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MOTIVATION We have limited information on how cellular lipid uptake and processing differ between in-
dividuals and influence the development of metabolic diseases, such as hypercholesterolemia. Available
assays are labor intensive, require skilled personnel, and are difficult to scale to higher throughput, making
it challenging to obtain systematic, functional cell-based data from individuals. To overcome this problem,
we established a scalable automated analysis pipeline enabling reliable quantification of multiple cellular
readouts, including lipid uptake, storage, and mobilization, from different white blood cell populations.
This approach provides personalized insights into the cellular basis of hypercholesterolemia and obesity.
SUMMARY
Systematic insight into cellular dysfunction can improve understanding of disease etiology, risk assessment,
and patient stratification. We present a multiparametric high-content imaging platform enabling quantifica-
tion of low-density lipoprotein (LDL) uptake and lipid storage in cytoplasmic droplets of primary leukocyte
subpopulations. We validate this platform with samples from 65 individuals with variable blood LDL-choles-
terol (LDL-c) levels, including familial hypercholesterolemia (FH) and non-FH subjects.We integrate lipid stor-
age data into another readout parameter, lipid mobilization, measuring the efficiency with which cells deplete
lipid reservoirs. Lipid mobilization correlates positively with LDL uptake and negatively with hypercholester-
olemia and age, improving differentiation of individuals with normal and elevated LDL-c. Moreover, combi-
nation of cell-based readouts with a polygenic risk score for LDL-c explains hypercholesterolemia better
than the genetic risk score alone. This platform provides functional insights into cellular lipid trafficking
and has broad possible applications in dissecting the cellular basis of metabolic disorders.
INTRODUCTION

Hypercholesterolemia is one of themost commonmetabolic dis-

orders and amajor risk factor for cardiovascular disease (CVD). It

is characterized by an accumulation of low-density lipoprotein

cholesterol (LDL-c) in the blood (Borén et al., 2020). In familial hy-

percholesterolemia (FH), mutations, most commonly in the LDL

receptor (LDLR) gene, lead to increased LDL-c. However, FH
Cell Rep
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represents only 2.5% of all hypercholesterolemia patients. For

the remainder, polygenic and lifestyle effects appear as the

main contributing factors (Abul-Husn et al., 2016; Khera et al.,

2016; Ripatti et al., 2020; Talmud et al., 2013).

So far, we have little information on how cellular lipid trafficking

and storage are altered in individual patients.However, systematic

assessment of LDL uptake and other mechanisms related to

hypercholesterolemia could provide insights into disease
orts Methods 2, 100166, February 28, 2022 ª 2022 The Authors. 1
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Figure 1. Automated analysis pipeline for multiplex quantification of functional phenotypes in PBMCs

(A) Schematic presentation of the automated analysis pipeline. For each experiment, cryopreserved PBMC samples were thawed, aliquoted into 96 wells, and

incubated overnight with lipid-rich (CM) (10% FBS) or lipid-poor (LP) (5% lipoprotein-deficient serum [LPDS]) medium. Cells were labeled with fluorescent LDL

(DiI-LDL) or directly transferred to 384-well imaging plates, automatically fixed, stained, and subjected to automated high-content imaging. Images were

quantified with CellProfiler, and single-cell data were processed with Python tools.

(B) Representative images of lymphocyte and monocyte DiI-LDL uptake after lipid starvation.

(C and D) Histogram for cellular DiI-LDL intensities in lymphocytes (C) and monocytes (D) from a single well.

(legend continued on next page)
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mechanisms and treatment outcomes in a personalized manner.

The majority of high-risk hypercholesterolemia patients do not

achieve their LDL-c target levels (Ray et al., 2020). This could be

due to sub-optimal treatment, non-adherence to therapy, and/or

cellular programs limiting drug efficacy. Increased evidence from

cancer therapy demonstrates that cell-based assays can provide

better targeted and more effective personalized treatment strate-

gies (Snijder et al., 2017). Regarding hypercholesterolemia, we

need to establish scalable and reliable assays that allow system-

atic profiling of functional defects in individual persons

and evaluate how to utilize such assays to better explain factors

contributing to hypercholesterolemia in individual patients.

The currently used cell-based assays for studying the etiology

of hypercholesterolemia are quantification of cellular LDL uptake

or LDLR cell surface expression using flow cytometry. These

readouts have been mostly utilized to characterize the severity

of LDLR mutations in FH patients (Benito-Vicente et al., 2018;

Romano et al., 2010). However, LDLR surface expression and

LDL uptake are highly variable among FH patients (Tada et al.,

2009; Thedrez et al., 2018; Urdal et al., 1997). This not only

speaks for the importance of functional cell-based assays but

also calls for additional cellular readouts to better characterize

the heterogeneity of lipid metabolism in individual subjects.

LDLR expression and cellular LDL internalization are tightly

regulated. Low cholesterol levels in the endoplasmic reticulum

(ER) signal cholesterol starvation and trigger increased LDLR

expression, while high cholesterol in the ER downregulates

LDLR expression. Excess ER cholesterol is stored as cholesterol

ester in lipid droplets (LDs), from where it can be mobilized upon

need (Ikonen, 2008; Luo et al., 2020). We therefore considered

that quantification of cellular LDs and their dynamic changes

upon altering lipoprotein availability may provide additional infor-

mation for assessing the cellular basis of hypercholesterolemia.

Here, we established sensitive and scalable analyses for auto-

mated quantification of fluorescent lipid uptake, storage, and

removal in primary lymphocyte and monocyte populations and

defined lipid mobilization as an additional parameter measuring

how efficiently cells deplete their lipid stores. We found marked

differences in the parameters established in both FH and non-FH

study groups and highlight their potential to provide deeper in-

sights into the cellular mechanisms of hypercholesterolemia.

RESULTS

Automated pipeline for quantification of
hypercholesterolemia-related functional defects in
primary human leukocytes
Several cell types, such as lymphocytes, monocytes, and Ep-

stein-Barr virus (EBV) immortalized lymphoblasts, have been

used for measuring LDL uptake (Chan et al., 1997; Schmitz
(E and F) Quantification of mean DiI-LDL intensities (E) and DiI-LDL organelles

experiments, each with 4 wells per treatment; Student’s t test.

(G) Representative images of DiI-LDL uptake in monocytes isolated from FH pa

starvation.

(H) Quantification of monocyte (Mo) and lymphocyte (Ly) cellular DiI-LDL intens

patient (8 wells/patient for pan-uptake). Significant changes to control 2 were ca

***p < 0.001 and **p < 0.01; scale bars represent 10 mm; error bars represent SE
et al., 1993). While EBV lymphoblasts show the highest LDL up-

take, cell immortalization is time consuming and alters cellular

functions (Chan et al., 1997; Piccaluga et al., 2018). We therefore

set up an automated imaging and analysis pipeline for sensitive

quantification of LDL uptake and LDLR surface expression from

less than two million peripheral blood mononuclear cells

(PBMCs) (Figure 1A). Cryopreserved PBMCs were recovered in

96-well plates at defined densities and incubated with lipid-rich

control medium (CM) (10% fetal bovine serum [FBS]) or lipid

poormedium (LP) (5% lipoprotein-deficient serum) for 24 h. Cells

were labeled with fluorescent LDL particles (DiI-LDL) for 1 h,

washed, and automatically transferred to 384-well plates for

staining and automated high-content imaging (Figure 1A). After

adhesion to coated imaging plates, lymphocytes remain small

while monocytes spread out, enabling a crude classification of

leukocyte populations based on size: PBMCswith a cytoplasmic

area <115 mm2 were classified as a lymphocyte-enriched frac-

tion (from here on lymphocytes) and those with a cytoplasmic

area >115 mm2 as monocyte-enriched fraction (from here on

monocytes; Figures S1A–S1C).

In CM, DiI-LDL uptake into lymphocytes and monocytes was

more than 2-fold above the background of non-labeled cells (Fig-

ures 1B–1D). Lipid starvation further increased DiI-LDL uptake in

both cell populations, as expected (Figures 1C and 1D).We quan-

tified about 700 monocytes and 2,300 lymphocytes per well (Fig-

ure S1D), aggregated the single-cell data from individual wells,

and averaged the results from 2–4 wells for each treatment (Fig-

ure S1D). For both cell populations,wedefined2 readouts: cellular

DiI-LDL intensity (DiI-Int), reflecting DiI-LDL surface binding and

internalization, and DiI-LDL organelle number (DiI-No), reflecting

internalized DiI-LDL (Figures 1E and 1F). This resulted in 4 param-

eters: monocyte (Mo) DiI-Int, lymphocyte (Ly) DiI-Int, Mo DiI-No,

and Ly DiI-No. In both cell populations, DiI-Int was inhibited by

adding surplus unlabeled LDL, arguing for a saturable, receptor-

mediated uptake mechanism (Figure S1E).

In lipid-rich conditions, Mo DiI-Int was slightly higher than Ly

DiI-Int (Figure 1E), and upon lipid starvation, Mo DiI-Int increased

more substantially, providing a larger fold increase than Ly DiI-Int

(Figure 1E). Furthermore, Mo DiI-No was roughly 10-fold higher

than Ly DiI-No, with both parameters showing a 5-fold increase

upon lipid starvation (Figure 1F). Thus, DiI-LDL uptake into

monocytes was better than into lymphocytes, but both cell pop-

ulations responded to lipid starvation. As EBV lymphoblasts are

often a preferred choice for LDL uptake studies (Chan et al.,

1997), we compared LDL uptake between EBV lymphoblasts

and monocytes (Figures S1F and S1G). This showed that DiI-

Int signal after lipid starvation was roughly similar in EBV lympho-

blasts and monocytes, implying that the primary cells provide

high enough DiI-LDL signal intensities without cell immortaliza-

tion (Figure S1G).
(F) in lymphocytes (Ly) and monocytes (Mo); representative of 8 independent

tients with LDLR mutations Cys325Tyr or Ser580Phe and a control after lipid

ities (Int.), DiI-LDL organelle numbers (No.), and pan-uptake; duplicate wells/

lculated with Welch’s t test.

M.
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Figure 2. Heterogeneous LDL uptake and LDLR surface expression in He-FH patients’ monocytes

(A) Schematic presentation of LDLR mutations included in this study together with their pathogenicity status from ClinVar and LOVD databases indicated in bold

(LB, likely benign; LP, likely pathogenic; P, pathogenic; VUS, variant of unknown significance).

(B) Quantification of monocyte (Mo) and lymphocyte (Ly) cellular DiI-LDL intensities (Int.), organelle numbers (No.), and pan-uptake normalized to 2 controls

(100%); 2 to 3 independent experiments, each with duplicate or quadruplicate wells per patient (8–16 wells per patient for pan-uptake). Cys325Tyr and

Ser580Phe were described in Figures 1G and 1H. Significant changes to control two were calculated with Welch’s t test.

(legend continued on next page)
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To enable data comparison between experiments, we

included 2 controls. Each control consisted of a mixture of

large-scale PBMC isolations from 4 healthy blood donors, with

the cells cryopreserved at a defined density for one-time-use al-

iquots. In each experiment, Mo DiI-Int, Ly DiI-Int, Mo DiI-No, and

Ly DiI-No were normalized to these controls. We also introduced

a combinatorial score, pan-LDL uptake (or pan-uptake), repre-

senting the average of Mo DiI-Int, Ly DiI-Int, Mo DiI-No, and Ly

DiI-No. We then assessed the intraindividual variability of these

5 readouts in 3 individuals on 2 consecutive days (Figure S1H).

The intraindividual variability was low for a cell-based assay,

especially in monocytes, with 7.6% for Mo DiI-No, 12% for Mo

DiI-Int, and 13% for pan-uptake. The values were only moder-

ately higher in lymphocytes, with DiI-Int 15% and DiI-No 21%

variability (Figure S1I).

We next validated our LDL uptakemeasurements in PBMCs of

2 He-FH patients with highly elevated LDL-c and reduced LDL

uptake in EBV lymphoblasts (Cys325Tyr and Ser580Phe muta-

tions in LDLR; Figure S1J). For both patients, Mo and Ly DiI-

No as well as Mo DiI-Int were reduced by more than 45%, Ly

DiI-Int was less profoundly decreased, and pan-uptake was

reduced by over 50% (Figures 1G, 1H, and S1J). Together, these

data indicate that our analysis pipeline enables quantification of

multiple LDL uptake parameters in major leukocyte cell popula-

tions and distinguishes defective LDLR function therein.

Heterogeneous LDL uptake and LDLR surface
expression in He-FH patients
We next used this pipeline to characterize 21 He-FH patients

from the metabolic syndrome in men (METSIM) cohort study

(Laakso et al., 2017; Table S1). The patients’ mutations reside

in the LDLR coding region and range from pathogenic to likely

benign variants (Figure 2A). Quantification of DiI-Int and DiI-No

for monocytes and lymphocytes provided relatively similar re-

sults for each individual (Figure 2B). However, there were sub-

stantial differences in these parameters between individuals,

including patients harboring identical LDLR mutations (Fig-

ure 2B). This was most pronounced for FH-North Karelia

(Pro309Lysfs*59), a pathogenic loss-of-function variant but

also evident for FH-Pogosta (Arg595Gln) and FH-Glu626Lys

(Figures 2A and 2B). These observations imply that, in He-FH,

regulatorymechanismsmay enhance the expression of the unaf-

fected LDLR allele and/or stabilize the encoded protein. In sup-

port of this notion, we obtained a strong correlation between

monocyte LDLR surface expression and DiI-Int, DiI-No, and

pan-uptake scores for the same individuals (pan-uptake; R =

0.58; p = 0.006; Figures 2C and S2A).

Interestingly, the pan-uptake score showed a tendency for

lower values in FH-North Karelia carriers as comparedwith those

carrying the likely pathogenic FH-Pogosta and likely benign

Glu626Lys variants (Figure S2B). This is in agreement with higher

LDL-c concentrations in FH-North Karelia patients (Lahtinen
(C) Correlation of pan-uptake and monocyte LDLR surface expression, including

(D) Correlation of monocyte DiI-LDL intensities (Mo Int) with circulating LDL-c for h

uptake scores.

(E) LDL-c concentration for 3 patients with the highest (high) and lowest (low) mo

Gray areas in scatter plots indicate 95% confidence interval (CI); *p < 0.05, **p <
et al., 2015). While LDL uptake did not correlate with circulating

LDL-c for the entire study group (Figure S2C), this correlation

was highly significant for monocyte DiI-Int, DiI-No, and the

pan-uptake scores for the 11He-FH patients on statinmonother-

apy (Mo DiI-Int: R =�0.75; p = 0.0081; Figure 2D). Notably, three

of the individuals with the lowest monocyte DiI-Int had a 2-fold

higher LDL-c concentration than the 3 individuals with the high-

est monocyte DiI-Int; Figure 2E), suggesting that the LDL-c-

lowering effect of statin is reflected by monocyte LDL uptake.

This is likely due to the higher LDL uptake capacity of monocytes

as compared with lymphocytes (Figures 1E and 1F).

LDL uptake in non-FH individuals with normal or
elevated circulating LDL-c
As most hypercholesterolemia patients do not carry LDLRmuta-

tions, we also investigated cellular LDL uptake in PBMCs from 20

biobank donors with elevated LDL-c levels (LDL-c > 5 mM)

(hLDL-c) and from 19 donors with normal LDL levels (LDL-c 2–

2.5 mM) (nLDL-c) from the FINRISK population cohort (Borodulin

et al., 2018; Table S2). DNA sequencing confirmed that common

Finnish LDLR variants were not present among these subjects.

We quantified DiI-Int and DiI-No for monocyte and lymphocyte

populations as well as the pan-uptake score for nLDL-c and

hLDL-c individuals. This revealed a large interindividual variation

in LDL uptake (Figure 3A). Both groups included persons with

severely reduced LDL internalization, although the lowest pan-

LDL uptake scores were among the hLDL-c individuals (Fig-

ure 3A). Overall, pan-uptake and Ly DiI-No were reduced in

hLDL-c compared with nLDL-c subjects, but the differences

were not significant (Figures S3A and S3B). Of note, reduced

pan-uptake, Mo DiI-Int, and Ly DiI-No correlated with increased

serum LDL-c levels in the hLDL-c subgroup, but the correlations

relied on a single individual with a very high serum LDL-c con-

centration (pan-uptake: R = �0.49; p = 0.028; Figure S3C).

To investigate additional factors influencing the interindividual

variability in cellular LDL uptake, we analyzed correlations to 2

obesity indicators: body mass index (BMI) and waist circumfer-

ence. Strikingly, reduced pan-uptake, as well as Mo DiI-Int and

Ly DiI-Int, correlated with increased waist circumference (pan-

uptake: R = �0.42; p = 0.009; Figure 3B). Lower pan-uptake,

Ly DiI-Int, and Mo DiI-Int also correlated with elevated BMI

(pan-uptake: R = �0.36; p = 0.022; Figure 3C).

Assessment of cellular lipid storage and mobilization in
leukocytes
Cells store excess lipids in LDs, and this is related to lipid uptake:

when peripheral cells have sufficient lipids available, they typi-

cally exhibit LDs and, in parallel, lipid uptake is downregulated.

We therefore also included the staining of LDs in the automated

analysis pipeline (Figure 1A). Staining of PBMCs in lipid-rich con-

ditions (CM) with the well-established LD dye LD540 (Spandl

et al., 2009) revealed that lymphocytes and monocytes
R and p values for all uptake scores; n = 21 patients.

eterozygous FH patients on statin monotherapy, including R and p values for all

nocyte mean DiI-LDL intensity (Mo Int) as in (D).

0.01, and ***p < 0.001. Error bars represent SEM
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Figure 3. LDL uptake profiles in non-FH individuals with normal and elevated LDL-c

(A) Quantification of monocyte (Mo) and lymphocyte (Ly) mean DiI-LDL intensities (Int.), organelle numbers (No.), and pan-uptake after lipid starvation, normalized

to control standards; duplicate wells per patient (8 wells per patient for pan-uptake). Significant changes to control two were calculated with Welch’s t test.

(B and C) Correlation of pan-uptake (B) with waist circumference and (C) with body mass index (BMI), including R and p values for all uptake scores. n = 39.

Gray areas in scatter plots indicate 95% CI. *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars represent SEM
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displayed LDs in a heterogenous fashion (Figure 4A), with lym-

phocytes showing fewer LD-positive cells and fewer LDs per

cell than monocytes (Figures 4B and 4C). We then visualized

the changes in LD abundance upon overnight lipid starvation in

lipoprotein-deficient medium (LP; Figures 4B–4F). This resulted

in a pronounced decrease in lipid deposition: in CM, 9% of lym-

phocytes and 25% of monocytes contained LDs, but upon lipid

starvation, these were reduced to 6% (Ly) and 12% (Mo;

Figure 4D).

Due to the lower LD abundance in lymphocytes, we focused

on monocytes and defined 3 readouts for them: (1) percentage

of LD-positive cells (LD-Pos), (2) cellular LD number in LD-Pos

(LD-No), and (3) total cellular LD area in LD-Pos (LD-Area). On

average, LD-Pos cells showed 2.9 LDs in lipid-rich conditions

and 1.8 LDs upon lipid starvation (Figure 4E), while the total LD

area decreased from 1.35 mm2 in lipid-rich conditions to

0.8 mm2 upon lipid starvation (Figure 4F).

When quantifying LD parameters from several subjects, we

observed substantial differences between individuals in how

LDs changed upon starvation. To systematically quantify these

differences, we established a parameter, lipid mobilization score

that reflects how efficiently cellular lipid stores are depleted un-

der lipid starvation (Figure 4G). Lipid mobilization scores were
6 Cell Reports Methods 2, 100166, February 28, 2022
calculated for each of the LD readouts, LD-Pos, LD-No, and

LD-Area, by dividing the results obtained in lipid-rich conditions

with those obtained after lipid starvation (Figure 4G). Further-

more, we established a pan-mobilization score by averaging

LD-Pos, LD-No, and LD-Area scores (Figures 4G and 4H), with

LD-Pos providing the highest mobilization score but also the

highest variability (Figure 4H).

To further assess the reliability of the LD mobilization parame-

ters, we determined their intraindividual variation using the same

samples as for analyzing intraindividual variation of DiI-LDL up-

take (Figures S1I and S1J). This showed amodest intraindividual

variation for the lipid mobilization scores (Figure S4A), with an

average of 8% for pan-mobilization, 10% for LD-Pos, 11% for

LD-No, and 13% for LD-Area (Figure S4B).

Cellular lipid mobilization in He-FH patients
When lipidmobilization was analyzed from the He-FH samples of

the METSIM cohort, we found that the pan-mobilization score

was significantly reduced in He-FH individuals carrying the FH-

North Karelia and Glu626Lys variants (Figure 4I). This suggests

that defective LDLR function may be accompanied by reduced

lipid mobilization. We also studied whether the combination of

a lipidmobilization score with LDL uptake improves identification
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Figure 4. Lipid mobilization assay

(A) Representative images showing lipid droplets (LDs) in lymphocyte and monocyte populations after treatment with control medium; scale bars represent

10 mm.

(B and C) Histogram for cellular LD counts in (B) lymphocyte and (C) monocyte populations after treatment with control medium (CM) and lipid starvation (LP) from

a single well.

(D) Quantification of LD-positive cells in Lys andMos upon treatment with CM and LP; representative of 3 independent experiments, each with duplicate wells per

patient and treatment.

(E and F) LD counts (E) and total LD area (F) in LD-positive monocytes quantified for the same experiment as in (D).

(G) Schematic presentation of the lipidmobilization score. Upon lipid starvation, the fraction of LD-positivemonocytes (LD-Pos), their total LD area (LD-Area), and

LD numbers (LD-No) are decreasing. Mobilization scores are calculated by dividing the amount of LD-Pos, LD-No, or LD-Area in CM with the respective

quantifications after lipid starvation. Pan-mobilization is the average of LD-Pos, LD-No, and LD-Area mobilization scores from individual wells.

(H) Lipid mobilization scores for 1 control; n = 6 wells from 3 independent experiments (18 wells for pan-mobilization) ± SEM.

(legend continued on next page)
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of statin recipients with high residual LDL-c concentrations.

Several of the patients with intermediate and high LDL-c showed

low monocyte DiI-LDL intensities in a narrow range (Figure 2D).

When monocyte DiI-Int was combined with the pan-mobilization

score, larger differences between patients were observed,

providing a better separation of individuals with high and inter-

mediate LDL-c (Figure 4J). Moreover, the difference in LDL-c

concentration between the 3 individuals with the highest versus

lowest score was more significant than when using monocyte

DiI-Int alone (Figure 4K versus Figure 2E). This suggests that

the combined LDL uptake and lipid mobilization assays may

help to better pinpoint those He-FH cases that remain refractory

to statin monotherapy.
Cellular lipid mobilization is reduced in non-FH patients
and correlates with LDL uptake
We then investigated whether monocytes from nLDL-c and

hLDL-c biobank donors displayed differences in lipid mobiliza-

tion. Analogously to LDL uptake, we observed a large variability

for the pan- and individual mobilization scores in this cohort (Fig-

ure 5A). Interestingly, pan-mobilization, LD-No, and LD-Area

were significantly reduced in the hLDL-c compared with nLDL-

c subjects (Figures 5A, 5B, S5A, and S5B). This prompted us

to scrutinize whether lipid mobilization correlates with LDL-up-

take-related parameters in this cohort. All mobilization scores

correlated positively with the pan-uptake score (R = 0.42; p =

0.0095 for pan-mobilization; Figure 5C). Furthermore, pan-,

LD-No, and LD-Area mobilization scores correlated negatively

with total cholesterol, apo-B concentrations (Figures S5C and

S5D), and with age (R = �0.38, p = 0.019 for pan-mobilization;

Figure 5D).
Hybrid scores of genetic and functional cell-based data
show improved association with hypercholesterolemia
The hLDL-c biobank donors of the FINRISK population cohort

displayed an increased LDL-c polygenic risk score (LDL-PRS)

(Figure 6A). LDL-PRS did not correlate with LDL uptake or lipid

mobilization (Figures S6A and S6B), suggesting that LDL-PRS

and cellular LDL uptakemonitor, in part, distinct processes. Inter-

estingly, combination of LDL-PRS with pan-uptake reduced the

variation and made it easier to discriminate the nLDL-c and

hLDL-c groups, providing an 8-times-better p value as compared

with LDL-PRS only (Figure 6B). Furthermore, combination of the

pan-mobilization score with LDL-PRS drastically improved the

discrimination between groups (Figure 6C), and combining all 3

parameters, i.e., LDL-PRS, pan-uptake, and pan-mobilization,

provided the best discrimination power and lowest p value (Fig-

ure 6D). To further highlight the benefits of combining genetic

and functional cell data, we calculated the odds ratio (OR) for

elevated LDL-c by comparing individuals with the highest 30%

of the scores to the remaining subjects. Interestingly, combining

LDL-PRSwith either pan-uptake or pan-mobilization doubled the
(I) Pan-mobilization for controls (combined control one and two from 5 experime

(J) Correlation of combined monocyte mean DiI-LDL intensities (Mo Int) and pan

(K) LDL-c concentration for 3 patients with the highest (high) and lowest (low) co

*p < 0.05 and **p < 0.01. Error bars represent SEM.
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OR, and using a hybrid score combining all 3 readouts resulted in

a 5-fold higher OR (Figure 6E). The odds for having elevated LDL-

c was 21 times higher for a person within the highest 30% of the

triple hybrid score, as compared with the remaining subjects,

highlighting the strength of functional hybrid scores. This is

further supported by calculating the OR for 25%, 30%, 35%,

and 40% of the individuals with the highest LDL-PRS, double

or triple hybrid scores, and the remaining subjects, which in

almost all instances provided higher OR for hybrid scores than

for LDL-PRS (Figure S6C).
DISCUSSION

In this study, we established a multiplexed analysis pipeline to

quantify lipid uptake and mobilization in primary leukocytes

and used it to analyze over 300 conditions (combinations of as-

says and treatments) from 65 individuals. The automated cell

handling, staining, and imaging procedures enable high-

throughput applications. Key advantages of the method are (1)

large-scale internal standards allow comparison of experimental

results over time; (2) automated cell quantification avoids

researcher bias, increasing reliability of results; (3) semi-auto-

mated workflow can be scaled to increase throughput; (4) cell

immobilization on coated surfaces allows flexibility in sample

handling and facilitates automation, (5) lymphocyte- and mono-

cyte-enriched cell populations can be detected based on cell

spreading on coated surfaces; and (6) subcellular resolution en-

ables quantification of internalized LDL and LDs, yielding addi-

tional scores derived from them. In conventional flow cytometry

assays, cells are quantified when passing through a capillary,

providing mean cellular intensities without subcellular resolution.

The cells need to be in suspension, and cell aggregation can

obstruct the capillary. This complicates cell handling and re-

quires centrifugation steps for cell washing, making it

more challenging to automate the assays. Consequently, the first

two aspects can be readily included in flow cytometry assays

while the latter four rely on a high-content, high-resolution imag-

ing platform.

Several of the observations made using this analysis pipeline

are supported by previous findings obtained using manual as-

says, thereby validating our results. We showed that monocytes

display higher LDL uptake activities than lymphocytes, in accor-

dance with previous findings (Schmitz et al., 1993). The highly

variable LDL uptake observed by us between individuals,

including He-FH patients with identical LDLR mutations, also

agrees with earlier reports (Tada et al., 2009; Thedrez et al.,

2018; Urdal et al., 1997). Furthermore, we observed an associa-

tion of low cellular LDL uptake with increased circulating LDL-c

in He-FH patients on statin monotherapy, in line with studies uti-

lizing radiolabeled LDL (Gaddi et al., 1991; Hagemenas

and Illingworth, 1989; Hagemenas et al., 1990; Sun et al.,

1998). However, this finding was not readily reproduced by using
nts), FH-North-Karelia (n = 7), FH-Pogosta (n = 3), and FH-Glu626 (n = 5).

-mobilization with circulating LDL-c.

mbined score as in (J).
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Figure 5. Monocyte lipid mobilization correlates with LDL uptake and is reduced in subjects with elevated LDL-c

(A) Mobilization scores (Pos, LD-No, LD-Area, and pan-mobilization) in monocytes from controls (nLDL-c, LDL-c 2–2.5 mmol/L) and individuals with elevated

LDL-c (hLDL-c, LDL >5 mmol/L) sorted according to the pan-uptake score (Figure 3A); duplicate wells per patient (6 wells per patient for pan-mobilization).

Significant changes to control two were quantified with Welch’s t test.

(B) Box plot of pan-mobilization for nLDL-c and hLDL-c subgroups; nLDL-c n = 19, hLDL-c n = 19. **p < 0.01, Student’s t test.

(C and D) Correlation of pan-mobilization with pan-uptake (C) and age (D), including R and p values for all mobilization scores. Gray areas in scatterplots indicate

95% CI. *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars represent SEM.
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fluorescently labeled LDL particles in lymphocytes (Homma

et al., 2015; Raungaard et al., 2000). Indeed, our results indicate

that monocytes provide an improved detection window and a

better correlation between cellular LDL uptake and circulating

LDL-c.

We also found that reduced LDL uptake correlated with

increased BMI and waist circumference, two obesity indicators.

Metabolic syndrome is typically linked to dyslipidemia charac-

terized by decreased high-density lipoprotein cholesterol

(HDL-c), elevated LDL-c with increased small, dense LDL parti-

cles, and increased plasma triglycerides (Klop et al., 2013). Our

results suggest that, besides VLDL overproduction and defec-

tive lipolysis of triglyceride (TG)-rich lipoproteins (Borén et al.,

2020), reduced LDL clearance may contribute to dyslipidemia

in overweight individuals. This fits with the observed reduction

of LDLR expression in obese subjects (Mamo et al., 2001).

Moreover, we employed the platform to quantify cellular LDs,

established a parameter termed lipid mobilization score, and

demonstrated its ability to provide additional data on individual

differences on lipid handling. Lipid mobilization correlated with

LDL uptake, implying that efficient removal of stored lipids was

typically paralleled by efficient lipid uptake. Moreover, combining

monocyte LDL uptake and lipid mobilization data facilitated the

detection of He-FH cases that remained hypercholesterolemic
on statin. In the FINRISK population cohort, lipid mobilization out-

performed LDL uptake in distinguishing individuals with high

(>5 mmol/L) and normal LDL-c (2–2.5 mmol/L), with impaired lipid

mobilization associating with elevated LDL-c. Hence, lipid mobili-

zation shows potential to highlight additional aspects of cellular

lipid metabolism underlying hypercholesterolemia in individual

patients.

Polygenic risk scores (PRSs) provide tools for cardiovascular

risk profiling and are increasingly included in clinical care guide-

lines of hypercholesterolemia (Borén et al., 2020; Mach et al.,

2019). We found that the hypercholesterolemia subjects of the

FINRISK cohort had an increased LDL-PRS, but this did not

correlate with LDL uptake or lipid mobilization, arguing that the

cell-based parameters cover in part different territories than

PRS. In agreement, the combination of LDL uptake, lipid mobili-

zation, and LDL-PRS improved the segregation of hyper- and

normocholesterolemic subjects. An increased LDL-PRS is asso-

ciated with a higher incidence of coronary artery disease (Ripatti

et al., 2020). We therefore anticipate that the cell-based assays

may provide additional information for future integrated CVD

risk calculations. These, in turn, might facilitate the detection of

hypercholesterolemia risk at younger age when clinical manifes-

tations are not yet overt, enabling faster initiation of treatment

and improved disease prevention (Wiegman et al., 2015).
Cell Reports Methods 2, 100166, February 28, 2022 9
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Figure 6. Hybrid scores combining genetic and functional cell-based data show improved association with hypercholesterolemia

(A) Box plot of a polygenic risk score for high LDL-c levels (LDL-PRS) for nLDL-c (2–2.5 mmol/L LDL-c) and hLDL-c (>5 mmol/L LDL-c) subgroups.

(B and C) Boxplot for double hybrid scores combining LDL-PRS and (B) pan-uptake or pan-mobilization (C) into a single score.

(D) Boxplot for a triple hybrid score consisting of LDL-PRS, pan-uptake, and mobilization.

(E) Odds ratio (OR) for 30% of the individuals with the highest LDL-PRS, double or triple hybrid scores, and the remaining subjects, calculated with the Fisher’s

exact probability test; n = 36. The OR for genetic and the hybrid scores are above one, indicating that a person with a high score is more likely to have elevated

LDL-c. The significance tests evaluate the likelihood that anOR different from 1 has been obtained by chance. For the combination of LDL-PRSwith the functional

cell data, this likelihood is very low and our results are significant, while for LDL-PRS alone, this is not the case.

nLDL-c n = 18 and hLDL-c n = 18; *p < 0.05, **p < 0.01, and ***p < 0.001; Welch’s t test.
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In summary, the automated analysis platform established here

enables systematic assessment of cellular lipid trafficking in

accessible primary cell samples of human origin. Besides hyper-

cholesterolemia, this approach can be useful in other metabolic

disorders, aswell as diseases not previously linked to cellular lipid

imbalance. As an example of the latter, we recently uncovered

aberrant LD size distribution in MYH9-related disease patient

neutrophils using quantitative imaging (Pfisterer et al., 2017).

Limitations of the study
We analyzed 65 individuals as a proof of concept for the analysis

platform. While this outperforms most previous studies

measuring lipid uptake in primary cells, further validation in larger

study groupswill be required to assess its potential clinical utility.

Such studies will be feasible due to the high automation level of

the platform, enabling processing of samples from several thou-

sand subjects per year. In particular, the finding that combined
10 Cell Reports Methods 2, 100166, February 28, 2022
LDL uptake and lipid mobilization assays may improve the

detection of He-FH cases that remain refractory to statin mono-

therapy relies on the small number of such individuals in the cur-

rent study and awaits validation with additional He-FH patients

on cholesterol-lowering medication.

Regarding the cellular origin of hypercholesterolemia, we infer

parameters related to whole-body metabolism and in particular

liver function from PBMCs. Evidently, primary hepatocytes

would provide more direct information but are not accessible

on a routine basis. PBMCs are easily obtained from standard

blood collections. Moreover, our data demonstrate that

PBMC-derived parameters can correlate with readouts deriving

from the whole body level.

Currently, the analysis platform is set up to quantify two

cellular parameters: LDL uptake and lipid storage in droplets.

In the present conditions with minimally modified cells, only a

fraction of cells (9% of lymphocytes and 25% of monocytes)
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contained LDs. Further extensions of the assay can be envis-

aged, for example, by employing exogenous lipid loading to

induce LDs with a specific content prior to lipid mobilization. In

the future, the utility of the platform can also be further extended

by the inclusion of additional fluorescence-based readouts

amenable to high-content imaging and quantification.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-LDLR mouse (clone 472413) R&D Systems Cat#MAB2148-100, Accession#P01130;

RRID:AB_2135125

Anti-mouse Alexa Fluor 568 Fisher Scientific Cat#A11004; RRID:AB_2534072

CD14 Monoclonal Antibody (Sa2-8),

FITC,eBioscienceTM
Fisher Scientific Cat#11-0141-82; RRID:AB_464949

CD3 Antibody anti-human, mouse

monoclonal (BW264/56) APC conjugated

Miltenyi Biotec Cat#130-113-687; RRID:AB_2726228

Biological samples

Human plasma and buffy coat samples

from anonymous healthy donors

Finnish Red Cross Blood Service https://www.bloodservice.fi/

Peripheral blood mononuclear cell (PBMC)

samples from FINRISK 2012 population

survey participants

Finnish institute of Health andWelfare (THL)

Biobank

https://thl.fi/en/web/thl-biobank

Blood samples from heterozygous familial

hypercholesterolemia (He-FH) patients in

Metabolic Syndrome in Men study

(METSIM)

Laakso et al., 2017 Samples collected during follow-up

Chemicals, peptides, and recombinant proteins

4,4-difluoro-2.3,5.6-bis-tetramethylene-4-

bora-3a,4a-diaza-s-indacene (LD540)

Princeton BioMolecular Research (Spandl

et al., 2009)

N/A

1,10-dioctadecyl-3,3,30,30-tetramethyl-

indocarbocyanine perchlorate (DiI)

Thermo Fisher Cat#D282; LOT1801202

2-(4-Amidinophenyl)-6-indolecarbamidine

dihydrochloride (DAPI)

Sigma-Aldrich Cat#D9542

HCS CellMaskTM Deep Red Stain Thermo Fisher Cat#H32721

HCS CellMaskTM Green Stain Thermo Fisher Cat#H32714

LPDS (lipoprotein-deficient serum) Prepared as described (Goldstein et al.,

1983)

N/A

Low-density lipoprotein (LDL) Prepared from human plasma as described

(Stephan and Yurachek, 1993)

N/A

DiI-LDL Prepared as described (Reynolds, 1985) N/A

Experimental models: Cell lines

EBV lymphoblasts Coriell Cell Repository https://www.coriell.

org/

Cat#GM14664

Software and algorithms

Huygens Professional Scientific Volume Imaging https://svi.nl/Huygens-Professional

CellProfiler McQuin et al., 2018 https://cellprofiler.org/

Pandas McKinney, 2010 https://pandas.pydata.org/

Numpy Harris, 2020 https://numpy.org/

Scipy Virtanen, 2020 https://scipy.org/

Python Python Software Foundation https://www.python.org/

Lipidanalyzer Salo et al. (2019) https://bitbucket.org/szkabel/lipidanalyzer/

get/master.zip

Python tools to process imaging data

collected with Opera Phenix

This study https://doi.org/10.5281/zenodo.5807656

Matplotlib Hunter (2007) https://matplotlib.org/

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Seaborn Waskom et al. (2017) https://seaborn.pydata.org
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Simon

Pfisterer (simon.pfisterer@helsinki.fi)

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The authors declare that the data supporting the findings of this study are available within the paper and its supplemental in-

formation files. Genetic data and laboratory values for the subjects of the FINRISK cohort study are available from the THL Bio-

bank (https://thl.fi/en/web/thl-biobank).

d Custom python tools for image processing and deconvolution can be accessed via: https://doi.org/10.5281/zenodo.5807656.

Software tools for lipid droplet detection have been described previously (Salo et al., 2019). The details are also listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subject samples
All blood samples were collected in accordance with the declaration of Helsinki regarding experiments involving humans. He-FH

patients were identified in the Metabolic Syndrome in Men study (METSIM) (Laakso et al., 2017), which was approved by the

ethics committee of the Kuopio University Hospital on December 20, 2004 (number 171/2004) All samples from the METSIM study

are from male subjects. Two He-FH patients (male and female) (Cys325Tyr and Ser580Phe) for which we obtained PBMC and EBV

lymphoblast samples were described previously (Romano et al., 2011) and were retrieved from the CEINGE Biobank which

received approval from the ethical committee of the Università degli Studi di Napoli Federico II (Number 157/13, September 9,

2013). PBMC samples from the Finnish population survey, FINRISK 2012, and the donor linked data (including genotypes)

were obtained from THL Biobank (www.thl.fi/biobank) and used under the Biobank agreements no 2016_15, 2016_117 and

2018_15. Blood samples were collected from the voluntary donors of the FINRISK 2012 population cohort with written consent

permitted by the ethical committee of the Hospital District of Helsinki and Uusimaa (permit 162/13/03/00/2011). The FINRISK

2012 study groups consisting of donors with elevated LDL-c levels (LDL > 5 mM, hLDL-c) and normal levels (LDL-c 2.0–

2.5 mM, nLDL-c) were age, gender (20 male, 20 female, with one male sample not successfully recovered) and BMI matched.

The donors in neither of the groups had cholesterol lowering medication by the time of sampling, and based on a food frequency

questionnaire, did not receive an elevated proportion of energy intake as saturated or trans-fat. Buffy coat samples from healthy

blood donors were obtained from the Finnish Red Cross (permit 392016) (gender information not available). Three healthy volun-

teers (two male, one female) donated blood samples on two consecutive days after overnight fasting, to assess the intraindividual

variation of LDL uptake and lipid mobilization. The METSIM cohort subjects are described in Table S1 and FINRISK cohort sub-

jects in Table S2.

Cell lines
Control EBV lymphoblasts (GM14664) were obtained from Coriell Cell Repository and cultured in RPMI-1640 supplemented with

15%FBS, penicillin/streptomycin (100 U/ml each) and 2mM L-Glutamine. For continuous culturing of EBV lymphoblasts, 3x106 cells

were transferred to 5 mL of fresh medium once a week. Cells were cryopreserved in 70% PBMC medium (RPMI-1640, penicillin/

streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate, and 1 mM HEPES), 20% FBS and 10% DMSO.

METHOD DETAILS

PBMC isolation
Blood or buffy coat samples were mixed 1:1 with phosphate buffered saline (PBS) including 2.5 mM EDTA (PBS-E). The blood

mixture was gently layered over Histopaque Premium (1.073, for mononuclear cells) and centrifuged 40 min at 400 g. The

PBMC cell layer was removed, transferred to a new 15 mL reaction tube and mixed with PBS-E. Cells were centrifuged at

400 g for 10 min and incubated in 2 mL of red blood cell lysis buffer for 1 minute (155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM

EDTA). 10 mL of PBS-E was added and cells were pelleted and washed with PBS-E. Then cells were resuspended in 5 mL

PBMC medium (RPMI-1640, penicillin/streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate, and 1 mM HEPES), counted, pel-

leted and cryopreserved.
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Cell treatments, DiI-LDL uptake, transfer to imaging plates and fixation
Cryopreserved EBV lymphoblasts or PBMCs were thawed in PBMC medium, and centrifuged at 400 g for 10 min. The cells were

resuspended in PBMC medium and transferred to a well of a 96 well plate (200,000 cells per well), containing FBS (10% final con-

centration) or LPDS (5% final concentration) and incubated for 24 h (prepared as described [Goldstein et al., 1983]). Cells were

then incubated with freshly thawed DiI-LDL at 30 mg/mL final concentration for 1 h at 37�C (prepared as described [Reynolds,

1985; Stephan and Yurachek, 1993]), which yielded an optimal signal intensity at a linear detection range in PBMCs. Subsequently,

cells were transferred to conical 96 well plates and centrifuged at 400 g for 10 min. Using a robotic platform (Opentrons, New York,

USA) medium was removed and cells were resuspended in PBMCmedium. Cells were centrifuged, automatically resuspended in

PBMC medium and transferred to PDL coated 384 well high-content imaging plates (approximately 40 000 cells/well, a density

where individual cells are not on top but close to each other). The robotic resuspension ensured homogenous cell adhesion to

the imaging plates. After 30min of incubation at 37�C cells were automatically fixed with 4%paraformaldehyde in 250 mMHEPES,

1 mM CaCl2, 100 mMMgCl2, pH 7.4 and washed with PBS. For lipid droplet and LDLR surface stainings, cells were directly trans-

ferred to PDL coated 384 well high-content plates, adhered, automatically fixed and washed with PBS.

Lipid droplet analyses
Cells were processed as described before (Pfisterer et al., 2017) with the following changes: Fixed cell samples were automatically

stained with 1 mg/ml LD540 (Princeton BioMolecular Research, (Spandl et al., 2009)) and 5 mg/ml DAPI. 3D stacks of optical slices

were acquired automatically either with a Nikon Eclipse Ti-E inverted microscope equipped with a 40 3 Planfluor objective with

NA 0.75 and 1.5 zoom; duplicate wells, each with six image fields per patient, or with a PerkinElmer Opera Phenix High Content Im-

aging system with a 63x water immersion objective, NA 1.15; duplicate wells, each with 14, 16 (two wells combined) or 24 (two wells

combined) image fields. Image stacks were automatically deconvolved either with Huygens software (Scientific Volume Imaging,

b.v.) or a custom-made Python tool based on the open-source tools PSF generator (Kirshner et al., 2013) and deconvolution lab

(Sage et al., 2017). Maximum intensity projections were made from the deconvolved image stacks with custom Python tools. Auto-

mated quantification of lipid droplets was performed as described previously (Pfisterer et al., 2017; Salo et al., 2019; Vanharanta

et al., 2020).

LDLR surface staining
All staining procedures were performed automatically. Fixed cells were quenched with 50 mM NH4Cl for 15 min and washed twice

with PBS. Cells were incubated with block solution (PBS, 1% BSA) for 10 min followed by staining with mouse anti-LDLR in block

solution for 60 min. Cells were washed three times with PBS followed by incubation with secondary antibody solution (anti-

mouse-Alexa 568, DAPI 5 mg/ml and HCS CellMask Green stain 0.25 mg/ml) for 45 min at room temperature. Cells were washed

with PBS and 3D stacks of optical slices were acquired for DAPI (nuclei), CellMask Green (cytoplasm), Alexa 568 (LDLR surface)

and Alexa 640 (background) channels using an Opera Phenix high-content imaging system with a 40x water immersion objective

NA 1.1; quadruplicate wells, each with seven image fields per patient. LDLR surface and background images were automatically de-

convolved with our custom build Python deconvolution tools and maximum intensity projections were made. The resulting images

were automatically analysed with CellProfiler (Carpenter et al., 2006; McQuin et al., 2018). LDLR surface intensities were background

subtracted for each individual cell and normalized by subtracting mean LDLR surface intensities from the two controls, which were

included in each imaging plate.

Quantification of DiI-LDL uptake
DiI-LDL labeled, and fixed cells (see ‘‘cell treatments’’) were automatically processed with a robotic platform (Opentrons). Cells were

stained with 5 mg/ml DAPI and 0.5 mg/ml HCS CellMask Deep Red and image stacks for three channels, DAPI (nuclei), DiI-LDL and

CellMask Deep Red (cytoplasm) were acquired. Automated microscopy and single cell quantifications with CellProfiler were per-

formed as described in the section LDLR surface staining; Quadruplicate wells, each with 7 image fields for heterozygous FH pa-

tients; duplicate wells, each with 13 image fields for FINRISK subjects. Plate effects were determined with control samples

and corrected for in the individual experiments.

LDL-c polygenic risk score (LDL-PRS)
Genotyping of FINRISK2012 samples has been previously described (Ripatti et al., 2020) We calculated three PRSs for LDL: 1) the

previously published PRS by Talmud et al. with 12 LDL-increasing alleles, 2) a genome-wide PRS with 6376447 variants using the

recent LDpred method, and 3) a PRS s combining 1) and 2) (Talmud et al., 2013; Vilhjálmsson et al., 2015). The PRSs were calculated

as the sum of the risk alleles weighted by their effect sizes. The weights for Talmud’s PRS were based on the original publication

(Talmud et al., 2013).The weights for the LDpred lipid PRSs were based on a custom-run European genome-wide association study

(GWAS) meta-analysis with 56945 samples excluding the FINRISK samples to eliminate sample overlap (Surakka et al., 2015).The

LDpred method is a Bayesian approach to calculate a posterior mean effect size for each variant based on a prior of effect size

and linkage disequilibrium (a measure of howmuch a variant correlates with other variants) (Vilhjálmsson et al., 2015).Whole-genome

sequences from 2690 Finns served as the linkage disequilibrium reference population for LDpred. LDpred requires a tuning param-

eter r representing the fraction of causal variants in a given phenotype. We used r of 0.01 as it provided the highest r2 in 4697 gen-
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otyped Finnish samples from the independent GeneRISK cohort. GeneRISK is an ongoing prospective observational study including

randomly seleced 45-65 year old individuals from Southern Finland (https://thl.fi/en/web/thl-biobank/for-researchers/

sample-collections/generisk-study), with the genetic risk loci based on (Consortium et al., 2013). A total of 4697 GeneRISK samples

were genotyped using theHumanCoreExomeBeadChip. Genotypeswere called together with other available data sets using zCall at

FIMM. QC and imputation were performed in the same manner as for the FINRISK samples. The PRSs were calculated using PLINK

2.0 Alpha 1 (Chang et al., 2015). As the 12 variants included in Talmud’s PRS were also included in the LDpred LDL-c PRS, we ac-

counted for variant overlap by estimating the relative contributions of the two PRSs using linear regression with both PRSs (stand-

ardised) in a single model in the GeneRISK cohort. We combined the PRSs by weighting them by their regression coefficients and

subsequently summing them together for each individual. With the combined PRS, we were not only able to account for variant over-

lap between the PRSs, but also address LDpred’s tendency to dilute the effects of high-impact SNPs, as well as catch the non-linear

contributions of the different APOE haplotypes to lipid levels (Talmud et al., 2013; Vilhjálmsson et al., 2015). We used the combined

PRS in all subsequent analyses. A comparison of the different PRSs and their performance in the entire FINRISK cohort is described

in Table S3. LDL uptake and lipid mobilization parameters were normalized to a range from 0 to 1 to generate uptake andmobilization

scores. Hybrid scores represent the average of LDL-PRS and uptake and/or mobilization scores which were normalized to a range

from 0 to 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Segmented images from CellProfiler underwent routine visual controls to verify cell identification and filter out potential imaging ar-

tifacts. Then, lymphocytes and monocytes were detected based on the size of the cytoplasm (Ly <115 mm2, Mo >115 mm2) (See Fig-

ure S1). We averaged the cellular mean DiI-LDL intensities and organelle counts for each cell population and well and normalized

them to the average of both controls included in each plate, set to 100%. For LD quantifications we first selected monocytes with

at least one LD. We then averaged cellular LD number and total LD area (LD number x LD size) for each well. For lipid mobilization

we first averaged the control medium results for LD-Pos, LD-No, and LD-area from duplicate wells and then divided these by the

respective per well results after lipid starvation. We used Python (Python Software Foundation, www.python.org) with the following

packages to perform the single cell data analysis (Pandas [McKinney, 2010], Numpy [Harris, 2020], Scipy [Virtanen, 2020], Matplotlib

(Hunter, 2007), Seaborn (Waskom et al., 2017)). For statistical significance testing we utilized aggregated single cell data at the level

of individual wells (n = number of wells per treatment and patient). First, we performed Levene’s test to assess the equality of sample

variation. For equal sample amounts and variance, we carried out a two-tailed Student’s t-test. For unequal samples or variance, we

utilized Welch’s t-test. For correlations we first performed a linear regression of the two measurements and then calculated a two-

sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test sta-

tistic. Fisher’s exact probability test was used to calculate the odds ratio. Among the FINRISK2012 hLDL-c subgroup there is one

individual with a serum LDL-c of 10.1mmol / l. We performed a sensitivity analysis by removing this subject from our analysis, to verify

that the major conclusions of this study are not affected by this individual.
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