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INTRODUCTION 
 

Gastric cancer (GC) is the sixth most common cancer 

and the second leading cause of cancer-related deaths 

worldwide. In 2018, 1,033,701 people were diagnosed 

and 782,685 people died from GC [1]. Patients with GC 

usually have an unfavorable prognosis, as the majority 

reach the advanced stages of disease prior to diagnosis 

[2]. The lack of precision treatment and evaluation 

strategies have prompted researchers to investigate 

carcinogenic abnormalities of GC to assess survival 

rates and guide medical decisions. Identifying 

therapeutic targets and prognostic biomarkers for early 

GC and developing appropriate therapeutic methods are  

 

a prospective method to identify the subtypes of GC and 

improve the prognosis of patients with advanced gastric 

cancer. However, the underlying heterogeneity and 

complexity of GC make it difficult to identify reliable 

factors for effective clinical treatment [3, 4].  

 

GC has many classification systems, such as: the 

Lauren classification system, and the World Health 

Organization (WHO) classification systems [5, 6]. 

Lauren classification mainly includes intestinal type and 

diffuse type. Because of its strong perceiving of 

histology and biology of gastric cancer, it has been 

widely used in clinical practice [7]. Intestinal type GC 

cells are tubular or glandular, more densely arranged 
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ABSTRACT 
 

Background: Gastric cancer is a common malignancy and had poor response to treatment due to its strong 
heterogeneity. This study aimed to identify essential genes associated with diffuse type gastric cancer and 
construct a powerful prognostic model.  
Results: We conducted a weighted gene co-expression network analysis (WGCN) using transcripts per million 
(TPM) expression data from The Cancer Genome Atlas (TCGA) to find out the module related with diffuse type 
gastric cancer. Combining Least Absolute Shrinkage and Selection Operator (LASSO) with multi-cox regression, 
the 10 specific genes risk score model of diffuse type gastric cancer was established. The concordance index 
(0.97), the area under the respective ROC curves (AUCs) (1-years: 0.98; 3-years: 1; 5-years: 1) and survival 
difference of high- and low risk groups (p=2.84e-10) of this model in TCGA dataset were obtained. The 
moderate predicting performance was observed in the independent cohort of GSE15459 and GSE62254. The 
results of the gene set enrichment analysis (GSEA) using high-and low risk group as phenotype indicated 
differential expression of tumor-related pathways.  
Conclusion: Thus, we constructed a reliable prognostic model for diffuse type gastric cancer, which should be 
beneficial for clinical therapeutic decision-making. 
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and more cohesive, whereas diffuse type GC cells are 

usually diffuse and have poor adhesion, resulting in less 

glandular formation and easier diffusion. The two 

histological types differ in their clinical and molecular 

features to the point of representing distinct entities [8]. 

Diffuse type GC usually had characteristic mutations in 

genes that participate in adhesion, chromatin integrity, 

or cell motility [7]. Intestinal type GC exhibited 

aneuploidy or other genetic features more frequently. 

 

In the past, it was not accurate to analyze GC as a 

whole. In this study, we divided the samples from The 

Cancer Genome Atlas (TCGA; https://cancerg 

enome.nih.gov/) database to diffuse- and intestinal- type 

GC. we identified genes significantly associated with 

diffuse type based on weighted gene co-expression 

network analysis (WGCNA). Ten genes were obtained 

to construct the predicting system, which was proved an 

effective prognostic system for diffuse type GC.  

RESULTS 
 

Detection of gene co-expression modules correlated 

with diffuse type GC cohort 

 

The data was processed and analyzed by following the 

workflow in Figure 1. Top 50% most variable genes 

(9752 genes) were used for WGCNA. An obvious 

outlier was removed (Supplementary Figure 1A) and a 

soft threshold = 4 was selected to construct a scale-free 

network (Supplementary Figure 1B, 1C). A total of 30 

gene modules were identified after setting the minimum 

cluster size as 30 (Figure 2A). The grey module 

contained genes not attributed to any modules. The 

identified genes associated with a clinical trait were of 

great value in the exploration of the molecular 

characteristics of that trait. In the present study, the 

clinical parameters of diffuse type GC patients, 

including age at diagnosis, gender, race, tumor 

 

 
 

Figure 1. The flowchart of identifying procedure for the multi-gene signatures in diffuse type GC. 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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differentiation, pathological stage, pathological T 

category, pathological N category, M category, 

lymphatic metastasis, cancer status, helicobacter pylori 

infection, status and overall survival (OS) time was 

extracted for analysis. we found that blue module 

(R=0.26, p=3e-07) and green module (R=0.27, p=7e-

08) were significantly associated with diffuse type GC 

(Figure 2B–2D) and the blue (R=0.22, p=3e-05) and 

green (R=0.26, p=4e-07) module were also significantly 

correlated with tumor differentiation. 

 

Hub genes in blue and green module 

 

Before conducting the univariate cox analysis, we first 

adopted the merge function in R to integrate the 

expression profiles of the 1794 module genes with 

corresponding 71 diffuse type GC patients’ survival 

time and status information. 63 overall survival (OS)-

related hub genes (p<0.1) were picked out by 

univariate cox regression analysis. According to the 

characteristics of variable selection and regularization, 

while fitting the generalized linear model, LASSO 

regression was performed to select hub genes for 

predicting the prognosis of high-performance patients 

(Figure 3A, 3B). This approach is popular in machine 

learning and is implemented through the “glmnet” 

package. 16 hub genes ("RALA", "DDX3Y", "ERP29", 

"SRSF5", "SLC9A3R1", "FBXO9", "GMDS", "CCNI", 

"LEF1", "RFX5", "CAST", "ELMO1", "FRZB", 

"TMEM92", "SELP" and "NMB") were identified.  
 

 

Figure 2. Identification of modules associated with the diffuse type GC. (A) Dendrogram of 9752 genes clustered based on a 

dissimilarity measure (1-TOM). (B) Correlation of module eigengenes with all traits. Each unit contains the corresponding correlation coefficient 
and P-value. The table is color-coded by correlation according to the color legend. (C, D) Scatter diagrams between blue and green modules and 
diffuse type GC. 
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Construction of risk score model based on 

multivariate Cox regression  

 

First, followed by multivariate cox regression, the 

optimal 10 prognostic signatures in diffuse type GC 

samples (Table 1), including: “RALA”, “DDX3Y”, 

“SRSF5”, “SLC9A3R1”, “GMDS”, “LEF1”, “RFX5”, 

“CAST”, “FRZB” and “SELP”, were picked out. Then, 

the risk score (RS) model for OS was identified. All 71 

diffuse type GC samples were endowed with a RS by 

RS model calculation and divided into high- and low- 

RS groups using the median value as the cut-off point. 

The concordance index (C-index) of this model was 

0.97, indicating that this model had quite high 

reliability. Figure 4A showed that patients in the low-

risk group had longer OS (p < 2.8e-10) than those of the 

high-risk group. The relation of high- and low 

expression of 10 genes to OS were viewed in 

Supplementary Figures 2–11. To determine the 

predictive accuracy of this prognostic model, we 

performed a receiver operating characteristic (ROC) 

curve analysis, which demonstrated that the area under 

the curve (AUC) was 0.98 for 1-year survival, 1 for 3-

year survival and 1 for 5-year (Figure 4B). And the 

calibration curve supported the predicting model of 10 

genes (Figure 4C–4E). The survival, 10 genes 

expression and risk score for TCGA samples could be 

viewed in Supplementary Table 1. 

Validation of 10-genes RS model in external 

independent cohort 

 

75 diffuse type GC patients from GSE15459 were 

remaining after removing the non-diffuse type and 

survival time as zero. Consistent with the results in the 

TCGA cohort, the low RS group had good performance 

in OS (P=0.00633473) than in the high RS group 

(Figure 5A). Moreover, the AUCs for 1-year, 3-year 

and 5-year survival in the validation cohort were 0.717, 

0.727 and 0.7 (Figure 5B), respectively. There were 135 

diffuse type GC patients in GSE62254 by the above 

same processing. The low RS group had good 

performance in OS (P=2E-8) than the high RS group as 

same as above (Figure 5C). the AUCs for 1-year, 3-year 

and 5-year survival in the validation cohort were 0.661, 

0.752 and 0.758 (Figure 5D). Thus, the RS model had 

again been proved to be reliable. The survival, 10 genes 

expression and risk score for GSE15459 and GSE62254 

samples could be viewed in Supplementary Tables 2 

and 3. 

 

GSEA 

 

In order to explore the difference of functions and 

pathways of high- and low- RS groups, the gene set 

enrichment analysis (GSEA) was performed using the 

risk score as the reference phenotype. The GSEA

 

 
 

Figure 3. Identification of hub genes using LASSO regression. (A) The trajectory of each prognosis-related candidate gene’s coefficient 

in diffuse type GC was observed in the LASSO coefficient profiles with the changing of the lambda in LASSO algorithm. (B) After the 10-fold 
cross-validation, a confidence interval was got for partial likelihood deviance as the lambda changed.  
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Table 1. The univariate and multivariate Cox regression analysis between 10 markers and OS in diffuse type GC. 

 univariate-cox  multivariate-cox 

 HR 95%CI p-value  HR 95%CI p-value 

CAST 1.0138 1.0020-1.0260 0.0225  1.0316 1.0116-1.0520 0.0018 

DDX3Y 1.019 1.0000-1.0380 0.0474  1.1402 1.0638-1.2220 0.0002 

FRZB 1.0124 1.0050-1.0190 0.0005  1.0634 1.0323-1.0955 4.98E-05 

GMDS 1.0058 0.9989-1.0130 0.0999  1.0287 1.0111-1.0466 0.0012 

LEF1 1.0437 1.0080-1.0800 0.0146  1.1671 1.06421.2797 0.001 

RALA 1.0157 0.9972-1.0350 0.0959  1.0769 1.0300-1.1259 0.0011 

RFX5 0.9669 0.9420-0.9927 0.012  0.8518 0.7769-0.9339 0.0006 

SELP 1.0199 1.0020-1.0380 0.0291  1.0453 1.0115-1.0804 0.0083 

SLC9A3R1 1.0023 0.9998-1.0050 0.075  1.0094 1.0007-1.0181 0.0343 

SRSF5 0.9891 0.9775-1.0010 0.071  0.8877 0.8333-0.9456 0.0002 

Notes: Hazard ratio (HR), 95% confidence intervals (95%CI) 
 

analysis revealed that the complement and coagulation 

cascades, neuroactive ligand-receptor interaction, 

hypertrophic cardiomyopathy (HCM), steroid hormone 

biosynthesis and dilated cardiomyopathy were 

upregulated in the high-risk group (Figure 6A). Then, 

the spliceosome, one carbon pool by folate, nucleotide 

excision repair, cell cycle, RNA degradation, mismatch 

repair, DNA replication, ubiquitin mediated proteolysis, 

homologous recombination, p53 signaling pathway, 

basal transcription factors and base excision repair were 

upregulated in the low-risk group (Figure 6B). To 

investigate the enrichment pathways of 10 prognostic 

genes, we divided the samples into two groups, a group 

samples with the expression of upper quantile for one of 

10 prognostic genes and another group samples with the 

expression of lower quantile for one of 10 prognostic 

genes. All 10 genes related pathway enrichment could 

be viewed in Supplementary Table 4. 

 

DISCUSSION 
 

Gastric cancer is a common malignancy and had poor 

response to treatment for its strong heterogeneity. 

Previous studies investigated gastric cancer samples as 

a whole [9] [10], which made researchers miss some 

important information and even obtaining imprecise 

conclusion. As stated above, for Lauren extensively 

used in clinical practice for the ability of perceiving the 

histology and biology of GC, diffuse type GC patients 

usually progressed faster after the diagnosis or were 

diagnosed in the late stage. Since the significant 

heterogeneity of two type, it was urgent to find a 

predicting model for OS of diffuse type GC facilitating 

clinical decision-making.  

 

WGCNA, the algorithm aiming to investigate the 

relationships between genes and phenotype of samples, 

can be applied to identify complex biological 

mechanisms responsible for the target phenotypes. The 

unsupervised hierarchical clustering method selected by 

WGCNA avoided potential biases and subjective 

decisions attributed to the selection of the candidate 

genes previously reported associated with diffuse type 

GC. We applied a system biology approach, namely 

WGCNA, to analyze TPM expression dataset to identify 

the networks and genes associated with diffuse type 

GC. The lasso regression algorithm as the precision and 

efficiency of variable selection reduced the dimension 

of model and cox regression algorithm was performed 

to identify 10 prognostic genes model. The C-index, 

AUCs and survival difference of high- and low- risk 

groups well demonstrated perfect performance of 

predicting survival of model in diffuse type GC. And 

the similar phenomenon was observed in the 

independent cohort of GSE15459 and GSE62254. 

 

The green module and blue module were associated 

with measles, HTLV-I (human T-cell lymphotropic 

virus type I) infection, Epstein-Barr virus (EB) 

infection, measles, pathways in cancer, focal adhesion, 

cell adhesion molecules (CAMs), apoptosis and many 

immune relevant pathways (the detailed KEGG 

enrichment can be found in Supplementary Table 5), 

indicated that not only EB but also HTLV-1 and 

measles might be related with the occurrence and 

progression of diffuse type GC [11, 12]. However, the 

study about HTLV-1 and gastric cancer were few [13, 

14]. Matsumoto S et.al [14] drew a conclusion that 

HTLV-1 infection likely reduced the risk of 

helicobacter pylori infection and proliferation and, 

thereby, the risk of gastric cancer. However, 

helicobacter pylori infection only played an important 

role in the intestinal type cancer [15]. Reverse effect 

was possible to be present in the diffuse type GC. 

Certainly, the real results would need to get in the 

subsequent investigation. The measles was thought to 

be relevant to lung cancer, whereas poor evidence 

supported [16]. Then, immune relevant pathways 
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enrichment was consistent with the previous studies 

[17–19]. Interestingly, the two hub modules with 

diffuse type GC were highly correlated with poorly 

differentiated tumors, that mean diffuse type GC with 

poor differentiation. The two points proved that the 

WGCNA approach of identifying genes related with 

diffuse type GC was enough reliable. 

 

Then, we analyzed the KEGG enrichment between 

high-and low- RS groups using GSEA. The nucleotide 

excision repair, cell cycle, RNA degradation, mismatch 

repair, DNA replication, p53 signaling pathway and 

base excision repair were upregulated in low RS 

patients. However, only complement and coagulation 

cascades, neuroactive ligand receptor interaction, 

steroid hormone biosynthesis, hypertrophic cardio-

myopathy (HCM) and dilated cardiomyopathy  

(nominal p<0.05) were upregulated in high RS patients. 

The phenomenon was involved with not enough sample 

size. The significant enrichment differences may be a 

classification method for diffuse type GC patients or 

 an idea for identifying the subtype of other 

malignancies. Thus, we should validate our findings in 

more sample size in the future. According to 

 

 
 

Figure 4. The prognostic performance of the 10 genes model in the TCGA-STAD. (A) Survival analysis of the high-risk group and the 

low-risk group using Kaplan–Meier curves. (B) The prognostic efficiency of the 10 genes model for survival time. ROC curves of the 10 genes 
signature for predicting 1-, 3 -and 5- year survival were analyzed. (C–E) The comparison between predicted and actual outcome for 1-, 3-, and 
5-year survival probabilities was showed in the calibration plots.  
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Figure 5. The prognostic performance of the 10 genes model in the GSE15459 and GSE62254. (A) Survival analysis of the high-risk 

group and the low-risk group using Kaplan-Meier curves in the GSE15459. (B) The prognostic efficiency of the 10 genes model for survival 
time. ROC curves of the 10 genes signature for predicting 1-, 3 -and 5- year survival were analyzed in the GSE15459. (C) Survival analysis of 
the high-risk group and the low-risk group using Kaplan-Meier curves in the GSE62254. (D) The prognostic efficiency of the 10 genes model 
for survival time. ROC curves of the 10 genes signature for predicting 1-, 3 -and 5- year survival were analyzed in the GSE62254. 

 

 
 

Figure 6. (A, B) GSEA results revealed the significantly enriched biological processes between two RS levels. 
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GSEA analysis of every hub genes, many pathways 

associated with tumor were up-regulated or down-

regulated between the upper quantile expression group 

and the lower quantile expression group. But the 

implied mechanism under these genes needed a large 

sample size to investigate in the late studies.  

 

Our study has several limitations. There was not enough 

sample size due to the small percentage of diffuse type 

GC in all GC. As a retrospective study, the patient 

cohort was heterogeneous, and the significance and 

robustness of the results and hub genes in the prognostic 

assessment should be validated in prospective cohorts. 

 

In conclusion, our study is the first study to screen the 

characteristic hub genes of diffuse type GC using 

WGCNA and to construct a prognostic model based on 

hub genes. The prognostic predictive model of 10 genes 

was proved to be able to accurately investigate the 

prognosis of diffuse type GC. This model might be 

applied to identify the high-risk patients, and assess the 

prognosis, so as to facilitate the precise treatment in 

diffuse type GC. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

Public gene-expression data and full clinical annotation 

were searched in the Gene-Expression Omnibus (GEO) 

and TCGA database. The procedure used for data set 

selection in the GEO database was as follows. The 

following search parameters were used: (cancer) OR 

tumor) OR carcinoma) OR adenocarcinoma) AND 

(gastric) OR Stomach) AND "Homo sapiens"[porgn: 

txid9606]. In the initial search, 755 items were 

recognized. The eligible criteria included that: 1) 

owning Lauren classification; 2) owning survival 

information and 3) at least 50 diffuse type gastric 

cancer. We removed the datasets that don’t meet the 

criteria by checking them one by one carefully. In total, 

we gathered three patient cohorts with gastric cancer for 

this study: TCGA-STAD, GSE62254 and GSE15459. 

 

The TCGA-STAD RNA-seq data and clinical data of 

the 375 GC samples were downloaded by using the 

“TCGAbiolinks” package in R [20], which was used as 

a training set for prognostic prediction of the multi-gene 

signature. The RNA-seq data for 19505 genes measured 

as fragments per kilobase of transcript per million 

mapped reads (FPKM), which were converted to 

transcripts per million (TPM) after removing duplicated 

genes and zero expression genes [21]. We obtained the 

raw expression and clinical data of GC samples from 

GSE622254 and GSE15459 via GEO database which 

was used as a validation set. The raw expression data 

was processed by log10-transformed. The demographics 

are listed in Table 2. 

 

Weighted Gene co-expression network construction 

 

To find modules of highly correlated with diffuse type 

GC, WGCNA was performed using the WGCNA R 

package [22] and carried out on top 50% most variable 

genes (9752 genes). An unsupervised co-expression 

relationship was initially built on the basis of the 

adjacency matrix of connection strengths by using 

Pearson’s correlation coefficients for gene pairs. This 

matrix was increased to β = 4 based on the scale-free 

topology criterion. The adjacency matrix of gene 

expression data for GC patients was then clustered using 

topological overlap matrix analysis. Finally, the dynamic 

tree cut algorithm was applied to the dendrogram for 

module identification with the mini-size of module gene 

numbers set as 30 and a cut height of 0.95. The module 

eigengenes (MEs) as the first principal component was 

performed with the expression data for each co-expressed 

module in all GC samples. The module that had the 

strongest association with diffuse type GC was selected 

for further analysis. The WGCNA algorithm was 

described in detail by Zhang Bin et al. [23].  

 

The construction of multi-gene signature risk score 

model 

 

To identify the prognostic genes in the module correlation 

with diffuse type GC, the univariate Cox regression 

analysis was applied using “survival” package. The genes 

with P<0.1 were defined to be related to the over survival. 

Given the already detected prognostic genes, we further 

investigated the significant signature associated with 

survival across the diffuse type GC samples by the 

LASSO regression model using “glmnet” package. Then, 

multivariate Cox regression analysis was performed with 

the “survival” package to screen out independent 

prognostic factors from these robust markers, which were 

conducted the risk score model: prognostic score 

=∑(C×EXPmRNA), where EXP is the TPM value of the 

gene and C is the regression coefficient for the 

corresponding gene in multivariate Cox hazard model 

analysis. ROC plot with AUC and calibration curve were 

derived to assess predictive significance of the model 

using “rms”, “survival” and “timeROC” package in R. 

Additionally, survival time difference between high- and 

low-risk levels were estimated via Kaplan-Meier analysis. 

The risk score model was validated with an independent 

data set GSE15459 and GSE62254.  

 

Functional pathway analysis 

 

To investigate the biological function of different risk 

score groups, we further conducted GSEA using the risk 
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Table 2. Basic characteristics of the datasets. 

Variables 
TCGA GSE62254 GSE15459 

n=71 n=135 n=75 

Age (Mean ± SD) 62.25±10.47 58.58±12.54 59.87±13.20 

OS(Mean ± SD) 1.23±0.75 3.87±2.73 3.18±3.67 

Gender 
   

Male 46(64.79%) 75(55.56%) 36(48.00%) 

Female 25(35.21%) 60(44.44%) 39(52.00%) 

Status 
   

Alive 50(70.42%) 56(41.48%) 34(45.33%) 

Dead 21(29.58%) 79(58.52%) 41(54.67%) 

Stage 
   

I 9(12.67%) 5(3.70%) 9(12.00%) 

II 20(28.17%) 35(25.93%) 12(16.00%) 

III 32(45.07%) 49(36.30%) 31(41.33%) 

IV 6(8.45%) 46(34.07%) 23(30.67%) 

Unknown 4(5.63%) 0(0%) 0(0%) 

T category 
   

T1 0(0%) 0(0%)  - 

T2 19(26.76%) 65(48.15%)  - 

T3 27(38.03%) 60(44.44%)  - 

T4 25(35.21%) 10(7.40%)  - 

Unknown 0(0%) 0(0%)  - 

N category 
   

N0 17(23.94%) 8(5.93%)  - 

N1 22(30.98%) 54(40.00%)  - 

N2 14(19.72%) 41(30.37%)  - 

N3 17(23.94%) 32(23.70%)  - 

Unknown 1(1.41%) 0(0%)  - 

Grade 
   

G1 2(2.82%)  -  - 

G2 1(1.41%)  -  - 

G3 64(90.14%)  -  - 

G4 0(0%)  -  - 

GX 4(5.63%)  -  - 

 

score as the phenotype [24]. With the GSEA 4.0.3 

software via the Java platform, we derived the 

“c2.cp.kegg.v7.1.symbols.gmt gene sets” as the 

reference set. We divided the samples into two groups, 

a group samples with the expression of upper quantile 

for one of 10 prognostic genes and another group 

samples with the expression of lower quantile for one of 

10 prognostic genes. The enriched signaling pathways 

with FDR < 0.25 or nominal p < 0.05 were defined as 

statistically significant.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. (A) Sample clustering to detect outliers. (B, C) Determination of soft‐thresholding power in the co‐expression 

network analysis. 
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Supplementary Figure 2. The relation of high- and low expression of 10 hub genes for OS. 
 

 
 

Supplementary Figure 3. The relation of high- and low expression of 10 hub genes for OS. 
 



 

www.aging-us.com 17431 AGING 

 
 

Supplementary Figure 4. The relation of high- and low expression of 10 hub genes for OS. 
 

 
 

Supplementary Figure 5. The relation of high- and low expression of 10 hub genes for OS. 
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Supplementary Figure 6. The relation of high- and low expression of 10 hub genes for OS. 
 

 
 

Supplementary Figure 7. The relation of high- and low expression of 10 hub genes for OS. 
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Supplementary Figure 8. The relation of high- and low expression of 10 hub genes for OS. 
 

 
 

Supplementary Figure 9. The relation of high- and low expression of 10 hub genes for OS. 
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Supplementary Figure 10. The relation of high- and low expression of 10 hub genes for OS. 
 

 
 

Supplementary Figure 11. The relation of high- and low expression of 10 hub genes for OS. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. 10 hub genes expression and risk score for TCGA samples. 

Supplementary Table 2. The survival, 10 genes expression and risk score for GSE15459 samples. 

Supplementary Table 3. The survival, 10 genes expression and risk score for GSE62254 samples. 

Supplementary Table 4. All 10 genes related pathway enrichment. 

Supplementary Table 5. Two hub modules related pathway enrichment. 

 


