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Chemotherapy is still one of the most common ways to treat human glioblastoma in clinic.
However, severe side effects limited its clinic application. Design of cancer-targeted drugs
with high efficiency and low side effect is urgently needed. Herein, silver nanoparticles (Ag
NPs) and nano-selenium (Se NPs) conjugated with RGD peptides (Ag@Se@RGD NPs) to
target integrin high-expressed gliomawere designed. The results found that Ag@Se@RGD
NPs displayed stable particle size and morphology in physiological condition, and induced
significant integrin-targeted intracellular uptake. Ag@Se@RGD NPs in vitro dose-
dependently inhibited U251 human glioma cells growth by induction of cells apoptosis
through triggering the loss of mitochondrial membrane potential, overproduction of
reactive oxygen species (ROS), and MAPKs activation. However, ROS inhibition
dramatically attenuated Ag@Se@RGD NPs-induced MAPKs activation, indicating the
significant role of ROS as an early apoptotic event. Importantly, Ag@Se@RGD NPs
administration in vivov effectively inhibited U251 tumor xenografts growth by induction
of apoptosis through regulation MAPKs activation. Taken together, our findings validated
the rational design that Ag-Se NPs conjugated with RGD peptides was a promising
strategy to combat human glioma by induction of apoptosis through triggering
mitochondrial dysfunction and ROS-dependent MAPKs activation.
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INTRODUCTION

Glioma is still considered as the most common primary malignant brain tumors, accounting for about
80% of malignant brain tumors (Gittleman et al., 2020). Chemotherapy as one of the most commonly
used cancer treatments is severely affected by drug dosage and drug toxicity (Deng et al., 2015; Sun
et al., 2021). The prognosis of gliomas is often poor, and chemotherapy resistance remains the
challenge in therapy of human glioma (da Silva., et al., 2020; Ding et al., 2020; Guo et al., 2021). A safe
dose of chemotherapeutic drugs may not cure cancer patients, while high-dose drugs have a more
significant therapeutic effect but higher drug toxicity and side effects (Song et al., 2016; Sun et al., 2020).
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For example, cisplatin is used as a broad-spectrum anti-tumor drug
by inhibiting cell DNA replication and damaging its cell membrane
structure. However, cisplatin may damage surrounding healthy
tissues and cause severe nephrotoxicity and bone marrow toxicity
(Cemazar et al., 1999; Plummer et al., 2011; Volarevic et al., 2019).
Therefore, the tumors may not be completely eradicated, which
may lead to tumors recurrence andmetastasis. It is urgently needed
to develop a targeted, low effective dose and low toxicity
chemotherapeutic drug to inhibit tumor cell proliferation (Fang
et al., 2011; Nakamura et al., 2015; Cai et al., 2021).

Nanoparticles recently have attracted much attention in the
field of cancer treatment due to their special physical and
chemical properties (Wang et al., 2011; Li et al., 2018).
Compared with traditional anti-cancer drugs, metal
nanoparticles can be used as new therapeutic drugs or drug
carriers in combination with candidate drugs, and targeted
therapy showed less side effects (Zhao et al., 2016; Huang and
Huang, 2018; Zhang et al., 2018). Wang et al. found that fructose-
modified nano-silver can enter and accumulate in a variety of
cancer cells to induce apoptosis, but show less toxicity to most
normal cells (Wang Z. X. et al., 2019). Increasing studies have
found that nano-silver exerts broad-spectrum anti-tumor activity
through a variety of mechanisms. Nano-silver destroys the
ultrastructure of cancer cells, induces ROS production and
DNA damage and leads to cell apoptosis. Nano-silver can also
reduce tumor metastasis by inhibiting tumor cell migration and
angiogenesis (Liu et al., 2018; Zhu et al., 2019; Alphandery 2020;
Yang et al., 2021).

Accumulated researches indicated that selenium was an
necessary element and nano-selenium was an effective anti-
tumor nano-drug and drug carrier (Alvarez et al., 2021). The
team also discovered that tumor-targeted proteins are used to
modify nano-selenium, which improved the stability and tumor
targeting of nano-selenium (Deng et al., 2015; Chang et al., 2017).
Therefore, the modified nano-selenium can achieve precise drug
delivery and inhibit tumor growth and migration. RGD peptides
can bind to integrins that are specifically expressed in tumor cells
or new blood vessels, such as αvβ3, but the content in blood vessels
of normal tissues is very low (Danhier et al., 2012; Zhong et al.,
2014; Chen et al., 2015). Therefore, such receptors can be used as
targets for tumor-targeted therapy, and exogenous RGD peptides
can bind integrin receptors, inhibit tumor migration and tumor
new blood vessel formation, and can also target the delivery of anti-
tumor drugs (Choi et al., 2013; Xu et al., 2017;Wang P. et al., 2019).

Herein, silver nanoparticles (Ag NPs) and nano-selenium (Se
NPs) conjugated with RGD peptides (Ag@Se@RGD NPs) were
synthesized, and our findings validated the rational designs that Ag-
Se NPs conjugated with RGD peptides was a promising strategy to
combat human glioma by induction of apoptosis through triggering
mitochondrial dysfunction and ROS-dependent MAPKs activation.

EXPERIMENTAL SECTION

Materials
Silver nitrate (AgNO3), polyvinylpyrrolidone (PVP), ethylene
glycol, glycerol, sodium selenite (Na2SeO3), chitosan (Cs,

molecular weight 150 kDa; deacetylation degree 85%), sodium
chloride, L-ascorbic acid (Vc), 1-ethyl-3-[3-(dimethylamino)-
propyl] carbodiimide hydrochloride (EDC), N-hydroxy
succinimide (NHS) were purchased from Sigma-Aldrich.
RGD (H-Gly-Arg-Gly-Asp-Asn-Pro-OH) were purchased
from Sangon Biotech (Shanghai) Co., Ltd. Fluorescein
isothiocyanate (FITC), 2,7-Dichlorodihydrofluorescein
diacetate (DCFH-DA), live/dead cell viability kit, BCA
protein detection kit, mitochondrial membrane potential
detection kit (JC-1), apoptosis detection kit (annexin V-FITC
and propidium iodide) were purchased from ThermoFisher
Scientific (China) Co., Ltd. All antibodies were obtained from
Cell Signal Technology (United States).

Synthesis of Ag NPs
The silver nanosphere colloidal solution was prepared as followed.
Briefly, silver nitrate (100 mg) and PVP (1.5 g) with 15ml ethylene
glycol were mixed, vigorously stirred and heated in an oil bath at
120 °C. After reaction 4 h, the reaction solution gradually turns
yellow-green, and the reaction solution was rapidly reduced to
room temperature to obtain a nano silver colloidal solution.

Preparation of Target Substance Cs-RGD
RGD (10 mg/ml) was incubated with NHS and EDC for 2 h. Cs
(1 mg/ml) was dissolved in 1% acetic acid solution and was stirred
for 30 min. Then, Cs solution was added to the RGD solution,
reacted overnight, and dialysis was used to remove unreacted
substances to obtain Cs-RGD. Un-reacted NHS, EDC and RGD
with a molecular weight below 8–14 kDa were all removed.

Synthesis of Ag@Se@RGD NPs
AgNPs colloidal solution (0.5 ml) was added to Na2SeO3 solution
(10 ml, 1 mg/ml), and Vc (1.2 ml, 35 mg/ml) was slowly added
with constant stirring. After 15 min reaction, Cs solution (1 ml,
1 mg/ml) and Cs-RGD solution (1 ml, 2 mg/ml) were added and
reacted for 12 h. Then, dialysis was performed to remove un-
reacted substances. The Ag@Se@RGD NPs were removed from
the reaction solution by centrifugation (10,000 g/min, 10 min).
Supernatant was collected, and BCA detection kit was used to
detect the residual peptides, and the conjugated content of
peptide (μg/mg NPs) was calculated. The preparation of
Coumarin-6-labeled Ag@Se@RGD NPs was similar to the
above preparation process.

Characterization
The morphology of the nanoparticles was observed by high-
definition transmission electron microscope (TEM) and
scanning electron microscope (SEM). Element analysis was
determined by energy dispersive X-ray spectroscopy (EDS). The
dynamic light scattering (DLS) and zeta potentials measurements
were used for characterization of NPs optical properties and sizes
on a Brookhaven Zeta PALS instrument. The ultraviolet-visible
absorption spectra (UV-vis) was obtained on a UV2600
spectrophotometer. Fourier transform infrared spectroscopy
(FT-IR) was performed on a FT-IR spectrometer (Nicoletteis50,
Thermo Fisher Scientific United States) in the wavelength range
between 4,000 cm−1 and 500 cm−1.
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Stability Analysis
Ag@Se@RGD NPs suspension (200 μl) was dispersed in 2.8 ml
deionized water or 10% FBS in DMEM medium for 72 h, the
dispersion stability and dimensional stability of Ag@Se@RGD
NPs in the biological environment were evaluated by examining
the changes in absorbance and particle size, respectively (Wang
et al., 2021).

Cell Culture and Cell Viability Assay
U251 human glioma cells were obtained from American Type
Culture Collection (ATCC, United States). Cells were cultured
with DMEM high glucose medium supplemented with 10% FBS,
100 units/mL penicillin and 100 units/ml streptomycin. The cell
were cultured at 37°C, 5% carbon dioxide and 95% relative
humidity in an incubator. The toxicity of 0–60 μg/ml Ag@Se

NPs and Ag@Se@RGD NPs to Glioma cells was examined by
standard MTT analysis (Sun et al., 2020).

Intracellular Uptake of Ag@Se NPs and Ag@
Se@RGD NPs
Intracellular uptake of NPs by Glioma cells was quantitatively
evaluated. Briefly, U251 cells were cultured in 96-well plates at a
density of 5 × 103 cells/well for 24 h, and coumarin-6-labeled
Ag@Se NPs and Ag@Se@RGDNPs were added and incubated for
2 h. Confocal laser microscope (Olympus, IX-71) was employed
for cell imaging observation and multifunctional micro-plate
reader (Tecan Infinite, 200Pro) was used to measure the
fluorescence intensity of coumarin-6 (excitation wavelength �
466 nm, emission wavelength � 504 nm), respectively.

FIGURE 1 | Synthesis andmorphology of Ag@Se@RGDNPs: TEM images of Ag NPs (A), Ag@Se NPs (B) and Ag@Se@RGDNPs (C). SEM images of Ag NPs (D),
Ag@Se NPs (E) and Ag@Se@RGD NPs (F). (G) Color change images of Ag NPs, Se NPs, Ag@Se NPs and Ag@Se@RGD NPs. (H) The difference between the added
amount and the residual polypeptide in the supernatant was calculated to calculate the RGD content in NPs. (I) EDS spectrum of Ag@Se@RGD NPs.
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Transmission Electron Microscope
Observation of Cell Morphology
U251 cells were cultured in 6-well plates at a density of 1 × 106

cells/well for 24 h. Cells were treated with 20 μg/ml Ag@Se NPs or
Ag@Se@RGD NPs for 2 h. U251 cells after treatment were fixed
with 2.5% glutaraldehyde overnight, and fixed with 1% osmic acid
for 1 h. Then, samples were dehydrated with gradient alcohol,
embedded in resin, sectioned, and stained by 1% lead citrate
solution and 1% uranyl acetate solution for 10 min. Finally, the
cells were fixed on a 200-mesh copper net and observed by TEM.

Real-Time Cellular Analysis
The real-time cell electronic sensor system (RT-CES; ACEA
Bioscience Company) was used to monitor cell proliferation
within 72 h and recorded every 20 min (Zhang et al., 2019).
Briefly, U251 cells were cultured in an e-plate at a density of 5 ×
103 cells per well for 24 h. Then, Ag@Se NPs or Ag@Se@RGD
NPs with a final concentration at 20 μg/ml were added to the
wells, and the detection was continued for 48 h.

Live/Dead Cell Stain Detection
Briefly, U251 cells were cultured in a 6-well plate at a density of
1 × 106 cells/well for 24 h. After that, Ag@Se@RGD NPs of 5, 10
or 20 μg/ml were used to treat the cells for 24 h. The cells were
stained for 30 min according to the operating steps of the live/
dead cell viability kit instructions, and the cell death and living
status was recorded by a fluorescence microscope.

Cellular ROS Level Detection
U251 cells were cultured in a 6-well plate at a density of 1 × 106

cells per well for 24 h. Afterwards, cells were treated with 5, 10 or
20 μg/ml Ag@Se@RGD NPs for 0–2 h. Then, 10 μM DCFH-DA
was used to stain the cells for 20 min. The ROS level was detected
by a fluorescence microscope and a multi-function microplate
reader.

Flow Cytometry Analysis
U251 cells were cultured in 6-well plates at a density of 1 × 106 cells
per well for 24 h. Then, U251 cells were treated with 5, 10, or 20 μg/
ml Ag@Se@RGD NPs for 24 h, and the operation was performed
according to the instructions of the apoptosis detection kit and the
mitochondrial membrane potential detection kit. Briefly, treated
cells were stained with annexin V-FITC and propidium iodide for
apoptosis detection, and treated cells were stained with JC-1 for
mitochondrial membrane potential detection. Then flow
cytometer (Cytoflex, Beckman) was employed to quantitatively
analyze the stained cells.

Permeability Detection of BBB Model
in vitro
Blood brain barrier (BBB) model in vitro was established. Briefly,
HUVECs human umbilical vein endothelial cell (1 × 105 cell/well)
were seeded onto the up-layer of transwell, and cultured for 24 h
with 1% FBS. U251 cells (1 × 105 cell/well) were seeded onto the
down-layer of transwell, and cultured for 24 h with 10% FBS.

FIGURE 2 | Chemical characterization of Ag@Se@RGD NPs: (A) UV-vis absorption spectra of Ag NPs, Cs-RGD, Ag@Se NPs and Ag@Se@RGD NPs. (B) FT-IR
spectra of Ag NPs, RGD, Cs-RGD, Ag@Se NPs and Ag@Se@RGD NPs. (C) Zeta potential of different products during synthesis. (D) The particle size distribution of Ag
NPs, Ag@Se NPs and Ag@Se@RGD NPs. The dispersion stability (E) and dimensional stability (F) of Ag@Se@RGD NPs in deionized water and 10% FBS.
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HUVECs were treated with Ag@Se NPs or Ag@Se@RGD NPs
(20 μg/ml) for 1 h, and then continued to be cultured under normal
culture conditions. The transendothelial cell electrical resistance
(TEER) value of the cell monolayer was measured within 0–24 h
after adding the nanoparticles. The time-dependent permeability
of the nanoparticle from up-layer to down-layer was quantified by
measuring the relative light absorption of each sample.

In Vivo Studies
30 nude mice (20170015) were adaptively fed for 1 weeks, and
injected 107 U251 cells by subcutaneous injection. After 3-weeks
growth, mice (10 mice/group) were given 5 and 10mg/kg Ag@Se@
RGDNPs by caudal vein injection every other day for 2 weeks. Then,
tumors were harvested, and tumors were measured and weighted.
Tumors tissue were examined by immunostaining and western
blotting for mechanism study in vivo. All animal experiments
were carried out according to the protocols approved by the
Guide for the Care and Use of Laboratory Animals published by
Taishan Medical University (SYXK20170023).

Western Blotting
The total cellular proteins (1 × 105 cells/mL, 10 ml) treated with
or without Ag@Se@RGD NPs for 0–24 h were extracted by cell
lysis buffer. The protein concentration was determined by the
BCA protein assay method, and 40 μg/lane protein was loaded

and separated by electrophoresis. Western blotting was used to
determine the effect of Ag@Se@RGD NPs on the expression level
of related proteins, including p-JNK (CST, #9255), total-JNK
(CST, #9252), p-ERK (CST, #3510), total-ERK (CST, #4695),
p-p38 (CST, #4511), total-p38 (CST, #9212), active-caspase-3
(CST, #9661) and β-actin (CST, #4970). The target protein was
detected with chemiluminescence reagents under the Bio-Rad
imaging system.

Acute Toxicity Study
In order to determine the side effects of Ag@Se@RGD NPs
treatment on vital organs, 0–80mg/kg of Ag@Se@RGD NPs was
continuously administered through the tail vein, and the survival
rate and body weight changes of the mice were recorded every day.
After 21 days, blood samples of each group ofmice were collected for
analysis, and important organs such as heart, liver, spleen, lung and
kidney were obtained for hematoxylin-eosin (H and E) staining.

Statistics Analysis
All the experiments were carried out in triplicate and the data
expressed as mean ± standard deviation. Statistical analysis was
performed using SPSS 13.0 (SPSS, Inc.). Statistical significance was
analyzed by one-way ANOVA followed by a Dunnett’s or Tukey’s
post-hoc test. Signifificant differences between the treatment and
control groups are indicated at *p < 0.05, **p < 0.01.

FIGURE 3 | Location of Ag@Se@RGD NPs in cells and U251 cells growth inhibition: (A) Location of coumarin 6-labeled Ag@Se NPs and Ag@Se@RGD NPs in
Glioma cells. (B) Quantitative analysis of fluorescence intensity. (C) Real-time cell analysis of the effects of Ag@Se NPs or Ag@Se@RGD NPs on the proliferation of
Glioma cells.
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RESULTS AND DISCUSSION

Synthesis and Characterization of Ag@Se@
RGD NPs
The characterization results of Ag@Se@RGD NPs are shown in
Figures 1A–H. PVP-assisted solvothermal synthesis was used for
the synthesis of Ag NPs, and then the Ag@Se NPs with uniform
size and good dispersion were obtained by reducing sodium
selenite on the surface of Ag NPs. Ag NPs were spherical
structures with an average diameter of 38 nm (Figures 1A,D;
Figure 2D). After the formation and conjugation of the Se shell,
Au@Se NPs showed a spherical shape with a uniform size about
65 nm and the Se shell was about 10 nm (Figures 1B,E;
Figure 2D). Ag@Se@RGD NPs showed an obvious three-layer
structure, and the average diameter increased to 72 nm (Figures
1C,F; Figure 2D). The formation and modification of the Se shell
resulted in the color of the yellow-green Ag NPs colloidal solution
changing to yellow-brown, and the modification of Cs-RGD did
not cause a significant change in color (Figure 1G). In addition,

the coupling amount of RGD in NPs was 18.32 μg/mg
(Figure 1H). The elemental composition of Ag@Se@RGD NPs
was further analyzed by EDS (Figure 1I). The results showed that
there was a strong signal from Ag (34.80%) and Se (16.2%) in
Ag@Se@RGD NPs. The presence of element N (2.2%) indicated
the presence of RGD in NPs. The detected Si (27.7%) signal
comes from the silicon wafer substrate. The results showed that
the composite nano-system Ag@Se@RGD NPs was successfully
assembled.

The typical longitudinal surface plasmon resonance band
of Ag NPs was observed at 420 nm (Figure 2A), and the
modification of the Se shell caused the characteristic peak at
420 nm to weaken. RGD and Cs were coupled through an
acylation reaction. RGD-modified chitosan has the properties
of a positively charged polyelectrolyte in an acidic medium,
and can be stably combined with negatively charged Se NPs.
After the modificatin of Cs-RGD, due to the increase of the
refractive index of the surrounding medium, the maximum
absorption wavelength has a slight red shift. The FT-IR

FIGURE 4 | Ag@Se@RGD NPs promoted the apoptosis of U251 cells: (A) U251 cells treated with 5–20 μg/ml Ag@Se@RGD NPs were stained with a live/dead kit
and imaged with a fluorescence microscope. Scale bar: 50 μm. (B)MTT was used to test the toxicity of Ag@Se@RGD NPs to U251 cells. Quantitative analysis (C) and
flow cytometry analysis (D) of the early and late apoptosis of U251 cells induced by Ag@Se@RGD NPs.
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FIGURE5 | Ag@Se@RGDNPs caused ROS accumulation of U251 cells: (A)Glioma cells treated with Ag@Se@RGDNPs at 5, 10, and 20 μg/ml weremeasured for
mitochondrial membrane potential by flow cytometry. (B) Quantitative analysis of ROS in glioma cells treated with Ag@Se NPs or Ag@Se@RGD NPs for 0–120 min.
Fluorescence microscope imaging (C) and quantitative analysis of fluorescence intensity (D) of ROS when glioma cells were treated with Ag@Se@RGD NPs for 30 min.
Scale bar: 50 μm.

FIGURE 6 | Ag@Se@RGD NPs triggered ROS-dependent MAPKs activation: (A) Ag@Se@RGD NPs triggered MAPKs activation. U251 cells were treated with
20 μg/ml Ag@Se@RGD NPs for 1–24 h. Protein expression was examined by western blotting method. (B) ROS inhibition attenuated Ag@Se@RGD NPs-induced
MAPKs activation. U251 cells were pre-treated with 5 mMGSH, and co-treated with 20 μg/ml Ag@Se@RGDNPs for 24 h. Protein expression was examined by western
blotting method.
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spectral analysis results in Figure 2B showed that the
characteristic peaks of RGD in Ag@Se@RGD NPs and the
presence of Cs-RGD further confirmed their successful
conjugation with the Se shell surface. The zeta potential
analysis in Figure 2C showed that Ag NPs and Ag@Se
NPs were negatively charged (−7.42 and −14.09 mV,
respectively), which promoted the positively charged Cs-
RGD shell to wrap, and the zeta potential changes to
+24.58 mV. The dispersion stability (Figure 2E) and
dimensional stability (Figure 2F) of Ag@Se@RGD NPs in
the biological environment were evaluated by examining the
changes in absorbance and particle size, respectively. Ag@
Se@RGD NPs were dispersed in deionized water or 10% FBS
and serum for 72 h, and the changes of size and sedimentation
were both less than 5%, indicating the good stability in
biological environment.

Cell Uptake of Ag@Se@RGD NPs
To monitor the transport of NPs in the cell, phalloidin was used
to label the cytoskeleton, and DAPI was used to label the nucleus.
As shown in Figure 3A, Ag@Se@RGD NPs with green
fluorescence penetrated the cell membrane and filled the entire
cytoplasm within 2 h. Similar results were observed on the TEM
image of the cell, which showed that a large number of
nanoparticles entered the cytoplasm. On the other hand, the
uptake rate of Ag@Se NPs by cells is significantly reduced, which
is manifested by a significant reduction in fluorescence intensity

(Figure 3B). Therefore, it was inferred that the modification of
RGD increased the uptake of NPs in U251 cells.

Ag@Se@RGD NPs Induced Apoptosis of
U251 Cells
Real-time cell analysis, MTT detection and live/dead cell staining
were used to explore the inhibitory activity of Ag@Se@RGD NPs
on U251 cells. Real-time cell analysis is an important functional
indicator of cell viability, and cell index reflects changes in cell
number and cell adhesion status. As shown in Figure 3C, the cell
index of the blank group continues increasing. On the contrary,
Ag@Se NPs and Ag@Se@RGD NPs caused the decrease of cell
index. That is, the cell adhesion or viable cells number was
significantly inhibited. Live/dead cell staining (Figure 4A) and
MTT detection (Figure 4B) had similar results. NPs (0–60 μg/ml)
caused the death of U251 cells in a dose-dependent manner. Ag@
Se@RGD NPs at 20 μg/ml, 40 μg/ml and 60 μg/ml caused U251
cell death rates of 55.3, 60.8 and 64.5%, respectively. As the dosage
increasing, the cell death rate did not increase significantly.
Therefore, 20 μg/ml in subsequent experiments was used to
verify the anti-tumor activity of Ag@Se@RGD NPs. Flow
cytometry was used to explore the cell apoptosis. As shown in
Figures 4C,D, Ag@Se@RGD NPs induced obvious apoptosis of
U251 cells, and the number of apoptotic cells increased
significantly with dose-dependent manner, which was mainly
manifested by the increase of early apoptotic cells. Taken

FIGURE 7 | Ag@Se@RGD NPs inhibited tumors growth in vivo: (A) Blood brain barrier (BBB) model in vitro. (B) TEER value. The transendothelial cell electrical
resistance (TEER) value measured immediately after addition of Ag@Se NPs or Ag@Se@RGD NPs (0–24 h). (C) Evaluating BBB crossing dynamics of Ag@Se NPs or
Ag@Se@RGD NPs (0–24 h). (D) Tumor volume. (E) Tumor weight. Nude mice bearing U251 xenografts were administrated with Ag@Se@RGD NPs (5 and 10 mg/kg)
every other day for 2 weeks. (F) Immunostaining of tumors. (G) MAPKs activation in vivo. MAPKs expression in tumor tissue was examined western blotting
method.
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together, Ag@Se@RGD NPs inhibited glioma cells growth by
induction of apoptosis.

Ag@Se@RGD NPs Caused ROS
Accumulation of U251 Cells
The decrease of mitochondrial membrane potential was an
important landmark event of early cell apoptosis (Carneiro
and El-Deiry, 2020; Su et al., 2015). The result in Figure 5A
showed that Ag@Se@RGD NPs treatment caused the significant
loss of mitochondrial membrane potential with a dose-
dependent manner. In the cell model, the DCFH-DA probe
was used to check the production of intracellular ROS. As shown
in Figure 5B, Ag@Se NPs treatment markedly increased the
ROS level to 189% within 45 min, and the Ag@Se@RGD NPs
increased the ROS content to 245% within 30 min, indicating
that RGD modification promoted the absorption of NPs and
resulted in the faster ROS production. As shown in Figures
5C,D, the ROS generation reflected by green fluorescence
further confirmed Ag@Se@RGD NPs-induced ROS
overproduction. Excessive production of ROS can cause
damage to DNA and other signal factors (Aggarwal et al.,
2019; Weinberg et al., 2019).

Ag@Se@RGD NPs Triggered
ROS-dependent MAPKs Activation
MAPKs pathway can regulate cell growth, cell proliferation and
cell division, which plays key role in drugs-induced apoptosis in
human cancers (Sun et al., 2020; Sun et al., 2021). Herein, the
three main components of MAPKs pathway, JNK, ERK and p38,
were all examined to explore the underlying anticancer
mechanism induced by Ag@Se@RGD NPs in U251 cells. As
shown in Figure 6A, the time-course results revealed that Ag@
Se@RGDNPs significantly increased the phosphorylation level of
JNK (Thr183), ERK (Thr202) and p38 (Thr180) with a time-
dependent manner, indicating that Ag@Se@RGD NPs treatment
in vitro activated MAPKs pathway. The total JNK, ERK and p38
expression showed no significant changes. To elucidate the signal
crosstalk between MAPKs pathway and ROS signal, ROS
scavenge (glutathione, GSH) was employed. U251 cells were
pre-treated with 5 mM GSH, and co-treated with 20 μg/ml
Ag@Se@RGD NPs for 24 h, and the results showed that ROS
inhibition by GSH effectively attenuated the phosphorylation
level of JNK (Thr183), ERK (Thr202) and p38 (Thr180) in
Ag@Se@RGD NPs-treated U251 cells, suggesting that ROS
inhibition attenuated Ag@Se@RGD NPs-induced MAPKs
activation. Taken together, these results suggested that Ag@
Se@RGD NPs in vitro inhibited human glioma cells growth by
triggering ROS-dependent MAPKs activation.

Ag@Se@RGD NPs Effectively Crossed the
BBB in vitro
To evaluate the possibility of Ag@Se@RGD NPs crossing the
BBB, we quantitatively measured the BBB permeability using a
in vitro BBB model (Figure 7A). The decrease of TEER value was

related to the increase of the permeability of the cell layer barrier.
As shown in Figure 7B, after 1.5–2 h treatment with Ag@Se@
RGD, the TEER value was significantly reduced. The TEER value
recovered about 6 h after the nanoparticles were treated,
indicating that the change in the permeability of the BBB was
a transient effect. Ag@Se@RGD NPs showed more higher BBB
permeability rate, which was 2.24 times than that of Ag@Se NPs
(Figure 7C). The results indicated that Ag@Se@RGD NPs had
the potential to effectively cross the BBB.

Ag@Se@RGD NPs Inhibited Tumors Growth
in vivo
To further evaluate the anticancer potential of Ag@Se@RGD
NPs, nude mice bearing U251 tumor xenografts were
employed to explore the in vivo anticancer efficiency
against human glioma. After 2-weeks administration, Ag@
Se@RGD NPs (5 and 10 mg/kg) both significantly inhibited
glioma growth in vivo, as convinced by the decreased tumor
volume (Figure 7D) and tumor weight (Figure 7E). The in
vivo anticancer mechanism induced by Ag@Se@RGD NPs
was also investigated. The H&E and Ki-67 staining results
showed that Ag@Se@RGD NPs in vivo significantly inhibited
glioma nuclear heterogeneity and cell proliferation
(Figure 7F). Ag@Se@RGD NPs administration in vivo also
induced glioma cells apoptosis, as demonstrated by the
increased TUNEL-positive cells (Figure 7F). Up-regulation
of activ-caspase-3 expression further confirmed Ag@Se@
RGD NPs-induced apoptosis in vivo (Figure 7G).
Moreover, Ag@Se@RGD NPs in vivo markedly activated
MAPKs pathway, as convinced by the increased
phosphorylation level of JNK (Thr183), ERK (Thr202) and
p38 (Thr180). Taken together, Ag@Se@RGD NPs inhibited
glioma tumors growth in vivo by induction of apoptosis
through regulation ROS-edpendent MAPKs activation.
However, evaluation of anticancer effect in human glioma
must consider the blood brain barrier (BBB). Hence, tumor-
bearing nude mice by U251 cells subcutaneous injection
conducted in the present study was not enough, and
anticancer effect in glioma in situ should be further
explored in future.

In vivo Toxicity Evaluation of Ag@Se@
RGD NPs
As shown in Figures 8A,B, continuous treatment with 5 mg/kg or
10 mg/kg of NPs for 21 days has no significant effect on the body
weight of the mice and the survival rate is 100%. In order to study
the potential toxicity of Ag@Se@RGD NPs, the main organs and
blood samples of mice were collected for H&E staining and blood
biochemical testing. The levels of glutalanine aminotransferase
(ALT), uric acid (UA), blood sugar (GLU) and cholesterol
(CHOL) in mice treated with Au@Se@RGD NPs at 5 or
10 mg/kg were comparable to those of normal mice
resemblance (Figures 8C–F). The H&E staining results
(Figure 8G) of major organs also showed no obvious
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inflammation or damage, which proved the safety of Au@Se@
RGD NPs.

CONCLUSION

Ag@Se@RGD NPs were designed as cancer-targeted nano-
drugs to achieve high-efficiency and synergistic tumor
chemotherapy. NPs are a three-layer core-shell structure
with a particle size of less than 100 nm, and exhibited

tumor-targeted anti-tumor activity. Mechanism
investigation revealed that Ag@Se@RGD NPs induced
glioma cells ROS production, decreased mitochondrial
membrane potential, and caused MAPKs activation, and
ultimately resulted in tumor cell apoptosis. Our findings
validated the rational design that Ag-Se NPs conjugated
with RGD peptides was a promising strategy to combat
human glioma by induction of apoptosis through
triggering mitochondrial dysfunction and ROS-dependent
MAPKs activation.

FIGURE 8 | Safety evaluation of Ag@Se@RGD NPs. (A) Survival rate of mice. (B)Changes of mice body weight. Blood biochemical indicators include: liver function
marker ALT (C), renal function marker UA (D), CHOL (E) and GLU (F). (G) H&E staining for main organs. Scale bar: 100 μm.
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