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We successfully establish a theoretical framework
of pairwise approximation for the vaccination game
in which both the dynamic process of epidemic
spread and individual actions in helping prevent
social behaviours are quantitatively evaluated. In
contrast with mean-field approximation, our model
captures higher-order effects from neighbours by
using an underlying network that shows how the
disease spreads and how individual decisions evolve
over time. This model considers not only imperfect
vaccination but also intermediate protective measures
other than vaccines. Our analytical predictions are
validated by multi-agent simulation results that
estimate random regular graphs at varying degrees.

1. Introduction
In today’s globalized world, all kinds of infectious
diseases, such as measles, smallpox, pertussis, flu
and Ebola, can spread rapidly around the world and
negatively affect the lives of people. Vaccination is
one of the most effective measures for preventing the
transmission of infectious diseases and for reducing
morbidity and mortality rates [1,2]. However, voluntary
vaccination policies create a social dilemma [3,4], namely,
the ‘vaccination dilemma’ or ‘paradox of epidemiology’.
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As a result, individuals often hesitate to get themselves vaccinated. When herd immunity is
achieved in a community with increased vaccination coverage (VC), non-vaccinators can avoid
infections and vaccination costs. However, herd immunity is inevitably destroyed because non-
vaccinators completely depend on the efforts of vaccinators. Therefore, the actual VC will not be
able to satisfy demand.

To model this vaccination dilemma, researchers have studied vaccination games, which can
predict the dynamics of (i) epidemic spread in a complex social network and (ii) decision
making on whether to undergo vaccination depending on the status of the epidemic. Epidemic
dynamics are predicted using mathematical epidemiological models, such as the susceptible–
infected–recovered (SIR) model, whereas decision making is modelled on evolutionary game
theory. Bauch et al. [5] and Fu et al. [6] published pioneering works on the vaccination game. To
quantitatively investigate the multiple effects on vaccination behaviour, a significant number of
researchers have studied various frameworks [7–13]. Most studies on the vaccination game have
relied on multi-agent simulation (MAS), which allows for a more flexible and realistic modelling
approach. In addition to the MAS approach, Fu et al. [6] proposed a mathematical framework for
a mixed-population vaccination game that assumes perfect vaccination. A theoretical approach
based on a set of ordinary differential equations (ODEs) can be a powerful tool for explicitly
demonstrating the dynamics of both epidemic spread and human decision making. In most
recent study, Steinegger et al. [14] provided a theoretical framework that allows to incorporate
the structure of the network in this kind of disease-driven dilemmas using Markovian equations.

Most studies on the vaccination game have assumed that vaccinations provide perfect
immunity to each vaccinator. In reality, vaccinations can only impart partial protection against
many infectious diseases, such as measles, influenza, malaria and HIV. In addition to vaccinations,
there are other protective measures from infectious diseases, such as mask-wearing, gargling
and hand washing, which are called intermediate protective measures. Although these protective
measures come at a more reasonable cost than vaccinations, they cannot block the transmission
of infections to the body as effectively as vaccinations. Therefore, the stochastic effects of
imperfect vaccination and intermediate protective measures need to be considered. On the
basis of this background, Cardillo et al. [15] analysed the effects of imperfect vaccination on
immunization behaviour in Erdős–Rényi random graph (ER–RG) and Barabasi–Albert scale-free
(BA–SF) networks by using the MAS approach. Iwamura et al. [16] and Ida and Tanimoto [17] used
MAS to investigate the effect of intermediate protective measures on square lattice and BA–SF
networks. Wu et al. [18] and Kuga and Tanimoto [19] developed a new mathematical framework
of the vaccination game that considered imperfect vaccination in an infinite and well-mixed
population corresponding with a perfect graph by using mean-field approximation. Furthermore,
they proposed a mathematical model for reproducing the vaccination game in complex networks
corresponding to ER–RG and BA–SF networks by using degree distribution [20]. Several studies
have recently used the same concept and investigated the multiple effects of imperfect vaccination
and other parameters on vaccination behaviour [21–32]. Therefore, the modelling and analysis of
the vaccination game can be enriched by the abundant quantity and quality of studies that have
followed a MAS or theoretical approach.

While highlighting the theoretical approach, it should be noted that most mathematical studies
on the vaccination game have focused on the so-called mean-field approximation, which is
a single-order approximation for predicting the dynamics of epidemics and decision making,
despite being extended to some heterogeneous topologies, such as infinite-sized graphs with
degree distributions obeying the power law or Poisson distribution [20,30]. However, mean-field
approximation has substantial limitations because it ignores higher order effects and assumes
that one’s neighbour can always be defined as a socially averaged hypothetical neighbour, which
can never be true in a real-world, complex social network. This defect means that predictions
by mean-field approximation are slightly different from those by MAS, which can capture
predictions to a reasonable extent. As an alternative to mean-field approximation, the current
study uses pair approximation, which has been widely applied in other fields. For example, in the
spatial version of the Prisoner’s Dilemma, which is an archetype model for quantifying network
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reciprocity, Fu et al. [33,34] proposed a pair approximation model as a coevolutionary Prisoner’s
Dilemma game. Given that the pair approximation model is more effective and accurate than
the mean-field approximation model, it can also be applied to mathematical epidemiological
models. In fact, the pair approximation model can provide explicit treatment of the epidemic
process at both the node and link levels. Keeling [35] built a pair approximation of a SIR epidemic
model, which estimated topological clusters and discussed the basic reproduction number and
the final epidemic size. Bauch [36] established a pair approximation of a susceptible–infected–
susceptible epidemic model and analysed its basic reproduction number. Tomé and De Oliveira
[37] also developed a pair approximation of SIR and susceptible–exposed–infected epidemic
models on a Cayley tree and solved the time-evolutionary equations to determine the final and
time-dependent properties. However, no study has highlighted how pair approximation can be
applied to the vaccination game, where the effect of protective measures, including vaccination,
is modelled as a stochastic process. Additionally, the pair approximation model for vaccination
game would benefit the studies focusing on the effects of subsided-vaccination policy on epidemic
spreading [31,38,39].

This study seeks to develop a mathematical model for the vaccination game by using SIR/V
models that recreate either imperfect vaccinations or intermediate protective measures that rely
on pair approximation. To demonstrate examples of numerical simulation, we focus on the
dynamics of epidemic spread and decision making in regular random networks of varying
degrees.

The rest of the paper is organized as follows. Section 2 of this paper presents a description of
the model and assumptions for deductive analysis. Section 3 provides the deductive results and
the discussions, which are fairly validated by a series of MAS results. Section 4 summarizes our
findings.

2. Model set-up and results

(a) Epidemic models
The pair approximation SIR model [35,37] was used to accurately model epidemic spread. We
integrated the pair approximation SIR model with the concept of effectiveness and efficiency
models, which can reproduce imperfect vaccination and intermediate protective measures [19,20].
The electronic supplementary material describes the fundamental formulation when the pair
approximation is applied to SIR dynamics.

(i) Effectiveness of vaccination

In the effectiveness model, a vaccinated population is separated into two classes: individuals with
perfect immunity and non-immune individuals. The population is subdivided into the following:
non-vaccinated susceptible individual SN , non-vaccinated infected individual IN , non-vaccinated
recovered individual RN, vaccinated susceptible individual SV , vaccinated infected individual
IV , vaccinated recovered individual RV and vaccinated individual with perfect immunity PV .
Let the effectiveness of the vaccination and the vaccination coverage be e (0≤ e≤ 1) and x,
respectively. The fraction of vaccinated individuals with perfect immunity [PV](t) must be ex,
whereas that of non-immune individuals [SV](t)+ [IV](t)+ [RV](t) is (1− e)x. On the basis of
the above assumptions, the dynamics of the SIR/V model with imperfect vaccination can be
described by the following ODEs:

d
dt

[SN](t)=−β([SNIN](t)+ [SNIV](t)), (2.1)

d
dt

[SV](t)=−β([SVIN](t)+ [SVIV](t)), (2.2)
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d
dt

[PV](t)= 0, (2.3)

d
dt

[SNSN](t)=−2β[SNSN](t)(Q(IN|SNSN)+Q(IV|SNSN)), (2.4)

d
dt

[SNRN](t)= γ [SNIN](t)− β[SNRN](t)(Q(IN|SNRN)+Q(IV|SNRN)), (2.5)

d
dt

[SVSV](t)=−2β[SVSV](t)(Q(IN|SVSV)+Q(IV|SVSV)), (2.6)

d
dt

[SVRV](t)= γ [SVIV](t)− β[SVRV](t)(Q(IN|SVRV)+Q(IV|SVRV)), (2.7)

d
dt

[SVPV](t)=−β[SVPV](t)(Q(IN|SVPV)+Q(IV|SVPV)), (2.8)

d
dt

[PVPV](t)= 0, (2.9)

d
dt

[SNSV](t)=−β[SNSV](t)(Q(IN|SNSV)+Q(IV|SNSV))

− β[SNSV](t)(Q(IN|SVSN)+Q(IV|SVSN)), (2.10)

d
dt

[SNRV](t)= γ [SNIV](t)− β[SNRV](t)(Q(IN|SNRV)+Q(IV|SNRV)), (2.11)

d
dt

[SVRN](t)= γ [SVIN](t)− β[SVRN](t)(Q(IN|SVRN)+Q(IV|SVRN)) (2.12)

and
d
dt

[SNPV](t)=−β[SNPV](t)(Q(IN|SNPV)+Q(IV|SNPV)). (2.13)

The above set of dynamic equations should be assumed to have the following set of initial
conditions: [SN](0)= 1− x, [SV](0)= (1− e)x, [PV](0)= ex, [IN](0)∼ 0, [IV](0)∼ 0, [RN](0)= 0,
[RV](0)= 0, [SNSN](0)=Q(1− x−α), [SNSV](0)=Q(1− e)α, [SNPV](0)=Qeα, [SVSV](0)=
Q(1− e)2(x−α), [SVPV](0)=Qe(1− e)(x−α), [PVPV](0)=Qe2(x−α).

Here, α is the vaccinator–non-vaccinator connection coefficient, which can be said
dissortativity observed at the initial moment of every season (time-evolved in repeating seasons),
and is less than x and 1− x. If the homogeneous distribution of vaccinator and non-vaccinated
was assumed, α= x(1− x).

The following constraints are required:

[SN](t)+ [IN](t)+ [RN](t)+ [SV](t)+ [IV](t)+ [RV](t)+ [PV](t)= 1, (2.14)

[SNSN](t)+ [SNIN](t)+ [SNRN](t)+ [SNSV](t)+ [SNIV](t)+ [SNRV](t)

+ [SNPV](t)=Q[SN](t) (2.15)

and [SNSV](t)+ [SVIN](t)+ [SVRN](t)+ [SVSV](t)+ [SVIV](t)

+ [SVRV](t)+ [SVPV](t)=Q[SV](t). (2.16)

Solving the above set of equations, we obtain the following equations (the detailed
mathematical manipulations are shown in the electronic supplementary material):

[SNRN](t)+ [SNRV](t)=Qr(1− x)
((

[SN](t)
1− x

)μ

− [SN](t)
1− x

)
, (2.17)

[SVRN](t)+ [SVRV](t)=Qr(1− e)x
((

[SV](t)
(1− e)x

)μ

− [SV](t)
(1− e)x

)
, (2.18)

[SNSN](t)=Q(1− x− α)
(

[SN](t)
1− x

)2μ

, (2.19)
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[SVSV](t)=Q(1− e)2(x− α)
(

[SV](t)
(1− e)x

)2μ

, (2.20)

[SNSV](t)=Q(1− e)α
(

[SN](t)
1− x

)μ(
[SV](t)
(1− e)x

)μ

, (2.21)

[SNPV](t)=Qeα
(

[SN](t)
1− x

)μ

(2.22)

and [SVPV](t)=Qe(1− e)(x− α)
(

[SV](t)
(1− e)x

)μ

. (2.23)

At the steady state (t→∞), the constraints in equation (2.14) to (2.16) can be rewritten as follows:

[SN](∞)+ [RN](∞)+ [SV](∞)+ [RV](∞)+ [PV](∞)= 1, (2.24)

[SNSN](∞)+ [SNRN](∞)+ [SNSV](∞)+ [SNRV](∞)+ [SNPV](∞)=Q[SN](∞) (2.25)

and [SNSV](∞)+ [SVRN](∞)+ [SVSV](∞)+ [SVRV](∞)+ [SVPV](∞)=Q[SV](∞). (2.26)

Substituting [SNRN](∞)+ [SNRV](∞), [SNSN](∞), [SNSV](∞), and [SNPV](∞) from equations
(2.17), (2.19), (2.21) and (2.22) into equation (2.25) yields as follows:

(1− x− α)
(

[SN](∞)
1− x

)2μ

+ (1− e)α
(

[SN](∞)
1− x

)μ(
[SV](∞)
(1− e)x

)μ

+ r(1− x)
((

[SN](∞)
1− x

)μ

− [SN](∞)
1− x

)
+ eα

(
[SN](∞)

1− x

)μ

= (1− x)
[SN](∞)

1− x
. (2.27)

Substituting [SVRN](∞)+ [SVRV](∞), [SVSV](∞), [SNSV](∞), and [SVPV](∞) from equations
(2.18), (2.20), (2.21) and (2.23) into equation (2.26) yields as follows:

α

(
[SN](t)
1− x

)μ(
[SV](t)
(1− e)x

)μ

+ rx
((

[SV](t)
(1− e)x

)μ

− [SV](t)
(1− e)x

)

+ (1− e)(x− α)
(

[SV](t)
(1− e)x

)2μ

+ e(x− α)
(

[SV](t)
(1− e)x

)μ

= x
[SV](t)
(1− e)x

. (2.28)

By defining p= ([SN](∞)/1− x)1/Q, q= ([SV](∞)/(1− e)x)1/Q and taking into account the
definition of μ= (Q− 1)/Q, we can write equations (2.27) and (2.28) as follows:

(1− x− α)pQ−1 − (1+ r)(1− x)p+ r(1− x)+ eα + (1− e)αqQ−1 = 0 (2.29)

and
(1− e)(x− α)qQ−1 − (1+ r)xq+ rx+ e(x− α)+ αpQ−1 = 0. (2.30)

The final fractions are expressed as follows:

[SN](∞)= (1− x)pQ, (2.31)

[SV](∞)= (1− e)xqQ, (2.32)

[PV](∞)= ex, (2.33)

[RN](∞)= 1− x− [SN](∞)= (1− x)(1− pQ) (2.34)

and [RV](∞)= (1− e)x− [SV](∞)= (1− e)x(1− qQ). (2.35)

The other final pairs are hypothetically calculated as follows:

[SNRN](∞)=Qr(1− x)(pQ−1 − pQ)
[RN](∞)

[RN](∞)+ [RV](∞)
, (2.36)

[SNRN](∞)=Qr(1− x)(pQ−1 − pQ)
[RV](∞)

[RN](∞)+ [RV](∞)
, (2.37)

[SVRN](∞)=Qr(1− e)x(qQ−1 − qQ)
[RN](∞)

[RN](∞)+ [RV](∞)
, (2.38)
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[SVRN](∞)=Qr(1− e)x(qQ−1 − qQ)
[RV](∞)

[RN](∞)+ [RV](∞)
, (2.39)

[RNRN](∞)= [SNSN](0)− [SNSN](∞)− 2[SNRN](∞), (2.40)

[RVRV](∞)= [SVSV](0)− [SVSV](∞)− 2[SVRV](∞), (2.41)

[RNRV](∞)= [SNSV](0)− [SNSV](∞)− [SNRV](∞)− [SVRN](∞), (2.42)

[RNPV](∞)= [SNPV](0)− [SNPV](∞)=Qex(1− x)(1− pQ−1) (2.43)

and [RVPV](∞)= [SVPV](0)− [SVPV](∞)=Qe(1− e)x2(1− qQ−1). (2.44)

(ii) Efficiency of intermediate protective measures

Let the efficiency of an intermediate protective measure to avoid infection be η (0≤ η≤ 1),
i.e. the extent in which the protective measure decreases the probability of infection. In the
following efficiency model formulation, we temporarily regard the vaccinated state V as the
state prepared with an intermediate protective measure for comparison with the effectiveness
model. A non-vaccinated susceptible individual SN (more precisely, an individual not prepared
with intermediate protective measures) may become infected if he/she is exposed to infectious
individuals with a disease transmission rate of β. A vaccinated (i.e. prepared) individual SV who
is taking intermediate protective measures may also become infectious with (1 – η) β. On the basis
of the above assumptions and by taking into account the intermediate protective measures, we
describe the following differential equations for the dynamics of epidemic spread:

d
dt

[SN](t)=−β([SNIN](t)+ [SNIV](t)), (2.45)

d
dt

[SV](t)=−(1− η)β([SVIN](t)+ [SVIV](t)), (2.46)

d
dt

[SNSN](t)=−2β[SNSN](t)(Q(IN|SNSN)+Q(IV|SNSN)), (2.47)

d
dt

[SNRN](t)= γ [SNIN](t)− β[SNRN](t)(Q(IN|SNRN)+Q(IV|SNRN)), (2.48)

d
dt

[SVSV](t)=−2(1− η)β[SVSV](t)(Q(IN|SVSV)+Q(IV|SVSV)), (2.49)

d
dt

[SVRV](t)= γ [SVIV](t)− (1− η)β[SVRV](t)(Q(IN|SVRV)+Q(IV|SVRV)), (2.50)

d
dt

[SNSV](t)=−β[SNSV](t)(Q(IN|SNSV)+Q(IV|SNSV))

− (1− η)β[SNSV](t)(Q(IN|SVSN)+Q(IV|SVSN)), (2.51)

d
dt

[SNRV](t)= γ [SNIV](t)− β[SNRV](t)(Q(IN|SNRV)+Q(IV|SNRV)) (2.52)

and
d
dt

[SVRN](t)= γ [SVIN](t)− (1− η)β[SVRN](t)(Q(IN|SVRN)+Q(IV|SVRN)). (2.53)

The above set of equations are assumed to have the following initial conditions: [SN](0)= 1− x,
[SV](0)= x, [IN](0)∼ 0, [IV](0)∼ 0, [RN](0)= 0, [RV](0)= 0, [SNSN](0)=Q(1− x−α),
[SNSV](0)=Qα, and [SVSV](0)=Q(x−α).

The following constraints are required:

[SN](t)+ [IN](t)+ [RN](t)+ [SV](t)+ [IV](t)+ [RV](t)= 1, (2.54)

[SNSN](t)+ [SNIN](t)+ [SNRN](t)+ [SNSV](t)+ [SNIV](t)+ [SNRV](t)=Q[SN](t) (2.55)

and [SNSV](t)+ [SVIN](t)+ [SVRN](t)+ [SVSV](t)+ [SVIV](t)+ [SVRV](t)=Q[SV](t). (2.56)
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Solving the above set of equations, we obtain the following equations (the detailed
mathematical manipulations are shown in the electronic supplementary material):

[SNRN](t)+ [SNRV](t)=Qr(1− x)
((

[SN](t)
1− x

)μ

− [SN](t)
1− x

)
, (2.57)

[SVRN](t)+ [SVRV](t)= Qrx
1− η

((
[SV](t)

x

)μ

− [SV](t)
x

)
, (2.58)

[SNSN](t)=Q(1− x− α)
(

[SN](t)
1− x

)2μ

, (2.59)

[SVSV](t)=Q(x− α)
(

[SV](t)
x

)2μ

(2.60)

and [SNSV](t)=Qα

(
[SN](t)
1− x

)μ(
[SV](t)

x

)μ

. (2.61)

At the steady state (t→∞), the constraints in equations (2.54) to (2.56) can be rewritten as
follows:

[SN](∞)+ [RN](∞)+ [SV](∞)+ [RV](∞)= 1, (2.62)

[SNSN](∞)+ [SNRN](∞)+ [SNSV](∞)+ [SNRV](∞)=Q[SN](∞) (2.63)

and [SVSN](∞)+ [SVRN](∞)+ [SVSV](∞)+ [SVRV](∞)=Q[SV](∞). (2.64)

Substituting [SNRN](∞)+ [SNRV](∞), [SNSN](∞) and [SNSV](∞) from equations (2.57), (2.59)
and (2.61) into equation (2.63) yields the following:

Q(1− x− α)
(

[SN](∞)
1− x

)2μ

+Qr(1− x)
((

[SN](∞)
1− x

)μ

− [SN](∞)
1− x

)

+Qα

(
[SN](∞)

1− x

)μ(
[SV](∞)

x

)μ

=Q(1− x)
[SN](∞)

1− x
. (2.65)

Substituting, [SNRN](∞)+ [SNRV](∞), [SVSV](∞) and [SNSV](∞)from equations (2.58), (2.60)
and (2.61) into equation (2.64) yields the following:

Q(x− α)
(

[SV](∞)
x

)2μ

+ Qrx
1− η

((
[SV](∞)

x

)μ

− [SV](∞)
x

)

+Qα

(
[SN](∞)

1− x

)μ(
[SV](∞)

x

)μ

=Qx
[SV](∞)

x
. (2.66)

By defining p= ([SN](∞)/1− x)1/Q and q= ([SV](∞)/x)1/Q and by taking into account the
definition of μ, we can write equations (2.65) and (2.66) as follows:

(1− x− α)pQ−1 − (1+ r)(1− x)p+ r(1− x)+ αqQ−1 = 0 (2.67)

and

(x− α)qQ−1 −
(

1+ r
1− η

)
xq+ rx

1− η
+ αpQ−1 = 0. (2.68)

The final fractions are expressed as follows:

[SN](∞)= (1− x)pQ, (2.69)

[SV](∞)= xqQ, (2.70)

[RN](∞)= 1− x− [SN](∞)= (1− x)(1− pQ) (2.71)

and [RV](∞)= x− [SV](∞)= x(1− qQ). (2.72)
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Table 1. Payoff structure determined at the end of an epidemic season.

strategy V NV

state HV IV SFR FFR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

payoff −Cr −Cr − 1 0 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The other final pairs are hypothetically calculated as follows:

[SNRN](∞)=Qr(1− x)
(

pQ−1 − pQ
) [RN](∞)

[RN](∞)+ [RV](∞)
, (2.73)

[SNRV](∞)=Qr(1− x)
(

pQ−1 − pQ
) [RV](∞)

[RN](∞)+ [RV](∞)
, (2.74)

[SVRN](∞)= Qrx
1− η

(
qQ−1 − qQ

) [RN](∞)
[RN](∞)+ [RV](∞)

, (2.75)

[SVRV](∞)= Qrx
1− η

(
qQ−1 − qQ

) [RV](∞)
[RN](∞)+ [RV](∞)

, (2.76)

[RNRN](∞)= [SNSN](0)− [SNSN](∞)− 2[SNRN](∞) (2.77)

[RVRV](∞)= [SVSV](0)− [SVSV](∞)− 2[SVRV](∞) (2.78)

and [RNRV](∞)= [SNSV](0)− [SNSV](∞)− [SNRV](∞)− [SVRN](∞). (2.79)

(b) Payoff structure
An epidemic season continues until the number of infected individuals is reduced to zero. If
individuals are infected, they pay the cost of infection Ci. When individuals are vaccinated or
take intermediate protective measures, they pay the cost Cv . To clearly evaluate each individual’s
payoff, we define the relative cost of vaccination, namely, Cr=Cv /Ci (0≤Cr≤ 1; Ci= 1).
Consequently, depending on the cost burden, the state of the individual is classified as follows:
(i) a healthy vaccinator (HV), who pays −Cr; (ii) an infected vaccinator (IV), who pays −Cr−1;
(iii) a successful free rider (SFR), who pays nothing and (iv) a failed free rider (FFR), who pays
−1. There are two strategies that can be chosen: taking the vaccination (or intermediate protective
measures) (V) and not taking the vaccination (NV). Table 1 summarizes the payoff on the basis of
whether the approach was V (either vaccination or intermediate protective measure) or NV and
whether the individual is healthy or infected.

On the basis of the expected payoff, the average social payoff 〈π〉is formulated as follows:
(Effectiveness model)

〈π〉 =−Cr([SV](∞)+ [PV](∞))− (Cr + 1)[RV](∞)− [RN](∞)

=−Cr((1− e)xpQ + ex)− (Cr + 1)(1− e)x(1− pQ)− (1− x)(1− pQ). (2.80)

(Efficiency model)

〈π〉 =−Cr[SV](∞)− (Cr + 1)[RV](∞)− [RN](∞)

=−CrxqQ − (Cr + 1)x(1− qQ)− (1− x)(1− pQ). (2.81)

(c) Strategy updating
Within the context of the vaccination game, an individual can change his/her strategy at the
end of every epidemic season by deciding whether to rely on a provision and by reflecting on the
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payoff in the previous epidemic season. In this study, we consider the strategy-updating approach
proposed by Fu et al. [6], which is called ‘individual-based risk assessment’ (IB-RA).

In IB-RA, for two-strategy and two-player (2× 2) games, an individual can update their
strategy by randomly selecting neighbouring individuals stochastically and copying them. The
individual decides whether to adopt that neighbour’s strategy by using pairwise Fermi updating
[6], i.e. individual i adopts the selected neighbour j’s strategy with a probability:

P(si← sj)=
1

1+ exp[−(πj − πi)/κ]
, (2.82)

where si is the strategy of i, π i is i’s payoff in the previous season and parameter κ > 0
characterizes the strength of selection (the sensitivity of individuals to differences in their
payoffs); a smaller κ indicates that an individual is more sensitive to a payoff difference. We set
κ = 0.1 on the basis of [6].

The transition probability affecting the dynamics of x, which should be considered in light of
the IB-RA rule, is covered by one of the following eight cases:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(HV← SFR)= 1
1+ exp[−(0− (−Cr))/κ]

,

P(HV← FFR)= 1
1+ exp[−(−1− (−Cr))/κ]

,

P(IV← SFR)= 1
1+ exp[−(0− (−Cr − 1))/κ]

,

P(IV← FFR)= 1
1+ exp[−(−1− (−Cr − 1))/κ]

,

P(SFR←HV)= 1
1+ exp[−(−Cr − 0)/κ]

,

P(SFR← IV)= 1
1+ exp[−(−Cr − 1− 0)/κ]

,

P(FFR←HV)= 1
1+ exp[−(−Cr − (−1))/κ]

,

P(FFR← IV)= 1
1+ exp[−(−Cr − 1− (−1))/κ]

.

(2.83)

After the end of every epidemic season, the vaccination coverage x will increase or decrease.
To quantify this evolutionary process, we obtain the following equation for the dynamic
system:

Effectiveness model

dx
dt
= [SNSV](∞)+ [SNPV](∞)

Q
(P(SFR←HV)− P(HV← SFR))

+ [SNRV](∞)
Q

(P(SFR← IV)− P(IV← SFR))

+ [SVRN](∞)+ [PVRN](∞)
Q

(P(FFR←HV)− P(HV← FFR))

+ [RNRV](∞)
Q

(P(FFR← IV)− P(IV← FFR)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.84)
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Efficiency model

dx
dt
= [SNSV](∞)

Q
(P(SFR←HV)− P(HV← SFR))

+ [SNRV](∞)
Q

(P(SFR← IV)− P(IV← SFR))

+ [SVRN](∞)
Q

(P(FFR←HV)− P(HV← FFR))

+ [RNRV](∞)
Q

(P(FFR← IV)− P(IV← FFR)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.85)

As a result of changing the strategy, the vaccinator–non-vaccinator connection coefficient α

will also change. To quantify this evolutionary process, we obtain the following equation for the
dynamic system:

Effectiveness model

Q
dα

dt
= [SNSN](∞)P(SN→V|SNSN)(1− P(SN→V|SNSN))

+ [SNRN](∞){P(SN→V|SNRN)(1− P(RN→V|SNRN))

+ P(RN→V|SNRN)(1− P(SN→V|SNRN))}
+ [RNRN](∞)P(RN→V|RNRN)(1− P(RN→V|RNRN))

+ [SVSV](∞)P(SV→NV|SVSV)(1− P(SV→NV|SVSV))

+ [SVRV](∞){P(SV→NV|SVRV)(1− P(RV→NV|SVRV))

+ P(RV→NV|SVRV)(1− P(SV→NV|SVRV))}
+ [RVRV](∞)P(RV→NV|RVRV)(1− P(RV→NV|RVRV))

+ [SVPV](∞){P(SV→NV|SVPV)(1− P(PV→NV|SVPV))

+ P(PV→NV|SVPV)(1− P(SV→NV|SVPV))}
+ [RVPV](∞){P(RV→NV|SVPV)(1− P(PV→NV|RVPV))

+ P(PV→NV|RVPV)(1− P(SV→NV|RVPV))}
− [SNSV](∞){P(SN→V|SNSV)(1− P(SV→NV|SNSV))

+ P(SV→NV|SNSV)(1− P(SN→V|SNSV))}
− [SNRV](∞){P(SN→V|SNRV)(1− P(RV→NV|SNRV))

+ P(RV→NV|SNRV)(1− P(SN→V|SNRV))}
− [SVRN](∞){P(RN→V|SVRN)(1− P(SV→NV|SVRN))

+ P(SV→NV|SVRN)(1− P(RN→V|SVRN))}
− [RNRV](∞){P(RN→V|RNRV)(1− P(RV→NV|RNRV))

+ P(RV→NV|RNRV)(1− P(RN→V|RNSV))}
− [SNPV](∞){P(SN→V|SNPV)(1− P(PV→NV|SNPV))

+ P(PV→NV|SNPV)(1− P(SN→V|SNPV))}
− [RNPV](∞){P(RN→V|RNPV)(1− P(PV→NV|RNPV))

+ P(PV→NV|RNPV)(1− P(RN→V|RNPV))}. (2.86)

Efficiency model

Q
dx
dt
= [SNSN](∞)P(SN→V|SNSN)(1− P(SN→V|SNSN))
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Figure 1. Final epidemic size (a), vaccination coverage (b) and average social payoff (c) for different numbers of degrees Q. The
effectiveness model is applied. (Online version in colour.)

+ [SNRN](∞){P(SN→V|SNRN)(1− P(RN→V|SNRN))

+ P(RN→V|SNRN)(1− P(SN→V|SNRN))}
+ [RNRN](∞)P(RN→V|RNRN)(1− P(RN→V|RNRN))

+ [SVSV](∞)P(SV→NV|SVSV)(1− P(SV→NV|SVSV))

+ [SVRV](∞){P(SV→NV|SVRV)(1− P(RV→NV|SVRV))

+ P(RV→NV|SVRV)(1− P(SV→NV|SVRV))}
+ [RVRV](∞)P(RV→NV|RVRV)(1− P(RV→NV|RVRV))

− [SNSV](∞){P(SN→V|SNSV)(1− P(SV→NV|SNSV))

+ P(SV→NV|SNSV)(1− P(SN→NV|SNSV))}
− [SNRV](∞){P(SN→V|SNRV)(1− P(RV→NV|SNRV))

+ P(RV→NV|SNRV)(1− P(SN→NV|SNRV))}
− [SVRN](∞){P(RN→V|SVRN)(1− P(SV→NV|SVRN))

+ P(SV→NV|SVRN)(1− P(RN→NV|SVRN))}
− [RNRV](∞){P(RN→V|RNRV)(1− P(RV→NV|RNRV))

+ P(RV→NV|RNRV)(1− P(RN→NV|RNSV))}. (2.87)

Here, P(A→VorNV|AB) is a transition probability that the focal A of pair AB change to the
opposite strategy (vaccinator or non-vaccinator). All transition probabilities are described in the
electronic supplementary material.
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Figure 2. Final epidemic size (a), vaccination coverage (b) and average social payoff (c) for different numbers of degrees Q. The
efficiency model is applied. (Online version in colour.)
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All of the above dynamic equations can be solved numerically. Therefore, the final result is
affected by a two-stage process: single-season SIR dynamics and the strategy adaptation process.
We rely on an explicit scheme, and we evaluate how this specific dynamic system evolves.
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Figure4. Isogramof relative vaccination cost Cr drawnona two-dimensional planeof vaccination coverage versus effectiveness
(a) or efficiency (b). The grey arrows indicate the direction of the slope. (Online version in colour.)

Therefore, we can observe the final epidemic size, vaccination coverage and average social payoff
in social equilibrium.

3. Discussion
Figures 1 and 2 show the final epidemic size (a), vaccination coverage (b) and average social
payoff (c) corresponding to the relative vaccination cost Cr and the effectiveness e or efficiency
η, under a different number of links; degree Q. The panels on the far-right show previous
results based on mean-field approximation (denoted ‘well mixed’) [20]. First, the present result
with a lower degree shows a significantly different picture from the mean-field approximation
prediction. A lower degree generally implies a robust environment for disease spreading and
ironically leads to an individual shunning protective measures. In line with this justification, with
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Figure 5. Final epidemic size (a), vaccination coverage (b) and average social payoff (c) for different numbers of degrees Q. The
efficiency model is applied. (Online version in colour.)

an increase in degree, the present model’s prediction gets close to the prediction of the mean-
field approximation. A random regular graph with the infinite degree is quite possible because
it literally means ‘well mixed.’ Keeping this in mind, we were able to see how meaningful the
present model is over conventional analytical approaches that rely on mean-field approximation.

In all figures, the red colour in final epidemic size, blue colour in vaccination coverage and
red colour in average social payoff indicate a pandemic state, in which most individuals rely
on neither vaccination nor intermediate protective measures. Therefore, an almost full-scale
spread of infection is inevitable. Generally speaking, these regions emerge when the reliability
of vaccinations or intermediate protective measure is low or when the cost is high. The border
between each of these monotone regions and the remaining area represents a threshold that
suggests a combination of critical effectiveness (efficiency) and critical cost to appropriately
control the epidemic spread. Therefore, under a voluntary vaccination policy, we can confirm
how the relationship between the reliability of protective measures and the cost of protection is
an important factor in controlling the damage caused by the epidemic spread. Figure 3 shows the
relationship between cost and critical effectiveness (efficiency) under which no individual takes
vaccination (or intermediate protective measures). It clearly suggests that a higher cost requires
a higher effectiveness (efficiency) to enable individuals to commit because individuals have no
incentive to take protective measures unless there is a sufficiently high counterbalancing effect
to the high cost. An observation of the differences in the degree Q shows that a lower degree
requires greater effectiveness (efficiency), i.e. lower level social networks are more robust against
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Figure 6. Final epidemic size (a), vaccination coverage (b) and average social payoff (c) for different numbers of degrees Q. The
efficiency model is applied. (Online version in colour.)

disease spreading than those at a higher level. This ironically results in a reduced incentive for
individuals to vaccinate (or take intermediate protective measures) because of the temptation to
take a free ride on herd immunity.

As shown in figure 1 and 2, a lower effectiveness (or efficiency) corresponds with a higher
vaccination coverage as long as the costs imposed are acceptable. This ironic situation can be
explained as follows: when a protective measure is less reliable, it will create more uncertainty
and fear, and more individuals will commit to the measure. However, even if a large proportion
of individuals take protective measures, the epidemic cannot be eradicated if the vaccination is
unreliable.

A comparison of the effectiveness and efficiency models in figures 1 and 2 show that the latter
has a wider pandemic phase at first glance. This implies that intermediate protective measures
with certain η are less effective for suppressing an epidemic than imperfect vaccination, and this
finding is consistent with our previous results based on mean-field approximation.

Figure 4 shows the isograms of the relative vaccination cost Cr drawn on a two-dimensional
plane of vaccination coverage and effectiveness (efficiency). The grey arrows indicate the direction
of the rising slope of Cr, thus indicating that vaccination coverage (the rate of intermediate
protective measures) gradually increases with decreasing effectiveness (efficiency) from e= 1.0
(η= 1.0) and dramatically drop down to zero at the critical effectiveness (efficiency), when the
relative vaccination costs are low. This finding confirms what we have discussed above and is
consistent with the reports by Wu et al. [18] and Chen et al. [21]. On the other hand, in case of high
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Figure 7. Final epidemic size and vaccination coverage as a function of the inverse of the relative recovery rate 1/r and the
protection quality: (a) effectiveness e and (b) efficiency η for regular random networks with different numbers of degrees Q.
We assumed Cr = 0.1. (Online version in colour.)

vaccination costs, the vaccination coverage gradually decreased as the effectiveness of vaccination
(efficiency of intermediate protective measure) decrease from e= 1.0 (η= 1.0).

To validate the theoretical results, a series of numerical simulations based on the MAS
approach was performed. Following the procedure in previous studies [8], we set β as the point at
which the final epidemic size exceeds the predefined threshold (i.e. 0.9) without any vaccinated
individuals. Accordingly, we set β = 0.72, 0.38 and 0.14 for random regular graph with degree
Q= 3, 4 and 8, respectively. We set γ = 1/3. A typical flu is assumed to determine these disease
parameters. The results shown below were obtained by a collective average of 100 independent
realizations starting from various initial conditions. The results for the effectiveness and efficiency
models are shown in figures 5 and 6. Generally, all results are consistent with figures 1 and 2,
although there are subtle discrepancies arising from the fact that the above simulation assumed a
finite population size of N= 104.

To characterize the effect of infection rates on vaccination behaviour, final epidemic size and
vaccination coverage were shown as a function of the inverse of the effective recovery rate 1/r
and the protection quality: (i) effectiveness e and (ii) efficiency η in figure 7. We fixed the relative
vaccination cost Cr= 0.1. Looking at the effect of the degree of Q on vaccination behaviour,
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Figure 8. Differences of vaccination coverage and final epidemic size caused from whether to assume homogeneous or
evolutionary heterogeneous distribution of vaccinator and non-vaccinator. Red lines present vaccination coverage andblue lines
present final epidemic size. In the solid lines, we assumed the evolutionary heterogeneous distribution and the parameter α
varied every strategy adaptation. On the other hand, in dash line, we assumed the homogeneous distribution (α= x(1− x)).
We assumed perfect vaccination. (Online version in colour.)

individuals do not vaccinate until the relative recovery rate r is less than the critical relative
recovery rate rc, as expressed in Eq. (A-19) of the electronic supplemental material, because the
epidemic does not spread. Furthermore, vaccination coverage increases with an increase in Q,
both in terms of effectiveness and efficiency. This implies that a high number of degrees promote
not only the epidemic spread but also the (cooperative) vaccination behaviour. The critical value
of effectiveness, below which no individual will be vaccinated, does not show sensitivity to the
relative cost, which is expressed as e= 0.35 in this case. On the other hand, the critical value of
efficiency, below which no individual will be vaccinated, increases monotonically with an increase
in the relative recovery rate. This result is consistent with results by Cardillo et al. [14].

In general, most of theoretical vaccination game model using mean-field approximation
ignored the local correlations between vaccinators and non-vaccinators and assumed a
homogeneous distribution of vaccinator and non-vaccinator. On the other hand, pair
approximation can capture the evolution of heterogeneous distribution of vaccinator and
non-vaccinator caused by strategy adaptation. In the model formulation, we introduced new
parameter; α, meaning disassortativity at the beginning of every season, that can be time-evolved
according to equations (2.86) and (2.87) when we digress from the mean-field approximation
mentioned above. Let us name this setting ‘heterogeneous’ case. Contrariwise, when we follow to
the conventional idea; taking mean-field approximation, α is always frozen at α= x(1 – x), which
is called ‘homogeneous’ case. As shown in figure 8, when the heterogeneous setting was imposed,
vaccination coverage is relatively high and final epidemic size is relatively low compared to the
homogeneous one (α= x(1− x)). Regardless of Cr, we confirmed that α is always lower than that
the homogeneous case; x(1 – x), because of the existence of the cluster of vaccinators and non-
vaccinators. The existence of non-vaccinators cluster with high-frequency pushes up the risk of
the disease spreading shared amid non-vaccinators, which makes defectors commit vaccination.
This subsequently enables less final epidemic size when the heterogeneous case is presumed.
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4. Conclusions
We presented a more precise theoretical framework of the vaccination game that considers
imperfect vaccination and intermediate protective measures. The greatest advantage of our model
is that it relies on a pair approximation epidemic model instead of mean-field approximation.
The exact mathematical formulae for both dynamic processes, namely, epidemic spreading and
strategy updating, are explicitly discussed. When solving the ODEs for the constructed pair
approximation epidemic model, the critical vaccination coverage and the final fractions for each
individual were derived. The results show that it is important to consider the degree effect
in pairwise or mean-field approximation, particularly when a lesser degree is presumed. In
addition, the effect of imperfect vaccination and intermediate protective measure strongly affects
vaccination behaviour and final epidemic size. We validated our framework by comparing it with
the MAS approach.
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