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Abstract

Insecticide resistance in mosquito populations threatens recent successes in malaria pre-

vention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and

direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to

avert a public health catastrophe. Here, applying a combination of microsatellite analysis,

whole genome sequencing and targeted sequencing of a resistance locus, we elucidated

the continent-wide population structure of a major African malaria vector, Anopheles funes-

tus. We identified a major selective sweep in a genomic region controlling cytochrome

P450-based metabolic resistance conferring high resistance to pyrethroids. This selective

sweep occurred since 2002, likely as a direct consequence of scaled up vector control as

revealed by whole genome and fine-scale sequencing of pre- and post-intervention popula-

tions. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-

associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through

southern Africa to near fixation, in contrast to high polymorphism levels before interventions,

conferring high levels of pyrethroid resistance linked to control failure. Population structure

analysis revealed a barrier to gene flow between southern Africa and other areas, which

may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other

regions. By identifying a genetic signature of pyrethroid-based interventions, we have dem-

onstrated the intense selective pressure that control interventions exert on mosquito popula-

tions. If this level of selection and spread of resistance continues unabated, our ability to

control malaria with current interventions will be compromised.
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Author Summary

Malaria control currently relies heavily on insecticide-based vector control interventions.

Unfortunately, resistance to insecticides threatens the continued effectiveness of these

measures. Metabolic resistance, caused by increased detoxification of insecticides, pres-

ents the greatest threat to vector control, yet it remains unclear how these mechanisms are

linked to underlying genetic changes driven by the massive selection pressure from these

interventions, such as the widespread use of Long Lasting Insecticide Nets (LLINs) across

Africa. Therefore, understanding the direction and speed at which this operationally

important form of resistance spreads through mosquito populations is essential if we are

to get ahead of the ‘resistance curve’ and avert a public health catastrophe. Here, using

microsatellite markers, whole genome sequencing and fine-scale sequencing at a major

resistance locus, we elucidated the Africa-wide population structure of Anopheles funestus,
a major African malaria vector, and detected a strong selective sweep occurring in a geno-

mic region controlling cytochrome P450-based metabolic pyrethroid resistance in this

species. Furthermore, we demonstrated that this selective sweep is driven by the scale-up

of insecticide-based malaria control in Africa, highlighting the risk that if this level of

selection and spread of resistance continues unabated, our ability to control malaria with

current interventions will be compromised.

Introduction

Scaling up of malaria prevention and treatment has averted over 660 million cases of malaria

since 2000 [1]. The vast majority of this reduction has come from mosquito control with pyre-

throid insecticide-based interventions, primarily the use of long lasting insecticide-treated

bednets (LLINs) and, to a lesser extent, indoor residual spraying (IRS). Resistance to insecti-

cides in major malaria vectors such as Anopheles funestus threatens the continued success of

these interventions. Unless resistance is managed, the massive reduction of malaria transmis-

sion from scaling up these interventions could be reversed [2]. A key prerequisite for resistance

management is to understand the evolution of insecticide resistance to predict the speed and

direction of spread of resistance and provide vital information to implement successful control

strategies [3]. There are multiple mechanisms of insecticide resistance, these include changes

to insecticide target molecules that render the insecticide unable to bind, behavioural changes

leading to the avoidance of insecticide contact, thickening of the insect’s cuticle to prevent the

insecticide reaching its target and detoxification of the insecticide before it reaches its target

(metabolic resistance). Of these, metabolic resistance has the greatest operational significance

[3, 4], yet it remains unclear how mosquito populations exhibiting these mechanisms respond

to insecticide-based interventions including LLINs. Selective sweeps associated with target-site

resistance have been assessed in mosquito species [5, 6] but no such assessment has been made

for metabolic resistance. In the major malaria vector An. funestus, pyrethroid resistance is

mainly conferred by metabolic resistance associated with a major quantitative trait locus

(QTL) at which two duplicated cytochrome P450 monooxygenases (CYP6P9a and CYP6P9b)

are the main resistance genes [7] [8]. The predominance of metabolic resistance in An. funestus
makes this species very suitable to assess metabolic resistance-based evolutionary responses of

mosquitoes to the massive scale up of pyrethroid-based vector control interventions across

Africa.

In the context of increasing reports of insecticide resistance in malaria vectors such as An.

funestus across Africa [9–16], it is important to determine the relative contributions to this of
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gene flow and of the autochthonous appearance of insecticide resistance. Previous studies sug-

gest significant genetic structure among An. funestus populations across Africa [17]. Whether

such differences in genetic structure explain the contrasting insecticide resistance patterns

seen in this species [9–16] and could help predict the speed and direction of spread of resis-

tance remains to be determined.

Here, using microsatellite analysis, whole genome sequencing and fine-scale sequencing at

a resistance locus, we elucidated the Africa-wide population structure of An. funestus and

detected a strong selective sweep occurring at a major cytochrome P450-based pyrethroid

resistance locus. Moreover, we demonstrated that this selective sweep is driven by the scale-up

of insecticide-based malaria control in Africa, highlighting the risk that if this level of selection

and spread of resistance continues unabated, our ability to control malaria with current inter-

ventions could be compromised.

Results

1-African-wide microsatellite diversity shows evidence of positive

selection on An. funestus chromosome 2R

Analysis of genetic diversity at 11 microsatellites from across the An. funestus genome sampled

in six populations from West (Ghana and Benin), Central (Cameroon), East (Uganda) and

southern Africa (Malawi and Mozambique) revealed reduced diversity in two microsatellites

at the telomeric end of chromosome arm 2R (Fig 1A). These microsatellites; AFUB6, located

in a genomic region spanning a pyrethroid resistance QTL (rp1) and FunR, located in the

same QTL in the 5’ un-translated region of the pyrethroid resistance gene CYP6P9a (Fig 1B),

showed few alleles and low heterozygosity (S1 Table).

We hypothesised that this low diversity was due to a selective sweep in this QTL region

driven by pyrethroid-based vector control interventions. To further localise the putative

sweep, we genotyped 5 additional microsatellites upstream and downstream of FunR and

AFUB6 on chromosome 2R. This revealed that the reduced diversity was restricted to the two

markers within rp1 (S2 Table). Consistent with our hypothesis, the lowest gene diversity at

FunR was seen in the two southern African populations from Malawi and Mozambique (Fig

1A), which also show the highest levels of pyrethroid resistance [4, 18].

Continent-wide population structure of Anopheles funestus. To investigate the popula-

tion structure of An. funestus throughout Africa, we removed the two microsatellites putatively

under selection to analyse the remaining 9 neutral markers. Genetic divergence (Fst) among

countries ranged from 2.9% for Ghana-Uganda to 10.8% for Uganda-Mozambique (S2 Table).

Relative divergence among samples from different countries was in broad agreement with

their geographical locations, with a major exception: Uganda clustered with Ghana and Cam-

eroon (Fig 1C; Fst 2.9–4.1%) while Benin formed an outlier from the other samples (Fig 1C; Fst
4.9–9.6%). The southern African populations from Malawi and Mozambique were both highly

divergent from the other samples (Fig 1C; Fst 6.5–10.8%) though, interestingly, also from each

other (6.3%).

The impact of the loci putatively under selection on chromosome 2R was investigated by

repeating the analyses on two datasets, one comprising 8 microsatellites on chromosome 2R

and one comprising 8 microsatellites on the other chromosomes (S1 Fig). The most striking

effect of analysing 2R alone is on Ghana, which becomes highly divergent from all other popu-

lations including Benin, the other West African population (S1A Fig; Fst 14.4–21.9%). When

the 8 microsatellites on the other chromosomes are analysed, the pattern of differentiation is

more aligned with geographical distance between all samples, with Ghana samples less differ-

entiated from Benin (Fst = 4.3%) than with the 2R markers (Fst = 21.9%) (Fig 1C; S1B Fig). The
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major divergence between southern Africa and other populations is maintained (S1 Fig). This

apparent discontinuity between southern and the rest of Africa is consistent with the contrast-

ing resistance patterns and mechanisms seen among An. funestus populations [17] suggesting

possible barriers to gene flow between regions. This is supported for example by the complete

absence throughout southern Africa of the DDT 119F resistance allele of the glutathione-S

transferase gene GSTe2, which is predominant in West/Central Africa [15, 19].

Bayesian analysis of population structure was also undertaken on the 9 putatively neutral

loci. The most likely number of clusters estimated from the data was 2, and represents the

major divergence between southern Africa and elsewhere (Fig 1D). When analyses were

repeated using 8 2R microsatellites and 8 non-2R microsatellites, the most likely number of

clusters were 3 and 2, respectively. Analysis of the cluster assignment probabilities (to 3 clus-

ters) for all three datasets showed that Malawi and Mozambique were consistently assigned to

their own ‘southern’ cluster, even with the 2R marker set (S3 Table). By contrast, the other

populations were more variable, and affected by markers on 2R. For instance, using non-2R

markers Ghana and Benin were assigned to the same cluster (44% and 41%, respectively), but

using 2R markers they were clearly assigned to separate clusters (Ghana cluster 1: 76% and

Benin cluster 2: 65%).

Overall, the analyses are consistent in indicating that gene flow is restricted between south-

ern and the rest of Africa. They also suggest that selection on chromosome 2R may be indepen-

dent among different geographical regions but appears to be common to both southern

African An. funestus populations.

Fig 1. Africa-wide population structure analysis. A) Gene diversity of 11 microsatellites from throughout the genome, showing a loss of diversity at the

telomeric end of chromosome 2R. B) Gene diversity of 8 microsatellites on chromosome 2R (including AFUB6, FunR and FunO) shows that the loss of

diversity is restricted to AFUB6 and FunR, the microsatellites located near the pyrethroid resistance QTL rp1. C) Neighbor-Joining tree based on pairwise

Fst among population samples, estimated using 9 neutrally evolving microsatellites from throughout the genome (excluding AFUB6 and FunR on

chromosome 2R, which may be evolving under positive selection). D) Barplot of assignment probabilities of individual genotypes to two ancestral clusters

(the most likely number estimated from the data) estimated using Bayesian population structure analysis under an admixture model. Each bar is an

individual genotype for 9 neutrally evolving microsatellites from throughout the genome (excluding AFUB6 and FunR). In panel A, points from left to right

represent the following microsatellites: FunQ (on chromosome X); AFUB6, FunR, FunO (on 2R); AFUB11, FunL, AFUB10 (on 2L); AFND7, AFND19 (on

3R); FunF and AFUB12 (on 3L). In panel B, points from left to right represent AFUB3, AFND40, AFUB6, FunR, AFND6, AFND30, AFND32 and FunO (all

on 2R).

doi:10.1371/journal.pgen.1006539.g001
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2-Fine scale genomic sequence analysis confirms a selective sweep

associated with pyrethroid resistance

Patterns of polymorphism across the 120kb rp1 genomic region. To assess the signature

of a selective sweep associated with pyrethroid resistance, we carried out fine-scale polymor-

phism analysis across a 120kb genomic region spanning the rp1QTL in two highly pyrethroid

resistant populations (Malawi and Mozambique) and a moderately resistant population (Cam-

eroon). This revealed markedly reduced polymorphism in the vicinity of CYP6P9a (Fig 2A;

S2A and S2B Fig), a key pyrethroid resistance gene, in Malawi and Mozambique but not in

Cameroon. The greatest loss of diversity was closest to CYP6P9a at BAC25 (-9kb) (Fig 2A; S4

Table), which also produced geographical clustering based on an ML-tree (Fig 2B). The extent

of this low polymorphism in Malawi is characterised by the complete absence of polymorphic

sites at +61kb from CYP6P9a (BAC95), only 1 polymorphic site at +86kb, and 2 polymorphic

sites at +36kb from CYP6P9a.

Analysis of the population from Cameroon shows that the relative diversity remains high

across the rp1 genomic fragment although a slight reduction is observed at CYP6P9a compared

to other loci. Individual analysis of these loci shows that at -34kb from CYP6P9a (BAC 0) high

haplotype diversity is noted. No predominant haplotype is observed with the most common

haplotype, “CAM1”, having a frequency of 13.1% (5/38) (S2E Fig). A high proportion of haplo-

types were singletons (16 out of 23) even in Malawi (7) and Mozambique (4). Additionally,

there was a high number of mutational steps observed between haplotypes from each (>12) or

between (>20) country (S2E Fig). A drastic change is observed closer to the CYP6P9a at -9kb

(BAC25) where a strong signature of positive directional selection is observed in both Malawi

and Mozambique. This reduced haplotype diversity is shown by the presence of a highly pre-

dominant haplotype MAL/MOZ1 only found in Malawi and Mozambique with a frequency of

92.8% (S3F Fig).

Maximum likelihood phylogenetic trees and haplotype network of rp1. Construction of

Maximum likelihood (ML) phylogenetic trees of the five fragments further highlighted the

reduced diversity close to CYP6P9a in the resistant populations of Malawi and Mozambique.

The ML tree of the -34kb (BAC0) shows a high diversity of haplotypes for each of the three

countries (S2C Fig), while the profile is very different at -9kb from CYP6P9awhere all

sequences from Mozambique and Malawi belong to a major haplotype while the Cameroon

sample retained its high diversity (S2D Fig). Analysis of the TCS haplotype network confirms

profiles obtained with the maximum likelihood phylogenetic trees for the 5 loci from -34kb to

+86kb from CYP6P9a (S2E and S2F Fig). In general, Malawi and Mozambique formed their

own clusters, with reduced genetic diversity shown by the fact that haplotypes from both coun-

tries had significantly fewer mutational steps between them (1–3 steps), while the more suscep-

tible samples formed their own clusters with higher mutational steps (4–16 steps) for almost

all of the BACs except for +86 (BAC 120).

Genetic diversity of the CYP6P9a pyrethroid resistance gene across Africa. To further

confirm whether the selective sweep was driven by pyrethroid resistance across Africa, the full

1,965 bp of the CYP6P9a resistance gene was sequenced for a total of 59 mosquitoes from six

countries (Benin, Cameroon, Ghana, Malawi, Mozambique and Uganda). Analysis of the

genetic diversity of CYP6P9a revealed signatures of strong directional selection in Malawi and

Mozambique but not in other regions (S5 Table; S3A Fig). In Malawi, only 5 polymorphic sites

are observed (S5 Table; S3A Fig) and an AA indel in the 5’ UTR was found mainly in Southern

Africa and not in the other countries. Nucleotide diversity (π) was lowest in Malawi (π =

0.0008) and Mozambique (0.0011), compared to Uganda (0.0015), Ghana (0.0020), Benin

(0.0022) and Cameroon (0.0029) (S5 Table).

Genomic Footprints of Malaria Vector Control
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Maximum likelihood phylogenetic tree and haplotype network for CYP6P9a. Analysis

of the ML tree of CYP6P9a further provided evidences of selection acting on this gene in

southern Africa in contrast to other regions. CYP6P9a from Malawi and Mozambique formed

a defined clade from the other four populations, dominated by a single haplotype (MAL/

MOZ23-H25), which is the allele recently shown to exhibit the highest catalytic efficiency in

metabolising pyrethroids (S3A Fig) [20]. Elsewhere, Benin and Ghana did not form a common

clade despite their geographical proximity. Benin formed a cluster with Cameroon while

Fig 2. Africa-wide analysis of genetic diversity across the rp1 pyrethroid resistance locus. A) Genetic diversity (pi) across the 120kb rp1 in

Cameroon (orange), Malawi (blue), and Mozambique (green). B) Phylogeny of the ‘BAC25’ fragment (located 25kb along the BAC sequence and 9kb

upstream of the CYP6P9a gene), which shows the most extreme difference in diversity between Cameroon (orange) and southern populations Malawi

(blue) and Mozambique (green), which form a single clade. C) Phylogeny of the CYP6P9a gene sampled from throughout Africa, showing clear

geographical divergence between southern Africa (Malawi and Mozambique; 100% bootstrap support), East Africa (Uganda; 87% bootstrap support) and

West/Central Africa (Ghana, Benin, Cameroon; 78% bootstrap support). D) Haplotype network for Non-synonymous nucleotide variants in CYP6P9a. Light

blue = haplotype shared between Malawi and Mozambique (MAL/MOZ); pink = haplotype shared between Benin, Cameroon and Ghana (BN/CAM/GH);

teal = Benin (BN); red = Ghana (GH); orange = Cameroon (CAM); green = Mozambique (MOZ); blue = Malawi (MAL); purple = Uganda (UG). The size of

the shapes is proportional to the frequency of the haplotype and numbers on each branch show the mutational steps separating haplotypes.

doi:10.1371/journal.pgen.1006539.g002

Genomic Footprints of Malaria Vector Control

PLOS Genetics | DOI:10.1371/journal.pgen.1006539 February 2, 2017 6 / 22



Ghana was closer to Uganda, but they did not form a single cluster (Fig 2C; S3B Fig). All hap-

lotypes from Uganda formed a cluster intermediate between Southern, West and Central Afri-

can countries, which correlates well with the genetic structure obtained using microsatellite

loci and reflects the geographical position of Uganda in East Africa, between Southern and

West/Central Africa.

Genetic differentiation of the CYP6P9a gene. An index of genetic differentiation based

on the nucleotide polymorphism (KST) showed that the two Southern African populations of

Malawi and Mozambique are genetically close (KST = 0.045; P<0.05). However, these highly

pyrethroid resistant populations show extensive differentiation from all other populations,

with KST estimates ranging from 0.347 (Malawi vs. Benin; P<0.001) to 0.574 (Mozambique vs.
Uganda; P<0.001). The other four populations exhibit lower levels of genetic differentiation

between them than seen between the two southern African populations, although in accor-

dance to geographic proximity, the Benin samples are closer to Cameroon compared to the

rest (S6 Table; S3D Fig). However, despite been geographically close to Benin in West Africa,

the Ghana sample is more differentiated to Benin (KST = 0.50) than the Cameroon populations

(KST = 0.13) in line with microsatellite results.

3-Assessing the role of insecticide-based interventions in the selective

sweep in southern Africa

Due to the stronger signature of selection observed in the highly pyrethroid resistant popula-

tions of southern Africa, we aimed to establish if insecticide-based interventions were driving

this selection. Mosquitoes collected in Malawi and Mozambique in 2002, predating the scaling

up of malaria control interventions in southern Malawi and southern Mozambique were com-

pared to mosquitoes collected in the same areas in 2009–2010 to determine whether the selec-

tive sweep coincided with the scale-up of pyrethroid-based vector control interventions that

occurred over this period.

Microsatellite genetic diversity pre- and post-intervention. When the microsatellite

diversity of pre- and post-intervention samples was compared, the only major variation occurs

on the 2R chromosome, with higher genetic diversity in pre-intervention samples (H = 0.45)

(Fig 3A). As already seen for the Africa-wide analysis, reduced diversity was detected on the

2R chromosomes around the rp1 notably for the FunR, AFUB6 and AFND6, markers located

close to the pyrethroid resistance gene. Per-locus gene diversity was compared among pre-

and post-intervention samples. In both Malawi and Mozambique, the FunR locus showed a

striking reduction in gene diversity between collection time-points, from 0.45 in 2002 to

0–0.15 in 2009–2011. The fact that this rp1 region is the only area of the genome with a signifi-

cant change of diversity level between pre and post-intervention samples further supports the

recent occurrence of a selective sweep associated with implementation of vector control

interventions.

Signature of selective sweep around 120kb genomic region of rp1 in southern Africa.

Fine-scale sequence analysis of polymorphism in the 120kb genomic region spanning the rp1
locus revealed a loss of genetic diversity in the post-intervention samples occurring most

strongly around the CYP6P9a resistance gene (S3B Fig; S4 Table). In contrast, samples col-

lected from both Cameroon and pre-intervention in southern Africa showed no reduction of

diversity across the entire rp1 region (S4A and S4B Fig). Additional mosquitoes collected

from across Malawi were sequenced and showed the selective sweep is consistent throughout

southern Africa post-intervention (Fig 3B). A haplotype network of the closest fragment to

CYP6P9a, BAC25 (-9kb), revealed the striking difference caused by control interventions. 22

unique haplotypes (with up to 23 mutational steps) were observed in pre-intervention

Genomic Footprints of Malaria Vector Control
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samples, but only 2 in post-intervention samples (Fig 3C), which showed evidence of signifi-

cant positive directional selection using both Tajima’s D (-2.10, -2.97) and Fu and Li’s D�

(-2.94, -3.45) (S4 Table). The predominant post-intervention haplotype comprises 95% (68/

72) of the sequences, highlighting the risk of a resistance allele becoming rapidly fixed over

an 8 year period, from an original frequency of only 7.5%. Additionally, pre-intervention

Fig 3. The selective sweep at rp1 in southern Africa coincides with the scale-up in pyrethroid use in malaria control. A) Gene diversity at

microsatellites on chromosome 2R in mosquitoes collected before widespread pyrethroid-based intervention in Malawi, 2002 (purple) and Mozambique,

2002 (red), and ‘post-intervention’ in Malawi, 2010 (green) and Mozambique, 2009 (yellow). B) Fine-scale nucleotide sequence analysis of the 120kb rp1

locus in Cameroon (orange) or pre-intervention samples (Malawi (CKW2002) = brown and Mozambique (MOZ2009) = pink) compared to Post intervention

samples from Chikwawa (green), Salima (light blue), Nkhotakota (blue) Malawi, Chokwe (purple) Mozambique, and Kaoma (dark blue) Zambia. C) TCS

haplotype network at ‘BAC25’. Haplotypes including sequences from more than one location are denoted by an H and include the frequency, haplotypes

from one location Malawi (blue) and Mozambique (yellow) are only present in pre-intervention samples. D) Change in average pairwise diversity (Pi) in the

CYP6P9a gene pre- vs. post-intervention in Malawi and Mozambique. E) Phylogeny of CYP6P9a sequences including both Malawi (Ckw) and

Mozambique (Moz) shows that post-intervention samples (red) are almost completely homogenous while pre-intervention samples (black) are diverse.

doi:10.1371/journal.pgen.1006539.g003
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samples had a greater divergence and diversity based on a ML phylogenetic tree and higher

numbers of singleton unique haplotypes, while post-intervention samples were nearly

homogenous (S4C–S4F Fig).

Comparative analysis of CYP6P9a genetic diversity pre and post intervention. Analysis

of the genetic diversity of CYP6P9a in pre- and post-intervention samples revealed this

important pyrethroid resistance gene is under positive selection. Post-intervention samples

show a signature of positive directional selection: negative Tajima’s D (-2.43, -2.54) and Fu

and Li’s D� (-2.39, -2.25) (S5 Table); reduced pairwise diversity (Fig 3D) and few polymor-

phic sites (17 combined) (S5A and S5B Fig). In contrast, pre-intervention samples have 68

combined polymorphic sites, higher diversity, and no signature of selection. The ML tree

revealed that pre-intervention samples are highly diverse in contrast to post-intervention

samples, which are highly homogenous (Fig 3E). The contrast was also evident from the hap-

lotype network, with a predominance of singleton haplotypes pre-intervention (82.5%) com-

pared to only 7.5% post-intervention and the presence of a predominant haplotype in post-

intervention samples (67.5%) corresponding to the resistance haplotype previously shown to

be driving resistance in southern Africa (S6A Fig) [8]. When an Africa-wide comparison is

performed for CYP6P9a polymorphisms, both pre-intervention samples are divergent and

diverse while post-intervention samples form a cluster with low divergence (S6B Fig). Fur-

ther analysis of the polymorphisms of the CYP6P9a coding region detected key amino acid

changes shown to provide the highest catalytic efficiency when metabolising pyrethroids

(S5B Fig) [20].

4-Whole genome sequencing validates the selective sweep at the rp1

locus as the major genomic difference between pre- and post-

intervention mosquitoes

Pooled template sequencing was carried out on two pools of mosquito genomic DNA: one

from mosquitoes collected in 2014 and one from mosquitoes collected in 2002 in Malawi

(S7 Table). Sequences were aligned to the FUMOZ reference genome (S8 Table) and strin-

gent filtering performed to remove SNPs at the extremes of coverage depth (S9 Table). Anal-

ysis of a total of 979,808 variant sites genotyped in both samples detected 3,078 variant sites

(on 368 genomic scaffolds) with significantly different allele frequencies between 2002 and

2014 collections. A significant correlation was observed between the number of significant

sites plotted against total scaffold length (p<<0.01 for both Pearson’s and Spearman’s tests)

(Fig 4A). However, a number of outlier scaffolds appear to be enriched for significant sites.

The most extreme of these is scaffold KB669169, with more than 400 significant variants.

This scaffold contains the rp1 locus and most of the significant sites are clustered around

this region (Fig 4B) with a striking loss of diversity between 2002 and 2014 evident across

the locus (Fig 4C and 4D). This valley of reduced variability around rp1 is the typical signa-

ture of selective sweeps as previously observed in other pool-seq studies [21, 22]. In no other

scaffold was the signature so striking (S7 Fig), which validated the results of our microsatel-

lite and targeted sequencing analyses. The rp1 region of scaffold KB669169 contains a num-

ber of sequencing gaps. To ensure this did not affect our conclusions, sequence data were

additionally aligned to the sequenced 120kb BAC clone containing rp1 [7]. This confirmed

the results observed in the whole genome analysis (Fig 4E; S8 Fig). The 2014 post-interven-

tion sample exhibits a pattern similar to FUMOZ (the pyrethroid resistant laboratory col-

ony) at rp1with reduced diversity spanning the cytochrome P450 cluster including the

duplicated CYP6P9a and CYP6P9b genes, whereas the 2002 pre-intervention sample is

highly diverse across the locus.
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Discussion

In order to help maintain the continued success of current insecticide-based malaria control

interventions, this study has established the Africa-wide population structure and the full

genomic signature of pyrethroid-based interventions in a major malaria-transmitting mos-

quito providing key evidence of the evolutionary response of mosquito populations to the mas-

sive scale up of insecticide-based interventions in Africa.

Fig 4. Genome-wide analysis of selection on the An. funestus genome. A) Sites with a significantly different allele frequency between 2002 and

2014 per genomic scaffold plotted against scaffold length identifies scaffold KB669169 as an outlier in which significantly skewed sites are over-

represented. B) Plot of P-values of the difference in allele frequency for sites on scaffold KB669169. Grey dotted lines indicate the 120kb region

represented by a sequenced BAC clone containing the rp1 locus. C) Mean frequency of non-reference alleles (for 101 adjacent variant sites) on scaffold

KB669169. D) Allele frequencies as in C, showing a magnified region spanning the rp1 locus. E) Mean frequency of non-reference alleles (for 51 adjacent

variant sites) on the BAC clone containing the rp1 locus. Positions of genes in the P450 cluster are indicated and CYP6P9a and CYP6P9b are labelled.

doi:10.1371/journal.pgen.1006539.g004
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1-Patterns of genetic structure across An. funestus populations support

the presence of barriers of gene flow

This study revealed that southern African populations of An. funestus are more genetically dif-

ferentiated to other populations as they always form a unique cluster compared to other Afri-

can regions based on both Bayesian analyses and Fst estimates. The population from Uganda

appears to be intermediate between southern and West/Central Africa. This result is similar to

patterns of genetic structure previously reported for this species [17]. Patterns of genetic struc-

ture observed in this study support the contrast in resistance patterns between populations of

An. funestus and suggest the presence of barriers of gene flow between populations of this spe-

cies. The causes of these barriers remain unknown although it could be associated with the

absence of An. funestus around the Equatorial belt, or the presence of the Rift Valley which

affects the population genetic structure of An. gambiae [23]. Such hypothesis will need to be

validated by assessing more populations, e.g. from both sides of the Rift Valley. The patterns of

gene flow described here for An. funestus give an indication on the risk and speed of spread of

insecticide resistance alleles between these populations. This is further supported by the obser-

vation that the 119F resistance allele of the GSTe2 gene conferring DDT resistance probably

arose in West or Central Africa, where it is common, but remains absent from southern Africa,

despite selection pressure from DDT use [19].

2-Pyrethroid resistance is associated with a signature of positive

directional selection

This study identified a major selective sweep on the 2R chromosomal arm, its location coincid-

ing with that of the main pyrethroid-resistance QTL explaining 85% of genetic variance to

resistance, and containing key cytochrome P450 genes conferring pyrethroid resistance [7,

24]. Overall, multiple analyses provide evidence for a selective sweep on the 2R chromosome

driven by metabolic cytochrome P450-based pyrethroid resistance; (i) Reduced diversity of

microsatellites flanking pyrethroid resistance genes on 2R in Malawi and Mozambique. (ii)

Reduced genetic diversity of genomic sequences flanking pyrethroid resistance genes on 2R in

Malawi and Mozambique. (iii) Reduced genetic diversity of the CYP6P9a gene in Malawi and

Mozambique. (iv) No signature of a selective sweep prior to the widespread use of LLINs and

IRS in Malawi and Mozambique.

(i) Reduced diversity of microsatellites flanking pyrethroid resistance genes on 2R.

This study identified a valley of reduced diversity at the AFUB6 and FunR loci on the 2R chro-

mosome, a typical signature of selective sweep similar to that described in malaria parasites in

Southeast Asia in response to pyrimethamine treatment [25]. The reduced heterozygosity of

these microsatellite markers and their position around the rp1 pyrethroid resistance QTL

point to a selective sweep associated with pyrethroid resistance. This is further supported by

the lower diversity observed in the more resistant Southern populations of Malawi and

Mozambique [4, 18, 26].

(ii) Reduced polymorphism of the 120kb rp1 genomic region. Selection in the southern

populations is confirmed by the continuous reduced genetic diversity for Malawi and Mozam-

bique and also the reduced haplotype diversity in both countries. Selection is strongest around

-9kb from CYP6P9a (BAC-25). This is due to its proximity to the two resistance genes,

CYP6P9a and CYP6P9b. However, several other tests that can detect positive selection (MK,

HKA, dN/dS and the Ka/Ks ratios) did not show any sign of positive selection. This can be

explained by the fact that in a situation of near fixation of a selective sweep as seen in this

study for the southern African populations, directional selection is rather indicated by reduced

genetic variation [27]. Nevertheless, when estimating Ka/Ks ratios, a 2.64 and 2.5 fold

Genomic Footprints of Malaria Vector Control

PLOS Genetics | DOI:10.1371/journal.pgen.1006539 February 2, 2017 11 / 22



reduction of the Ka/Ks estimates was observed in post intervention samples from Malawi and

Mozambique respectively compared to the pre-intervention. The selection on the rp1 region

appears to be more extensive in Malawi than in Mozambique in line with previous reports [8].

In Malawi, the region under selection spans from -9kb from CYP6P9a and beyond +86kb,

which reasonably could be above a region of 100kb. In Mozambique the region under selection

spans from -9kb to +61kb, which is around 70kb.

(iii) Directional selection acting on CYP6P9a gene. The strong directional selection

observed on CYP6P9a is only seen in southern Africa and correlates with the extensive pyre-

throid resistance observed in this region with a high over-expression of this gene [4, 8, 18, 26].

The reduced CYP6P9a haplotype diversity with limited mutational steps between haplotypes

in southern Africa is indicative of selection while in contrast the west and central African

countries maintained high diversity. This lack of selection in other African regions could sug-

gest that rp1may not be the main resistance region in other populations of An. funestus such

as Uganda and Benin where pyrethroid resistance has been reported but with a less extreme

over-expression of CYP6P9a [11, 13, 19].

The predominant haplotype in Malawi and Mozambique is a CYP6P9a allele recently

shown to have greater efficiency in metabolising pyrethroids compared to susceptible alleles

[8, 20]. Vector control interventions such as LLINs and IRS are largely implemented in these

countries [4, 28]. This signature of directional selection on CYP6P9a is similar to the selection

observed in the glutathione S-transferase GSTe2 gene, another detoxification gene conferring

resistance to DDT in An. funestus populations West/Central Africa [19]. Resistant samples

from Benin exhibited a nearly fixed GSTe2 haplotype in contrast to DDT susceptible popula-

tions where high genetic diversity is observed [19]. Evidence of a selective sweep around insec-

ticide resistance genes has been reported in other species, such as CYP6G1 in D.melanogaster
[29] for which a single haplotype, containing a partial Accord transposable element in the 5’

UTR, confers DDT resistance [30].

Patterns of genetic differentiation based on CYP6P9a aligned with FST estimates obtained

with microsatellites, where Malawi and Mozambique were significantly genetically differenti-

ated from other African populations. The overall pattern of differentiation obtained here with

CYP6P9a is also similar to that obtained with GSTe2 gene [19] further supporting the presence

of barriers to gene flow between southern Africa and other regions. Furthermore, the predomi-

nant CYP6P9a haplotype in southern Africa was completely absent from the other countries in

line with the low level of gene flow observed between southern and West/Central Africa. This

contrasting distribution of the CYP6P9a resistance haplotype is similar to the distribution of

resistance mutations previously reported in An. funestus such as the L119F GSTe2 mutation,

which is completely absent in Southern Africa [19]. However, one cannot exclude that the

CYP6P9a resistant haplotype will spread to other regions with time as recently observed for

the A296S RDL mutation in An. funestus. Indeed the 296S resistant allele initially located only

in West to East Africa and completely absent from southern Africa in 2010 [16] was recently

detected in southern Africa, although at low frequency [15]. Similar geographical spread of

resistance alleles over time has been observed for other resistance mutations such as knock-

down resistance (kdr) mutations in mosquito species such as An. gambiae [31] or Ae. aegypti
[32, 33].

(iv) Temporal analysis of southern African populations revealed that the scale-up of

insecticide-based interventions is driving selection for insecticide resistance. In theory,

causes other than insecticide use in public health could be selecting for insecticide resistance

(e.g. agricultural pesticides or general pollution). However, while these may play a role, the

scale-up of insecticide-based interventions across southern Africa was the only major influ-

ence that changed in such a short period of time (7–8 years). Based on the genetic diversity,
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haplotype networks, and the predicted maximum likelihood phylogenetic tree and the whole

genome sequencing approach, the selective sweep observed around the rp1 in general and par-

ticularly on CYP6P9a only happened after implementation of control interventions. Further-

more, the selection to near fixation of an allele highly efficient to metabolize pyrethroids [20]

strengthens the hypothesis that this selective sweep was driven by these pyrethroid-based inter-

ventions. Such selection of a favourable allele is similar to previous examples of positive selec-

tion observed for target site mutations (ex. kdr) conferring resistance in many mosquito

vectors [34–38] and selection linked to the Ace-1 gene in An. gambiae [39]. In contrast to these

examples, this is the first evidence of a signature of pyrethroid-based vector control such as

LLINs on metabolic resistance mechanisms. The near fixation of a resistance haplotype over

an 8 year period highlights the need to implement suitable resistance management early

enough to prevent control failure. Selection due to pyrethroid interventions is especially

alarming because currently pyrethroids are the only insecticide approved for use in bed nets.

Conclusion

Altogether, this study provides conclusive evidence of the extensive selective sweep acting on

cytochrome P450-based metabolic resistance to insecticides in mosquitoes. We conclude that

positive selection on the region spanning the rp1 pyrethroid resistance locus in Anopheles
funestus has occurred in southern Africa between 2002 and 2009 in response to the increased

use of pyrethroid-treated bednets. No major change in agricultural use of pyrethroids has

occurred in southern Africa over this period, but LLIN use and, to a lesser extent pyrethroid-

based IRS, has been scaled up massively in this period. This highlights the risk of relying on a

single insecticide class for vector control and emphasizes the need for novel insecticides and

vector control tools to tackle the spread of resistant vector populations.

Methods

Mosquito collections

Anopheles funestusmosquitoes were collected between 2009 and 2010 from the following loca-

tions: Chokwe, Mozambique (24˚ 33’S, 33˚ 01’E); Chikwawa, Malawi (16˚ 3’S, 34˚ 50’E); Tor-

oro, Uganda (0˚ 45’N, 34˚ 5’E); Lagdo, Cameroon (9˚ 05’N, 13˚ 40’E); Pahou, Benin (6˚ 23’N,

2˚ 13’E); and Obuasi, Ghana (6˚ 12’N, 1˚ 40’W). Additional collections in southern Africa

were made in 2011 in Salima (13˚ 57’S, 34˚ 30’E) and Nkhotakota (12˚ 56’S, 34˚ 17’E) in

Malawi, plus collections from Chikwawa and Mozambique in 2002. Genomic DNA was

extracted from whole mosquitoes using the method of Livak [40] or the DNeasy DNA Extrac-

tion Kit (Qiagen Inc., Valencia, CA, USA Mosquitoes were identified morphologically [41]

and were species-typed using An. funestus sensu stricto-specific PCR primers [42]. Only con-

firmed An. funestus s.s. mosquitoes were used in this study.

Contrasting resistance profiles have been described for various populations of An. funestus
across Africa. For example, the resistance pattern observed in North Cameroon in 2007 (DDT

and dieldrin resistance)[16] is different to that of southern Africa (high pyrethroid, DDT and

carbamate resistance)[4, 15], East Africa (pyrethroid and DDT resistance but full susceptibility

to carbamates)[12] and Ghana (West Africa) (DDT resistance and pyrethroid resistance)[14].

Microsatellite genotyping

Microsatellite markers were chosen to span the entire genome [17, 43]. Mosquitoes were col-

lected from six countries (Obuasi, Ghana: N = 45, Pahou, Benin: N = 48, Lagdo, Cameroon:

N = 48, Tororo, Uganda: N = 48) with two collection time points in Chikwawa, Malawi (2010:
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N = 48, 2002: N = 48) and Chokwe (2009: N = 48) and Morrumbene (2002: N = 45) Mozam-

bique. 17 microsatellites (both di- and tri-nucleotide repeats) were amplified from genomic

DNA using 1.5 μl of reaction Buffer, 0.2 μl of dNTP mix (25 mmol), 0.325 μl of both the for-

ward (included a 19bp tag) and reverse primers, 0.2 μl of Hot Start Taq (Qiagen Inc.), 1 μl of

MgCl2 and 1μl of genomic DNA (15ng/ul). Forward and reverse primers are listed in S1 Table.

PCR thermocycler conditions were: 5min at 95˚C followed by 35 cycles of denaturing at 94˚C

for 30s, annealing at 58˚C for 30s and extension at 72˚C for 30s, finishing with an extension

step at 72˚C for 10min. Fragment sizing was carried out using a Beckman Coulter CEQ8000.

Fragment sizes were visualized and recorded using the fragment analysis software on the Beck-

man Coulter CEQ8000. Micro-Checker version 2.2.3 [44] was used to check for null allele and

scoring errors.

Population genetic analysis of microsatellites

Microsatellite data analysis was mainly carried out using Genepop version 4.0.10 [45]. Tests

for deviation from Hardy Weinberg Equilibrium (HWE) were carried out for each locus using

Genepop option 1.3. The null hypothesis was HWE and the alternative hypothesis a deficit of

heterozygotes, and Bonferroni correction for multiple testing used to adjust the 0.05 and 0.01

critical values. The inbreeding coefficient FIS, linkage disequilibrium (LD), log likelihood ratio

statistics (G-test) and tables created using Markov chain algorithm of Raymond & Rousset

[45] were all preformed. Gene diversity at each microsatellite locus, estimated by 1-Q(inter)

where Q(inter) is the homozygosity among individuals, and among populations. Genetic differ-

entiation (FST) were estimated using Genepop [45]. Pairwise Fst values were used to generate

neighbour joining trees using the software MEGA 5.2 [46].

Bayesian analysis of population structure

Bayesian analysis of population structure was implemented using STRUCTURE version 2.3.4

[47]. Individually based admixture models were used to estimate the ancestral allele source

observed in each individual, where the ancestral source population is unknown. A total of 285

individuals from six African countries, genotyped at 16 loci, were analysed for cluster number

K = 1–12 (10 replicate runs for each) using a set of 9 putatively neutral loci and comparing 8

2R loci to the 8 non-2R markers. A burn-in period of 50,000 generations and Markov Chain

Monte Carlo (MCMC) simulations of 100,000 iterations were used. The admixture model was

used as it allows individuals to have mixed ancestry where a fraction (qk) of the genome of an

individual comes from an ancestral cluster (where tkqk = 1)[47]. Structure Harvester [48] was

used to infer the most likely number of clusters (K) using Evanno’s method [49]. CLUMPP

[50] was used to collate the data from all 10 runs for each given K value, for plotting.

Analysis of polymorphism in the pyrethroid resistance rp1 QTL and the

CYP6P9a gene

Five DNA fragments evenly spaced to span the 120kb BAC, originally isolated using a labora-

tory colony, FUMOZ [7], upstream and downstream of CYP6P9awere sequenced in order to

assess the presence of a selective sweep around this key resistance gene across Africa (Camer-

oon, Malawi and Mozambique). Primers used to amplify the fragments are listed in S1 Table.

A subset of 10 mosquitoes used for the microsatellite analysis were randomly selected from

each collection site for analysis. For BAC fragments, 770-1000bp were sequenced using: 3 μl of

10X KAPA Taq buffer A (KAPA Biosystems), 0.24 μl of 5 U/μl KAPA Taq, 0.24 μl of 25 μM

dNTP mix, 1.5 μl of 25μM MgCl2, 1.02 μl each of antisense and sense primers, 2 μl of gDNA

(10ng), and 22.48 μl of dH2O. The 30 μl solution underwent a denaturing step at 95˚C for
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5min, followed by 35 cycles of 94˚C for 30s, 57˚C for 30s and 72˚C for 1min and 30s, followed

by a final extension step of 72˚C for 10min.

The CYP6P9a gene was amplified from the same gDNA samples used for the rp1 BAC anal-

ysis. CYP6P9awas amplified, covering the 5’ UTR, the gene’s two exons and one intron with a

total sequence of approximately 2kb using previously published primers and parameters [8].

PCR products were purified using the QIAquick PCR Purification Kit and directly sequenced

using Sanger sequencing. Sequences were first analysed for quality then manually assessed for

polymorphisms using BioEdit [51]. Sequences were aligned using ClustalW [52].

Heterozygous sites in sequence data were phased using the PHASER algorithm imple-

mented in DnaSP version 5.10 [53]. For all sequences, DnaSP was used to calculate the number

of segregating sites (S), the number of haplotypes (h), the nucleotide diversity (π) and the hap-

lotype diversity (Hd). Two tests of neutrality, Tajima’s D and Fu and Li’s D�, were also carried

out. For sequences encoding proteins, 1524bp of the CYP6P9a gene, the numbers of synony-

mous and nonsynonymous polymorphisms and nonsynonymous (KA) and synonymous (KS)

polymorphisms per site were calculated. The KST statistic in dnaSP 5.1 [54] was used to esti-

mate the levels of pair-wise genetic differentiation between populations. The statistical signifi-

cance of the KST� estimates was assessed by permutation of subpopulations identities and re-

calculating KST� 10,000 times as implemented in dnaSP5.1.

Hudson, Kreitman and Aguade’s (HKA) and McDonald and Kreitman’s (MK) tests of neu-

trality were performed using the An. gambiae orthologue of CYP6P9a,CYP6P3
(AGAP002865-PA) as an out-group. For the MK test on the BAC25 fragment, which spans the

CYP6AA2 gene in An. funestus, the An. gambiae CYP6AA2 gene (AGAP002862-PA) was used

as an out-group.

Maximum likelihood phylogenetic trees where generated for the BAC25 sequences

(Tamura’s Model) and for CYP6P9a (Kimura’s 2-parameter model) using MEGA 5.2, with 500

bootstrap replicates [46]. Haplotype networks were determined, based on a 95% connection

limit with gaps treated as a fifth state, using TCS [55]. Individual haplotypes were labelled by

colour and shape (circle denoting haplotypes unique to only one sequence, squares denote

haplotypes containing multiple sequences).

Whole genome sequencing-based scan of selective sweep in pooled

mosquitoes pre- (2002) and post-intervention (2014)

A whole genome scan was performed comparatively between pre- and post-intervention mos-

quitoes in order to detect all selective sweep signatures associated with the scale-up of insecti-

cide-based interventions. Pooled template whole genome sequencing libraries were generated

as follows. Genomic DNA was purified from individual female mosquitoes collected from

Chikwawa in Malawi in 2014 and 2002 using the DNeasy Blood and Tissue Kit (QIAgen, Hil-

den, Germany), following the manufacturer’s instructions and including an RNase treatment

step to remove RNA. The gDNA from each mosquito was quantified using the Quant-iT Pico-

Green dsDNA Assay Kit (Thermo-Fisher, Waltham, USA) on a FLUOstar Omega Microplate

Reader (BMG Labtech, Aylesbury, UK). Equal quantities of gDNA from 40 individuals for

each collection were pooled in equal amounts and the pools used to generate Illumina TruSeq

Nano DNA fragment libraries (Illumina, San Diego, USA) with an insert size of 350bp. Librar-

ies were sequenced (2x125bp paired-end sequencing) on different lanes of an Illumina

HiSeq2500 (Illumina) at the Center for Genomics Research (University of Liverpool, UK),

each multiplexed with three other libraries (not used in this study), to produce approximately

50,000,000 read pairs per library.
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Raw sequence reads were trimmed of adapter sequence and low quality bases, using cuta-

dapt [56] and sickle [57], and filtered to remove trimmed reads shorter than 10bp. Trimmed

reads were aligned to the Anopheles funestus (FUMOZ) reference genome sequence (version

Afun1.3) downloaded from VectorBase [58], using bowtie2 [59]. Aligned reads were filtered to

remove duplicate reads and those not properly paired (mapped in forward and reverse orienta-

tion within 500bp of each other) or with mapping quality <10. Retained reads were used to

detect single nucleotide polymorphisms (SNP).

SNP calling was carried out using SNVer [60]. SNPs were filtered to remove those called in

regions of in the top or bottom 25% of read coverage depth, to remove artefacts caused by mis-

aligned paralogous sequences. Variant sites with coverage data within the allowed range for

both libraries were analysed to identify those with significantly different allele frequencies in

each pool. A chi-squared test for a significant difference in allele frequency was applied to each

variant site. P-values were corrected for multiple testing using the method of Benjamini and

Hochberg [61] and sites with an adjusted p-value less than 0.05 were considered significant. In

addition, a rolling mean non-reference allele frequency was calculated and plotted for sets of

101 adjacent sites incremented by one site per step across each scaffold.

Data access

The DNA sequences reported in this paper have been deposited in the GenBank database

accession numbers: KU168962-199123. The whole genome sequence read data reported in this

study were submitted to the European Nucleotide Archive (ENA) under the study accession

PRJEB13485 (http://www.ebi.ac.uk/ena/data/view/PRJEB13485) and the sample accessions

ERS1115465 and ERS1115466.

Supporting Information

S1 Fig. African-wide population structure. (A) Neighbor-joining tree based on the Fst of 8

microsatellites on 2R. (B) Neighbor-joining tree based on the Fst of 8 microsatellites non 2R

chromosome markers. (C) Bayesian population structure of Africa based on 8 microsatellites

spanning rp1 QTL on 2R chromosome: BEN-Benin, CMR = Cameroon, GHA = Ghana,

MWI = Malawi, MOZ = Mozambique, UGA = Uganda. (D) Bayesian population structure of

other 8 microsatellites from other chromosomes apart 2R, in order to assess how the rp1 mark-

ers are skewing the population structure.

(TIFF)

S2 Fig. Analysis of the rp1 QTL BAC loci 25 (A) and BAC 70 (B) across the more resistant

population (MAL—Malawi and MOZ—Mozambique) and the more susceptible samples

(CAM—Cameroon). The polymorphic positions are indicated with and the second numbers

(n) indicates the haplotype frequency. (C) Maximum likelihood tree of fragment at -34kb of

CYP6P9a (BAC0) and (D) is for the fragment at -9kb of CYP6P9a (BAC 25). (E) is the haplo-

type network of BAC0 (-34kb) and (F) is for BAC25 (-9kb) where pink represents haplotype

dominant in both Malawi and Mozambique. The size of the polygon reflects the frequency of

the haplotype. Segregating mutation is represented by each node and polymorphic positions

are given above the branches.

(TIFF)

S3 Fig. Africa-wide 6P9a diversity. (A) Haplotype distribution of non-synonymous equiva-

lent of amino acid protein variants. Highlighted in red are the amino acid changes linked to

pyrethroid resistance [20]. (B) Maximum likelihood tree of the CYP6P9a gene (non-synony-

mous) changes) for six samples (BN—Benin, CAM—Cameroon, GH—Ghana, MAL—Malawi,
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MOZ—Mozambique and UG—Uganda). (C) Haplotype network of CYP6P9a for individual

countries for coding region. The size of the polygon reflects the frequency of the haplotype and

colour represents the countries (BN (Benin)–Blue, CAM (Cameroon)–Yellow, GH (Ghana)–

Red, MAL (Malawi)—Grey, MOZ (Mozambique)—Green and UG (Uganda)—Purple). Segre-

gating mutation is represented by each node and rectangular boxes represent major haplotype.

(D) Neighbour joining tree based on genetic distances from KST estimates of pairwise popula-

tion comparison.

(TIFF)

S4 Fig. Analysis of the rp1 BAC clones showing higher selection near CYP6P9a. Analysis of

two BAC sequences from southern Africa BAC0 on the 5’UTR and BAC25 near the gene

CYP6P9a. (A-B), Haplotypes from post-intervention samples (red) and pre-intervention from

Malawi (blue), and Mozambique (green) including the frequency in brackets and the SNP

location on the top x-axis. (C-D), ML-tree of pre-intervention (black) and post-intervention

(red) show more divergence at BAC0 while BAC25 shows distinct grouping between pre and

post. (E-F), Haplotype network where the size correlated to frequency. The red denotes sam-

ples collected post-intervention, blue were collected pre-intervention and green contains

sequences from both time points.

(TIFF)

S5 Fig. Loss of diversity post—intervention in the gene CYP6P9a. (A) All SNPs in pre-inter-

vention samples (blue and green) and post-intervention (red) compared to a susceptible lab

strain, Fang (black) including frequency in brackets and the position on the top x-axis. (B)

Haplotypes based on amino acid changes pre (blue and green) versus post-intervention (red)

shows a major loss of diversity. SNPs highlighted in yellow denote changes implicated in

increased catalytic function [20].

(TIFF)

S6 Fig. Impact of control interventions on genetic diversity of CYP6P9a. (A) The TCS hap-

lotype network of pre- versus post-intervention samples based on the coding region including

haplotypes with more than one sequence (red) and singular haplotypes from Malawi (orange)

and Mozambique (blue). (B) Africa-wide Neighbor-Joining tree of CYP6P9a shows geographi-

cal clustering where southern Africa (blue and orange) is divergent. Within the southern

Africa cluster there is a lack of diversity in Mozambique (MOZ 2009) and Malawi (MWI

2010).

(TIFF)

S7 Fig. Genome-wide analysis of selection on the An. funestus genome showing other scaf-

folds with sites with a significantly different allele frequency between 2002 and 2014. These

show no striking valley of reduced variability in contrast to KB669169 spanning rp1. (A) Plot

of P-values of the difference in allele frequency for sites on respective scaffold. (B) Mean fre-

quency of non-reference alleles (for 101 sites) on respective scaffold. The black line is for

MWI-2002 and the red line for MWI-2014.

(TIFF)

S8 Fig. Genomic location of the selective sweep. (A) Gene annotation of the rp1 region view

from the Vectobase screenshot. The region from approximately 1.32 to 1.48 Mb corresponds

to the sequence BAC containing rp1. Blue bars represent scaffolded contigs and spaces are

unsequenced assembly gaps, which are common in this region. Red boxes represent annotated

genes. (B) Contrasting polymorphism patterns between pre- and post-intervention samples:

Data aligned to BAC (IGV screenshot). Full-length (120kb) BAC sequence. The top track

Genomic Footprints of Malaria Vector Control

PLOS Genetics | DOI:10.1371/journal.pgen.1006539 February 2, 2017 17 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006539.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006539.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006539.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006539.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006539.s008
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display purposes) for 2002 and 2014, respectively (coverage depth is capped at>100x). Grey

columns represent bases identical to the reference sequence while coloured columns indicate

variant sites with a minor allele frequency >10%. The fourth track shows genes of the P450

cluster.
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