the hypothesis that

the similarity between drug effects and mouse phenotypes that

result from loss of protein function indicates a similarity in the*To whom correspondence should be addressed
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mechanism of action, i.e. an inhibition of the protein through the

drug. We evaluate our results with experimentally validated lists
of known drug targets and demonstrate on a genomic scale that a

similarity between drug effects and mutant mouse phenotypes
can reveal drug targets. Our approach opens the possibility for
a systematic analysis of animal model phenotypes for candidate

drug targets, and has a significant impact for integrative compu-
tational approaches to drug repurposing.

2 MATERIAL AND METHODS

2.1 Mouse model phenotypes

We use the Mammalian Phenotype (MP) Ontology (Smith et al., 2004)

and the Human Phenotype Ontology (HPO) (Robinson et al., 2008), both

downloaded on February 14, 2013 from the OBO Foundry Web site

(http://obofoundry.org). We obtain the entity-quality definitions attached

to MP and HPO from https://phenotype-ontologies.googlecode.com

(downloaded on February 14, 2013).

We downloaded mouse phenotype data from the Mouse Genome

Informatics (MGI) database (Blake et al., 2011) on February 14, 2013.

We obtained only mouse model phenotypes associated with models

resulting from loss-of-function mutations in single genes.

2.2 Drug effect profiles and drug targets

Drug effect profiles were obtained from SIDER 2 (released on March 16,

2012) (Kuhn et al., 2010). For each drug, we identify the STITCH iden-

tifier associated with the drug. We ignore all drugs for which no STITCH

identifier has been identified in the SIDER dataset. STITCH identifiers

are based on the STITCH database, version 3.1 (Kuhn et al., 2012).

2.3 Integrating drug effects and phenotypes

We used a combination of lexical mapping, manual curation and exploit-

ation of cross-references to map the Unified Medical Language System

(UMLS) terms used to characterize SIDER’s drug profiles to the Human

and Mammalian Phenotype Ontologies. Using exact lexical matching of

UMLS terms to term names and synonyms in ontologies, we mapped 597

terms from SIDER to the HPO (Robinson et al., 2008) and 262 terms

from SIDER to the MP Ontology (Smith et al., 2004). HPO already

contains cross-references to terms from the UMLS (Bodenreider, 2004),

3858 of which can be found in SIDER’s drug effect profiles. We sorted

the remaining SIDER terms for which we could not obtain a mapping to

HPO or MP based on the frequency of their occurrence in SIDER drug

effect profiles and manually mapped 953 of the most frequently occurring

terms to HPO and 240 of the most frequently occurring terms toMP. The

mappings are available on the project Web site.

2.4 Cross-species integration of phenotypes

Although we have annotated SIDER with both MP and HPO terms,

mouse phenotypes are represented exclusively using MP. To make

HPO and MP phenotype terms comparable, we use the PhenomeNET

system of integrating phenotypes across species (Hoehndorf et al., 2011b,

2013). PhenomeNET enables the direct comparison of phenotypes across

multiple species (Hoehndorf et al., 2011b, 2013), including mouse model

phenotypes (describing using the MP) and human drug effects (described

using the UMLS and mapped to HPO using our approach).

PhenomeNET uses an ontology-based integration framework that in-

tegrates phenotypes in different species based on species-independent

ontologies and the PATO framework (Gkoutos et al., 2005). In particu-

lar, PhenomeNET uses the large number of entity-quality-based defin-

itions that have been created for species-specific phenotype ontology

(Mungall et al., 2010) and integrates them with species-independent

ontologies. Entity-quality definitions of phenotypes decompose pheno-

type terms in an affected entity and a quality that characterizes how the

entity is affected. For example, the phenotype term proximal fibular over-

growth (HP:0007126) is decomposed into the entity proximal epiphysis

of fibula (FMA:33729) and the quality hypertrophic (PATO:0000584).

Similarly, the mouse phenotype term abnormal fibula morphology

(MP:0002187) is decomposed into the entity fibula (MA:0001360)

and the quality morphology (PATO:0000051) with the qualifier abnor-

mal (PATO:0000460).

Phenotypes in which biological processes, functions or cellular compo-

nents are affected can then be integrated across species based on the Gene

Ontology (GO) (Ashburner et al., 2000), and phenotypes in which

anatomical structures are affected are integrated based on homologous

anatomical structures represented in the UBERON ontology (Mungall

et al., 2012). Using automated reasoning (Kazakov et al., 2011), it then

becomes possible to systematically identify equivalent, more specific and

more general phenotypes across multiple species. For example, based on

axioms in the combined ontology, we can infer that proximal fibular

overgrowth is a more specific phenotype term than abnormal fibula morph-

ology using the information that

� Fibula (MA:0001360) is homologous to fibula (FMA:24479) (from

the UBERON ontology),

� Proximal epiphysis of fibula (FMA:33729) is a part-of fibula

(FMA:24479) (from the FMA) and

� Hypertrophic (PATO:0000584) is a more specific quality than

morphology (abnormal) (PATO:0000460).

Additional details for integrating phenotype ontologies across species

using the Web Ontology Language (Grau et al., 2008) are discussed in

prior work (Hoehndorf et al., 2010; 2011a, b).

2.5 Semantic similarity

Traditional semantic similarity measures are symmetrical, i.e. the similar-

ity between X and Y is the same as the similarity between Y and X. As

drugs may bind to multiple targets to elicit their effects (Kuhn et al.,

2013), we designed a novel non-symmetrical similarity measure based

on the well-known SimGIC measure (Pesquita et al., 2009). SimGIC is

a group-based measure of semantic similarity, i.e. it compares two sets of

annotations directly and is based on the Jaccard index weighted by the

information content of ontology terms (Pesquita et al., 2009).

Fig. 1. The figure illustrates our basic workflow and the connections

between the different datasets we exploit. We aim to infer inhibition ac-

tions between drugs and their targets based on the similarity between

drug effect profiles and mouse model phenotypes resulting from single

gene knockouts. We test the hypothesis whether the phenotypic effects of

a perturbation of a gene/protein through a drug action bears some simi-

larity to the phenotypic effects of a targeted mutation of that gene/protein

observed in a model organism. As drugs often perturb multiple genes/

proteins, we systematically compute how well a drug effect profile covers

observed phenotypes in a mouse model using a non-symmetrical measure

of semantic similarity
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We first select all phenotypes observed for single gene deletions in

mice. For each gene G for which phenotype data are present in the

MGI database, we then generate the union of the phenotypes observed

in all models in which G has been deleted. The resulting phenotypes for a

gene G are all phenotypes observed in mouse models in which G (and

only G) has been deleted and provides a global view on the phenotypes

associated with deletions of G.

We then add the super-classes of the phenotype annotations of each

mouse model and drug to their set of annotations. In particular, if the

HPO or MP phenotype P is a phenotype annotation associated with gene

or drug X, and the super-classes of X in MP are the classes Sup(X), we

add Sup(X) as annotations to X. To compute super-classes, we use the

combined ontology of MP and HPO that forms part of PhenomeNET

and enables cross-species comparisons of phenotypes (i.e. a class in MP

may be a super-class of a class in HPO and vice versa) (Hoehndorf et al.,

2011b). We make the MP-based representation of drug effects in SIDER

based on which we compute the similarity available on the project

Web site.

We then define the information content IC(t) of an MP phenotype

term t based on the probability PðX ¼ tÞ that a drug or mutant mouse

model is characterized with t:

ICðtÞ ¼ � logðPðX ¼ tÞÞ ð1Þ

The probability PðX ¼ tÞ is empirically derived within the corpus of

mouse models and drug profiles. We use only the structure of the MP

to compute semantic similarity based on prior work that has shown that

MP-based similarity measures outperform measures that use HPO or the

combination of HPO and MP for analyzing mouse phenotype data

(Oellrich et al., 2012).

Given a drug effect profile D and a mutant mouse model M, where D

is characterized by the ontology classes ClðDÞ ¼ D1, . . . ,Dn and M

is characterized by the classes ClðMÞ ¼M1, . . . ,Mm, we define the

similarity between D and M as:

simðD,MÞ ¼

P

x2ClðDÞ\ClðMÞ

ICðxÞ

P

y2ClðDÞ

ICðyÞ
ð2Þ

As a result, we obtain a similarity matrix between drug effect profiles and

mouse model phenotypes (resulting from deletions of one gene). The

similarity measure used is non-symmetrical and determines the amount

of information about a drug effect profile D that is covered by a set of

mouse model phenotypes M.

2.6 Evaluation datasets

Our approach is based on identifying a similarity between drug effect

profiles and mouse model phenotypes. The STITCH database provides

us with a set of drug–protein interactions in the mouse. We filter these

interactions for those in which the mode of action is ‘inhibition’ (in the

STITCH file actions.v3.1.tsv) and use this dataset directly as

evaluation dataset ‘STITCH (mouse)’.

As we primarily aim to predict drug targets in human, we use the

human–mouse orthology provided by the MGI database (Blake et al.,

2011) to obtain the mouse ortholog for each human gene that is a target

of a STITCH compound, and use the mouse ortholog of the human drug

target as a positive hit for the STITCH compound. We use the human

drug–protein interactions provided by STITCH in which the mode of

action is ‘inhibition’ as evaluation dataset ‘STITCH (human)’, and the

human drug targets provided by DrugBank in which the mode of action

is ‘inhibition’ as evaluation dataset ‘DrugBank’.

The STITCH database accumulates data from multiple sources and

contains a confidence value for each interaction. The confidence ranges

between 0 and 1, with an implicit cutoff value of 0.15. To evaluate the

results of our analysis under different degrees of confidence, we generated

evaluation datasets for STITCH in which we require a confidence of

at least 0.5, and another dataset in which we require a confidence of

at least 0.7. The evaluation datasets we used are available on the project

Web site.

2.7 Receiver operating characteristic analysis and

approximation of confidence intervals

To compute true- and false-positive rate, we iterate through the ranks of

the generated similarity matrix (between drugs and mouse models) and

compute, for each rank, the proportion of known drug targets in each of

our evaluation datasets identified up to this rank (true-positive rate) as

well as the proportion of targets not in the evaluation dataset included up

to this rank (false-positive rate). We then use an analysis of the receiver

operating characteristic (ROC) curve to evaluate and quantify the results.

An ROC curve is a plot of the true-positive rate as a function of the false-

positive rate and can be used to evaluate the performance of a classifier

(Fawcett, 2006).

Confidence intervals for the area under the ROC curve (ROCAUC)

are computed under the assumption of a normal distribution of

ROCAUC values and using an estimate of the maximum variance of

the ROCAUC as �2max ¼
AUCð1�AUCÞ

minfm, ng , with m and n being the number

of positive and negative instances in the evaluation dataset (Birnbaum

and Klose, 1957). We then use AUC� 2� as an estimate of the 95%

confidence interval (Cortes and Mohri, 2005).

3 RESULTS

3.1 Mouse model phenotypes provide information about

drug targets

The hypothesis we test is whether a similarity between drug

D’s effects and phenotypes resulting from knock-out/knock-

down of a single gene (product) in an animal model can be

used to indicate that D inhibits the gene (product) or its human

ortholog, and whether phenotype similarity between mouse

models and drug effects can be used to provide insights relevant
for discovery of targets for known drugs. To test these hypoth-

eses, we first made drug effects and mouse phenotypes compar-

able by mapping the drug effects described in the SIDER

database (Kuhn et al., 2010) with human and mouse phenotype

terms, and then integrating human and mouse phenotypes across

species (see Section 2).
Once mouse model phenotypes and human drug effects

are made directly comparable, we use a measure of semantic

similarity (Pesquita et al., 2008) to compare drug effect profiles

with mutant mouse phenotypes. We systematically compare

the sets of phenotypes that have been observed in mice with

single gene deletions with drug effect profiles obtained from

the SIDER database, and use their similarity to prioritize candi-

date drug–protein interactions. To account for drugs’ binding
to multiple targets, we developed a novel similarity measure

between drug effect profiles and mouse model phenotypes that

determines how much of the information in the drug effect pro-

file can be explained through a set of mouse model phenotypes

(Section 2). A schematic overview of the approach is shown in

Figure 1.
We evaluate the results using three datasets: the human drug

targets available in DrugBank (Knox et al., 2011), the human

drug targets available in the STITCH database (Kuhn et al.,

2012) and the mouse drug targets available in the STITCH data-

base. DrugBank contains experimentally validated drug targets
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and includes information on the mode of action. Similarly,
STITCH accumulates information about human and animal

drug targets from multiple sources and includes the mode of
action, if known. For our evaluation, we select only drug targets

for which the mechanism of action is inhibition, as we aim to test
whether these provide a similar phenotypic response as a knock-

out/knock-down of the target.
For each drug, we identify the similarity between its pharma-

cological effects and the phenotypes observed in mouse models

with a single gene deletion and rank the mouse models, for

each drug, based on their similarity to the drug effect profile.
We then evaluate the resulting ranks using positive instances of

drug-target interactions, and Figure 2 shows the resulting ROC
curves for the three main datasets we used. The ROCAUC values

are 0:739� 0:011 for mouse targets (STITCH), 0:709� 0:009 for
human targets (STITCH) and 0:723� 0:040 for human targets

(DrugBank). We further restricted the STITCH evaluation
datasets for human and mouse to high-confidence drug–protein

interactions. With a confidence cutoff of 0.5, the resulting AUCs

are 0:760� 0:010 for human targets and 0:797� 0:016 for mouse
targets, and with a cutoff of 0.7, the AUCs are 0:762� 0:011
for human and 0:820� 0:024 for mouse targets.

3.2 Targets in different protein families can be predicted

with different accuracy

We further investigated whether our approach is more successful

for particular protein families or particular drug categories. For
this purpose, we performed our analysis for each of the top-level

InterPro (Mulder et al., 2005) protein families. To maintain stat-

istical significance, we restrict our analysis to protein families
in which we could identify45 positive instances from our evalu-

ation datasets, resulting in only six protein families for which

we perform the analysis using the two STITCH-based evaluation

datasets. The resulting ROCAUCs are shown in Table 1 and
Figure 3. The ROC AUCs range from 0:222� 0:339 (for

NAD(P)-binding domain proteins) to 0:927� 0:083 (for

Steroid hormone receptor proteins).
We further performed our analysis for different categories of

drugs to test whether our approach is more successful for some
classes of drugs than for others. For this purpose, we divide

drugs into different groups based on their top-level category in

the anatomical therapeutic classification (Miller and Britt, 1995)
and evaluated each group individually (Supplementary Table S1

and Supplementary Fig. S1).

3.3 Example prediction: diclofenac

One example of our method’s predictive power is the identifica-

tion of similar effects between PPARg (MGI:97747) and the

drug diclofenac (STITCH:000003032). Diclofenac is a non-
steroidal anti-inflammatory drug acting primarily as a cycloox-

ygenase (preferential COX-2) inhibitor and is used to treat a

variety of acute and chronic pain and inflammatory conditions.
In recent years, additional modes of action have been discerned

which in many cases have no known mechanism. For example,

diclofenac has been shown to inhibit the thromboxane-prosta-
noid receptor, affect arachidonic acid release and uptake, inhibit

lipoxygenase enzymes and activate the nitric oxide-cGMP anti-

nociceptive pathway (Gan, 2010). Using our approach, we have
compared the drug effect profile of diclofenac across the
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Fig. 2. The ROC curves for our three evaluation datasets. DrugBank

consists of experimentally verified and manually annotated drug-target

interactions. STITCH integrates drug-target relations frommultiple data-

bases (including DrugBank), applies text mining and network-based in-

ference approaches to infer drug-target relations. We used human–mouse

orthology available from the MGI database to map human proteins in

the DrugBank and STITCH (human) dataset to mouse proteins

Table 1. The ROCAUC values we obtain for different protein families, including the 95% confidence interval

InterPro family ROCAUC

(STITCH mouse)

ROCAUC

(STITCH human)

ROCAUC

(DrugBank)

G protein-coupled receptor, rhodopsin-like (IPR000276) 0:800� 0:028 0:758� 0:030

Peptidase S1A, chymotrypsin-type (IPR001314) 0:892� 0:089 0:874� 0:099

Steroid hormone receptor (IPR001723) 0:916� 0:078 0:927� 0:083

Voltage-dependent potassium channel (IPR003091) 0:485� 0:119 0:486� 0:236 0:477� 0:278
Neurotransmitter-gated ion-channel (IPR006201) 0:581� 0:074 0:581� 0:226

NAD(P)-binding domain (IPR016040) 0:567� 0:375 0:336� 0:262 0:222� 0:339

Note: We only analyzed protein families with45 positive drug-target associations.
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gathered phenotypic data and found a high similarity to pheno-

types produced by Pparg knockout mice. Using our method,
49% of the information content associated with diclofenac’s

pharmacological effects can be explained through the hypothesis
that it inhibits Pparg or its pathway in mice. Pparg is a member

of the steroid hormone receptor superfamily, which includes
the estrogen and thyroid hormone receptors, and regulates the

expression of genes involved in inflammation and lipid homeo-

stasis. Despite its anti-inflammatory indications, diclofenac is
associated with the induction of dermatitis, alopecia, erythema,

exfoliative dermatitis and eczema, along with hepatitis and other
widespread systemic phenotypes. Several of these phenotypes

can also be identified in mice (Harries and Paus, 2009; Wahli,
2002). In 2002, diclofenac was implicated as a partial agonist

of Pparg, acting as a competitive antagonist and inhibiting

PPARg signaling at normal therapeutic doses (Adamson et al.,
2002), suggesting that a significant proportion of diclofenac’s

side effects might be explained through this mechanism. The
apparent pro-inflammatory effects of diclofenac seen, for

example, in the skin are, therefore, likely to be a consequence
of the effects on the Pparg pathway in non-immune cells, and

recent research suggests that it is the effect on the inhibition

of PPARg in the pilosebaceceous unit itself that underlies pri-
mary cicatricial alopecia, rather than a primary effect on the

inflammatory response (Karnik et al., 2009).
We would expect the effects of diclofenac to be concordant

with loss of function phenotypes in mutants of its established
target, cyclooxygenase 2 (COX-2). A substantial proportion

(46%) of the IC associated with the side effects of diclofenac
can be explained through COX-2 (Ptgs2) knockout phenotypes

in mice. For example, the main gastrointestinal effects of diclo-
fenac (inflammation, gastritis, constipation, upper GI tract pain)

are consistent with the phenotypes of COX2 knockout mice, as

evidenced by the sensitization to inflammatory processes such as
induction of colitis, the induction of GI edema and peritonitis

seen in COX-2 knockout mice (Morteau et al., 2000).

4 DISCUSSION

4.1 Choice of semantic similarity measure

The semantic similarity measure we developed for our application

has some disadvantages in comparison with symmetric measures,

and these are evidenced in the low performance of our approach

for low false-positive rates. In particular, for very low false-posi-

tive rates, our approach performs worse than random. This lack

of performance is a result of our similarity measure, which does

not take mismatches between phenotypes into consideration but

is based exclusively on coverage. A small portion ofmouse genes is

associated with a large number of phenotypes which almost

always cover a large portion of observed drug effects for any

drug, and a small portion of drugs is similarly associated with

a large number of drug effects in SIDER that covermost observed

mouse model phenotypes. For example, the genes Gt(ROSA)

26Sor (gene trap ROSA 26, Philippe Soriano) (MGI:104735),
phosphatase and tensin homolog (Pten, MGI:109583), apolipo-
protein E (Apoe MGI:88057) or leptin receptor (Lepr,

MGI:104993) are associated with a large number of phenotypes

covering most branches of theMP and are ranked among the first

mouse genes for most compounds in SIDER. Similarly, drugs

such as pregabalin (STITCH:005486971) or fluoxetine

(STITCH:000003386) are associated with a large number of

drug effects in SIDER and are ranked in the first places for

most mouse genes. These artifacts of our similarity measure

result in a decreased performance when analyzing the complete

dataset and not applying any additional filtering. In particular,

the highest-ranking associations resulting from our approach are,

in most cases, false positives due to the artifacts generated by the

similarity measure, and these artifacts result in a worse-than-

random performance in the ROC analysis for low false-positive

rates.
However, our measure also has significant advantages over

symmetric similarity measures. We have evaluated commonly

applied groupwise similarity measures (Pesquita et al., 2009)
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for our dataset, in particular the Jaccard index and the SimGIC

measure. We found the results to be significantly worse than

when applying our measure [ROCAUC values are 0.579 for

STITCH (mouse) and 0.566 for STITCH (human); raw data

available on project Web site]. The major difference between

our similarity measure and groupwise measures such as

SimGIC is the symmetry property. In particular, symmetric

groupwise similarity measures score mismatches negatively. In

our application, we compare large sets of phenotypes observed

as drug effects with the phenotypes observed for single gene de-

letions in mice. If different drug effects are caused by different

proteins with which the drug interacts, we expect only a small

portion of the effects to be covered by the phenotypes of a single

gene knockout. Negatively scoring all non-matching drug effects

introduces noise that increases with the number of drug effects

and leads to the significantly lower performance in the ROC

analysis. Furthermore, symmetric similarity measures are applic-

able when comparing essentially similar entities. As most

chemical compounds in SIDER interact with many proteins,

we compare sets of phenotypes resulting from perturbations of

many proteins (drug effects) with sets of phenotypes resulting

from perturbations of single proteins, and in the case of compar-

ing non-similar entities such as drug effects and knockout pheno-

types, our non-symmetric similarity measure seems to perform

better than symmetric groupwise measures.

4.2 Applications in drug repurposing and target discovery

The results of our analyses support the hypothesis that the sys-

tematic analysis of similarity between drug effects and mouse

model phenotypes can be used to provide insights into drug

actions. Although experimental validation is required to deter-

mine the suitability of such an approach for the discovery of

novel drug targets, our computational evaluation shows that,

at least for some protein families, our approach is highly success-

ful (up to 0:927� 0:083 ROCAUC), and therefore may prove

promising for integrative approaches toward computational drug

repurposing. Our approach is less successful for some protein

classes, such as voltage-dependent potassium channel or

NAD(P)-binding domain proteins. However, our evaluation

datasets contain relatively few positive instances for such classes,

indicated by the confidence intervals in Figure 3.
Our work further confirms the hypothesis of Kuhn et al.

(2013), who mapped 116 mouse phenotype terms to drug effect

terms and evaluated 398 knockout mice in an effort to identify

proteins that underlie particular drug effects. Kuhn et al. formu-

lated the hypothesis ‘that a deletion of a protein in mice is likely

to elicit the same phenotype as inhibiting the respective ortholog

in humans despite species and methodology differences’.

However, while Kuhn et al. used this approach in the context

of investigating the role of proteins in eliciting drug side effects,

our approach provides evidence for the potential of applying

mouse models for revealing novel drug-target interactions.

Additionally, we systematically evaluated the whole mouse

phenome and provide a ranked list of candidate drug targets

spanning all drugs in the SIDER database and every protein

for which phenotypes have been created in the mouse.
Integrative approaches to drug repurposing and drug target

identification take advantage of multiple independent data

sources to provide high-confidence predictions of novel indica-

tions or novel targets for known drugs (Dudley et al., 2011;

Hurle et al., 2013). Our approach will be most useful as a com-

ponent in integrative approaches to drug repurposing or target

identification. In both tasks, the use of animal models is cur-

rently largely under-represented despite its potential to provide

novel, independent information that strengthens already success-

ful systems (Hurle et al., 2013).
Furthermore, our method is neither based on the ‘guilt-by-

association’ principle (Gillis and Pavlidis, 2012) as is applied in

side effect-based approaches to drug repurposing (Campillos

et al., 2008) or other similarity-based approaches (Gottlieb

et al., 2011) nor is our method based on data mining clinical

records (Tatonetti et al., 2012); instead, it uses experimental

data from genetically modified animal organisms. Our evalu-

ation demonstrates that our method may even be used independ-

ently for some categories of targets, particularly steroid hormone

receptors, although additional experimental validation is

required to further support this hypothesis.
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