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Abstract: Plastic pollution in the world is widespread and growing. The environment is swamped
with nanoplastics (<100 nm), and the health consequences of these less visible pollutants are unknown.
Furthermore, there is evidence that microplastics can release nanoplastics by digestive disintegration,
implying that macroplastic exposure can cause direct and indirect disease via nanoplastics. The
existence and impact of nanoplastics in numerous tissues from invertebrates to larger vertebrates that
consume significant amounts of plastics were investigated, and histopathological techniques were
utilized to determine physiological reactions and inflammation from the plastics. Nanoplastics enters
an organism through the respiratory and gastro-intestinal tract where they accumulate into the liver
through blood circulation via absorption, or epidermal infiltration. It is stated that macroplastics can
cause damage directly at the site of exposure, whereas nanoplastics can influence the liver, causing
subsequent damage to other organs. Multi-organ dysfunction is brought on by liver changes, and
nanoplastics can readily enter the gut-liver axis and disturb the gut microflora. By exploring the
literature and summarizing the research that has been published to date, this review article reveals
the deleterious effect and mechanisms of nanoplastics on the pathophysiological functions of the
hepatic system.

Keywords: nanoplastics; hepatic glucose metabolism; lipid peroxidation; metabolic dysfunction;
gut-liver axis

1. Introduction

The global production of plastics has increased immensely over the past seven decades [1].
Globally, plastic pollution is a concern. Of the 9.2 billion tons, plastic manufactured be-
tween 1950 and 2017, almost 7 billion tons were wasted. About 3% of all plastic generated
annually is thought to accumulated in the ocean. Up to 2015, 6.3 billion tons of the total
was converted to waste. Only 9% of that used plastic is recycled, while the remaining 12%
is burned. Since plastic does not dissolve, the remaining 79% are dumped in landfills or
the environment, where they persist indefinitely in some shape or form [2]. Eighty-one
out of 123 species of marine mammals are known to have eaten or become entangled in
plastic. An estimate states that each year, 100,000 marine mammals die as a consequence
of plastic contamination, and between 400,000 and one million people every year in de-
veloping nations pass away as a result of disorders and accidents related to improper
waste management [3,4]. Due to the action of biodegradation, physical erosion, and oxida-
tion, plastics present in the environment can be broken down into smaller particle sizes
which can be macroplastics (>5 µm), microplastics (MPs) (1 µm–5 µm), and sizes between
1–100 nm are nanoplastics (NPs) [5]. Some of the common nanoplastics commonly used
include polystyrene, polyethylene, polyvinyl chloride, polyamide, polyethylene, etc. [6].
Depending on the shape, size, chemical composition, surface chemistry, porosity, and
concentration, nanoplastics pose several implications mostly for liver and kidneys inducing
morphological as well as functional changes [7,8]. Studies have found that nanoplastics
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when entered inside the body gets accumulated in different organs like liver, lungs, guts,
kidney, brain, thereby inducing several toxic damages [9,10].

The liver is one of the main metabolic organs that control the various metabolism
pathways connecting to different organs and tissues and the major detoxifying organ in
the human body [11,12]. The liver plays a major role in maintaining the body’s energy by
controlling various pathways involves in glucose metabolism [13]. In liver, glucose is stored
as glycogen and is the only source of blood glucose [14]. It also delivers glucose to different
parts of the body and serves as the main site for gluconeogenesis [15]. The protein oxidation
in the liver provides most of the energy required in the liver [16]. The protein metabolism
involves the reaction of protein with water to form amino acids and dipeptides [17], where
the amino acids are further broken into keto acids and ammonia [18]. In addition, urea
production through the urea cycle takes place only in the liver in the human body [19]. The
liver is also the main site for the metabolism of toxic chemicals [20,21].

Nanoplastics have been found to be associated with overproduction of reactive oxygen
species in cells. NPs inside cells induced changes in different metabolic activities such as
the TCA cycle, oxidative phosphorylation, degradation of fatty acid, metabolism related
to amino acids and carbon [22,23]. Various metabolic pathways involving enzymes and
proteins, biomarkers in the TCA cycle, amino acid, lipid, and nucleotide metabolism are
either downregulated or upregulated depending on the concentrations and interaction with
NPs [24]. Exposure to NPs also causes DNA damages [7,8]. Exposure to NPs leads to liver
damage causing lipid peroxidation and oxidative stress [10]. NPs can enter cells, thereby
causing mitochondrial damage in the liver cells leading to improper functioning of cells
and tissues [25]. Studies had shown an increased production of mROS due to inhibition of
electron transport chain (ETC) when exposed to NPs at high concentration [9,26].

Experimental studies show decreased activities of several enzymes, oxidative stress in
fish, mice, and liver cell lines [27]. Alteration in lipid, amino acid, and energy metabolism,
inflammation, low liver weight, and lipid accumulation were also observed in a mouse
model [28]. A study in fish and mouse indicates that with the toxicity the of gut due to
microplastics and nanoplastics, they enter the liver, causing liver tissue damage and chronic
inflammation [29,30]. Current studies on the effect NPs on human cells and tissues need
more experimental and research work, and we are still at an initial phase in understanding
the toxicity related to nanoplastics in humans.

2. Pathways Involved in Liver Metabolism

NPs of diameter <100 nm have had particular attention in the science field and
are commonly used in studies, because they are internalized by cells more than larger
particles [31]. Evidence has indicated that the liver and kidneys are major accumulation
sites, as well as vital organs for the metabolism and clearance of nanomaterials [32]. The
accumulation of polystyrene nanoplastics (PS NPs) in the liver and kidneys of mice has
been documented, and exposure to NPs induced evident morphological and functional
changes in these two organs, suggesting the importance of investigating the impact of NPs
on liver and renal cells [33–35].

The majority of total glucose disposal happens in insulin-independent tissues, with
roughly 50% occurring in the brain and 25% occurring in the splanchnic region (liver and the
gastrointestinal tissues) [36]. The release of glucose from the liver closely matches glucose
use, which averages around 2.0 mg/kg/min [37]. The majority of glucose elimination in
the body happens in muscle tissue after consuming a glucose-containing meal [38]. Glucose
homeostasis is dependent on three interconnected processes: pancreatic insulin secretion,
stimulation of glucose uptake by splanchnic (liver) and peripheral tissues, and inhibition of
hepatic glucose output [39]. Adipose tissue accounts for only 4%–5% of total body glucose
elimination, which plays a critical role in maintaining whole body glucose homeostasis [40].
Pathways involved in liver metabolism related to muscles and adipose tissue are also
mentioned (Figure 1).
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2.1. Glucose Metabolism

In humans, muscle is the principal location of glucose excretion. Once in the cell,
glucose can be converted to glycogen or enter the glycolytic pathway [41]. Because obesity
and diabetes are the two most prominent risk factors for the development of liver disorder,
the presence of one or both of them can explain some of the peripheral insulin resistance
IR [42,43]. Glucose disposal is reduced by about 50% in nondiabetic patients compared to
normal people, a level comparable to type-2 diabetes mellitus (T2DM) [44]. The fact that
there is no difference in glucose disposal between normal and overweight patients shows
that the problem is not solely connected with improper glucose regulation and/or excess
fat accumulation [45]. From fatty liver to nonalcoholic steatohepatitis (NASH), glucose
utilization in muscle deteriorates progressively, and hyperinsulinemia are not secondary to
a decrease in hepatic insulin extraction [46–48].

When paired with the clamp, indirect calorimetry provides the rate of non-oxidative
glucose disposal (i.e., glycogen synthesis) as the difference between whole-body glucose
absorption and glucose oxidation [49]. Insulin-stimulated glycogen synthesis is reduced
in insulin-resistant states such as obesity, diabetes, and the combined obesity–diabetes
syndrome [50].

2.2. Glucose Output

After an overnight fast, a healthy person’s liver produces glucose at a rate sufficient to
meet the needs of the brain [51]. The variability of basal human glucose output (HGO) in
nondiabetic persons is mostly determined by the amount of lean body mass and the degree
of peripheral insulin use [52–54]. HGO is suppressed by insulin released into the portal
vein following glucose or meal consumption. Hepatic IR occurs when the liver fails to
detect this signal [54]. The glucose produced by the liver can come from glycogenolysis or
gluconeogenesis [55]. Insulin suppresses HGO either directly through the hepatic insulin
receptor or indirectly by reduced production of gluconeogenic substrates (e.g., alanine,
lactate, glycerol, and free fatty acids) in both muscle and liver [56,57].

2.3. Lipolysis and Lipid Oxidation

Aside from muscle and liver, adipose tissue is the third metabolically significant site
of insulin action. Whereas insulin-stimulated glucose disposal in fat tissue is minor in
comparison to that in muscle, regulation of lipolysis with subsequent release of glycerol
and free fatty acids (FFAs) into the bloodstream has significant implications for glucose
homeostasis [40,58]. Increased availability and utilization of FFAs aid in the development
of skeletal muscle IR by inhibiting substrate oxidation competitively [59]. According
to recent 1H nuclear magnetic resonance studies, an increase in intracellular fatty acid
metabolites impairs IRS-1 tyrosine phosphorylation, resulting in decreased PI3-kinase
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activity and glucose transport [60]. Free fatty acids (FFAs) stimulate key enzymes and
provide energy for gluconeogenesis, while glycerol released during triglyceride hydrolysis
acts as a gluconeogenic substrate.

When insulin levels are high, hepatic FFA esterification takes precedence over ox-
idation until the intracellular long chain acyl coenzyme is depleted. The concentration
raises high enough to overcome the inhibitory effect of malonyl-coenzyme-A on carnitine
palmatoyl transferase. Both fatty acid esterification and oxidation will be improved as
a result. Normal subjects with as little as 10% liver fat have a reduced ability of insulin
to suppress serum FFAs [61]. Similarly, higher values of plasma FFAs during the clamp
characterize the greater IR in T2DM with fatty liver and hepatic steatosis correlated with
basal and insulin-stimulated plasma FFAs. Fasting plasma FFA levels are also linked to
muscle CT attenuation indices, which are a measure of muscle fat content [62,63].

2.4. Fatty Acid Metabolism and Energy Supply

The Krebs cycle oxidizes acetyl-coenzyme A (CoA), resulting in reduced forms of
nicotinamide adenine dinucleotide (NADH) and reduced flavine-adenine dinucleotide,
which transport electrons to the MRC [64]. AMPK promotes glucose and fatty acid ox-
idation while also activating PGC-1a [64,65]. PGC-1a interacts with peroxisome proliferator-
activated receptor a (PPARa) to promote the production of numerous fatty acid-metabolizing
enzymes, including carnitine palmitoyltransferase 1 (CPT1) and acyl-CoA dehydrogenases,
hence enhancing fatty acid b-oxidation in mitochondria [66–69]. PGC-1a also increases the
expression of TFAM by inducing its expression and binding to NRF1 [70–72]. NRF1 and
TFAM regulate mtDNA transcription and replication, respectively, while NRF1 controls the
expression of nuclear DNA-encoded MRC proteins. PGC-1a increases mitochondrial mass
as well as oxidative phosphorylation capacity in the mitochondria [73,74].

2.5. Mitochondrial Damage

The TCA cycle is essential for cellular energy metabolism because it provides energy
for cellular respiration [75]. In one study, NP-treated L02 cells had higher levels of some
endogenous indicators of the TCA cycle, such as malate, and lower levels of others, such as
fumarate. The effects of 80 nm NPs on mitochondrial activities and metabolic pathways in
normal human hepatic (L02) cells were studied. NP did not cause widespread cell death.
However, transmission electron microscopy analysis revealed that the NPs could enter the
cells and cause mitochondrial damage, as evidenced by increased production of reactive
oxygen species in the mitochondria, changes in the mitochondrial membrane potential, and
suppression of mitochondrial respiration. In NP concentrations as low as 0.0125 mg/mL,
these changes were observed. Overproduction of mROS has been identified as one of the
primary causes of mitochondrial damage [76,77]. In L02 cells, NP administration boosted
mROS generation in a dose-dependent manner, with effects detectable even after low NP
concentrations [78].

Purine metabolism is one of the primary metabolic processes involved in cellular
ATP synthesis, and changes in ATP can result in changes in metabolic phenotype [79].
It was shown that ATP concentrations in L02 cells were dramatically reduced in a dose-
dependent manner after NP administration, which is consistent with the reported changes
in ATP synthesis by the mitochondrial ETC. The contents of most downstream endogenous
indicators of the purine metabolism pathway decreased. These findings indicate that this
NP therapy drastically reduced the purine pathway. The considerable elevation of GSH in
L02 cells caused by NP administration, which occurred in a dose-dependent manner, can
be regarded as an adaptive response because it would have strengthened the antioxidant
defense mechanism [80,81].

2.6. Protein and Urea Metabolism

Among the three key dietary categories of protein, lipids, and carbohydrates, protein
metabolism is crucial for the production of albumin and prothrombin as well as for the
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detoxification of ammonia. When these mechanisms are addressed in nutrition treatment
for liver cirrhosis, they affect the development of hepatic encephalopathy and the hepatic
functional reserve, leading to an imbalance in branched-chain amino acid (BCAA) insuffi-
ciency, reduced albumin synthesis, and elevated blood ammonia concentrations [82]. The
primary reason of BCAA shortage in liver cirrhosis patients is an increase in ammonia
metabolism in the skeletal muscles [83]. About half of the ammonia in healthy individuals
is digested in the liver’s urea cycle, while the other half is processed in the skeletal muscles’
glutamine producing system. The liver produces glutamine and uses it to detoxify ammo-
nia, with the urea cycle serving as the primary mechanism. In liver cirrhosis, zinc deficiency
results in decreased urea cycle activity. When there is liver cirrhosis, the urea cycle is less
functional due to zinc shortage, which reduces the ability to detoxify ammonia [82].

2.7. Ethanol Metabolism

There are at least three different categories of ethanol’s metabolic effects: those brought
on by changes in metabolite pools and cofactors brought on by the ethanol’s metabolism,
those brought on by neuroendocrine issues brought on by intoxication, and those brought
on directly by the pharmacological effects of ethanol on particular cells and processes.
These numerous sorts of effects have varying degrees of contribution in practically every
significant domain of metabolism. The apparent discrepancies about the metabolic effects
of ethanol frequently result from variations in experimental setups that affect how much
each of these components contributes [83,84].

The first category of effects, those brought on by ethanol metabolism, have received the
greatest attention. The primary result is a rise in the NADH: NAD+ ratio in the mitochon-
dria and cytoplasm of the liver cell. This has an impact on the availability of pyruvate and
oxaloacetate, affecting the oxidation of fatty acids and other substrates, gluconeogenesis,
and carbohydrate consumption in the mitochondria. Additionally, numerous additional
NAD+-dependent processes involved in the metabolism of amino acids, biogenic amines,
glycerol, carbohydrates, porphyrins, and molecules of other types are directly impacted by
the change in nucleotide ratio. Finally, the liver’s high output of acetate, lactate, and lipids,
together with the lower levels of acetaldehyde, have indirect impacts on the metabolism of
other organs [85–87].

Less research has been done on the second category of effects, those that are determined
by the level of intoxication. Hepatic glycogenolysis caused by high doses of ethanol is
mediated by sympathetic and adrenomedullary responses. Additionally, it is likely that
mobilization of fatty acids from peripheral adipose tissue contributes to the development
of hepatic steatosis following a single high dosage of ethanol. Much of the variability in
ethanol metabolism and its impact on other drug metabolism may be attributed to hypoxia
and disturbances in blood flow through various organs [88].

The third class of effects, those brought on by ethanol’s direct pharmacological action,
have received the least attention despite the possibility that they might have a significant
impact. Alcohol may inhibit the active transport of amino acids in the liver, gastrointestinal
tract, and elsewhere, according to very limited data. Additionally, it could directly affect
renal tubular transport mechanisms, the permeability of mitochondrial and cell membranes,
and the processes involved in the production and exocytosis of lipoproteins in the liver.
All of them would have significant metabolic repercussions if they were shown to be
true [89,90].

The effects of the first type prevail at low concentrations of ethanol in bodily fluids,
whereas those of the second and third kinds become increasingly significant at greater
concentrations due to the unusual kinetics of ethanol oxidation in vivo. The metabolic
effects of ethanol must be explained or predicted in light of this diversity as well as the
aggravating aspects of nutritional imbalance and hepatic disease that may develop after
prolonged ethanol use [90].
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3. Impact of Nanoplastics on Liver Metabolism Causing Multi-Organ Dysfunction

The liver, a central metabolic organ, alters lipid metabolism in response to harsh
environmental conditions [91]. Pathways involved in liver metabolism and neighboring
organ dysfunction due to nanoplastics toxicity are presented (Figure 2). After being exposed
to 100 ppm of PS-NPs, Lu et al. (2016) discovered that huge volumes of lipid droplets
developed in the liver of the zebrafish Danio rerio [92]. As reported, it showed greater
hepatic inflammation. According to the findings, dietary exposure to PS-NPs increased
oxidative stress and interfered with lipid metabolism. Furthermore, after NP exposure, the
crude lipid content of turbot Scophthalmus maximus and black rockfish Sebastes schlegelii
livers increases dramatically [93,94]. An in vitro experiment revealed that NPs bind to
apolipoprotein A-1 in fish serum, limiting lipid utilization [95,96]. According to a study,
after PS NPs exposure, the liver TG and lipid content were considerably greater than in
the control group. In fed fish, mRNA expression of the lipid synthesis-related gene fas
and lipid transport-related genes such as cd36 and fatp1 increased considerably [97]. The
mRNA expression of lipid catabolism-related genes such as ppar and aco increased initially
and then declined as PS NP concentrations increased. PS NPs were found to boost the
expression of genes involved in lipid production and catabolism in hepatocytes in the
short term [98]. The trans-generational effect showed fabp10a expression in larval livers in
a dose- and size-dependent manner. The 50 nm PS-NPs of 0.1ppm concentration raised
fabp10a expression in the larval liver by 21.90%. These impacts’ potential mechanisms are
dependent on their distribution and the formation of reactive oxygen species in the larvae.
NPs also stimulate steroid hormone biosynthesis in zebrafish larvae, which may result in
immune-related disorders [99,100].
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Brandts et al. (2018) demonstrated that transcriptional machinery is activated by NPs
in the liver of D. labrax, resulting in enhanced expression of lipid-related genes [101,102].
D. Labrax were treated with ~45nm NPs at various concentrations (0.02 mg/L, 0.2 mg/L,
2 mg/L, and 20 mg/L) for 96 h. It was shown to have inflammation and hepatocyte
proliferation and also to have reduced the glucose metabolism. Lipids’ main function
in fish is to store and provide energy in the form of adenosine triphosphate (ATP) via
oxidation of fatty acids, which is a key source of energy for many fish species [103,104].
This oxidation occurs in cellular organelles such as mitochondria and peroxisomes and
is catalyzed by a variety of enzymes [105]. As essential regulators of lipid metabolism,
peroxisome proliferator-activated receptors (PPARs) respond to fatty acid signals [106,107].
The expression of genes involved in innate immune function in D. labrax was also assessed.
After 96 h of exposure, the levels of ppara, pparγ, and nd5 were affected but IL1, IL6, tnf, and
IL10 were unaffected, indicating that NPs did not directly affect D. labrax’s immune system
on a molecular level, indicating no cellular stress was significant [108].
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An experiment was conducted to test trans-generational toxicity. Mice were treated
to PS-NPs of size 100 nm at varied concentrations (0.1, 1, and 10 mg/L) during gestation
and lactation. Results showed that PS-NPs exposure during pregnancy and breastfeeding
decreased birth and postnatal body weight in offspring mice. Furthermore, high-dose
PS-NPs lowered liver weight, produced oxidative stress, infiltrated inflammatory cells,
increased pro-inflammatory cytokine production, and disrupted glyco-metabolism in male
offspring mice liver [109]. Another study demonstrated that PS-NPs may worsen chronic
hepatitis in mice by interfering with hepatic lipid metabolism. Furthermore, hepatic tissue
from PS-NPs-treated HFD animals had significantly decreased superoxide dismutase (SOD)
activity, confirming the oxidative stress caused by PS-NPs. PS-NPs exposure significantly
increased the inflammatory response in the liver, as demonstrated by increased infiltration
of Kupffer cells (KCs) and increased expression of pro-inflammatory associated markers.
Results showed that offspring’s birth and postnatal body weight decreased after the mother
was exposed to PS-NPs during pregnancy and lactation. Furthermore, in the liver of male
progeny mice, high-dosage of PS-NPs decreased liver weight, induced oxidative stress,
induced inflammatory cell infiltration, increased pro-inflammatory cytokine production,
and disrupted glyco-metabolism [109].

Another study was conducted where zebrafish were fed with 42 nm PS-NPS (i.e.,
dietary exposure) at various concentration (90, 45, and 120 mg/mL). Nanoplastics have been
demonstrated to cause oxidative stress, alterations in locomotor activity, and developmental
problems in zebrafish [110]. Higher levels of reactive oxygen species ROS (i.e., hydrogen
peroxide and organic peroxides) can be caused by an imbalance between the synthesis
and detoxification of ROS, which causing oxidative stress, cellular damage, and apoptosis.
In F0 adults, maternally or co-parentally exposed larvae showed lower GR activity, thiol
levels, and glutathione metabolism at 96 hpf (hours post fertilization). Similar alterations
were also visible in F1 [111].

In a similar investigation, zebrafish were treated with 80 nm of PS-NPs at different
concentrations of 0.01, 0.1, 1, 5, and 10 mg/L for 24 h. Furthermore, co-exposure increased
mortality, accelerated voluntary movements, increased hatching rate, and lowered heart
rate considerably. Hepatotoxicity tests found that zebrafish larvae exposed to the mixture
had a darker/browner liver color, atrophied liver, and increased hepatotoxicity. In addition
to increased ROS generation, co-treatment resulted in decreased expression of the antiox-
idant gpx1a gene and increased expression of cyp1. Additionally, the genes AChE and
chrn7α, are linked to neuro-central development and were significantly downregulated.
When compared to the PS-NPs single exposure, the results demonstrated a change in
yolk membrane structure, as well as particle bio-accumulation in the intestine of zebrafish
larvae [112]. A summary of the effects of accumulation of NPs in the liver of various model
organisms is shown in Table 1.

Table 1. The effects of accumulation of NPs in the liver of various model organisms.

Model Organism Particle Size and
Concentration

Mode of
Exposure

Exposure
Time Consequences References

Female mice
(Mus musculus)

42 nm
10, 50 µg/mL

Tail vein
injection 15 days

• Increased hepatocyte
bi-nucleation

• Fatty acid degeneration
• Severe perilobular steatosis

[113]

Fish
(Vertebrata)

60 nm
5 mg/L Water 7 days • Aggregated and

condensed nuclei. [114]

Zebrafish
(Danio rerio)

70 nm
20, 200, 2000 µg/L Water 3 weeks

• Necrosis
• Infiltration
• Fat droplets observed in

hepatocytes.

[115]
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Table 1. Cont.

Model Organism Particle Size and
Concentration

Mode of
Exposure

Exposure
Time Consequences References

Male C57 mice
(Mus musculus)

100 nm
0.1, 1 mg/L Water 60 days

• Hepatocellular edema and
vacuolar degeneration,

• enlarged nucleus,
• cell dikaryon,
• inflammation of portal areas

[116]

Juvenile groupers 100.86 ± 7.15 nm
300, 3000 µg/L Water 14 days • Hepatocyte vacuolization [117]

Little yellow
croaker

(Larimichthys
polyactis)

190 nm
1 mg/L Feeding 8 days • Necrosis

• Decrease in tissue density [118]

Goldfish
(Carassius auratus)

250 nm
0, 0.05, 0.5, 5 mg/L Water 28 days

• Necrosis,
• Cellular swelling
• Hemorrhage

[119]

Wistar male rats
(Rattus norvegicus)

25, 50 nm
1, 3, 6, 10 mg/kg

bw/day
Oral gavage 5 weeks • NPs accumulated in whole body [120]

In another investigation, the embryo was filled with 3 nL of NPs (20 nm) for 4 hpf.
The results revealed a significant rise in total cellular death. In the brains of 33% of the
zebrafish larvae that were investigated, cumulative bioaccumulation of NPs was found.
As shown, NPs that are injected into the yolk sac can go to the brain, where they can
bioaccumulate and lead to physical abnormalities. In the areas of the zebrafish larvae’s
brain where NPs concentrate, oxidative DNA damage has also been caused. According to
the findings, injecting NP caused a 27% increase in mortality and a little delay in zebrafish
embryo hatching [121].

Another study reveals that from their embryonic to larval phases for 4 h after fertiliza-
tion, 50 nm and 100 nm NPs were employed to track their accumulation processes. The
plasma membrane’s structural integrity is harmed by lipid peroxidation, which is caused
by elevated ROS levels in cell membranes [122]. The expression of the liver-specific fatty
acid binding protein fabp10 increased in response to NP exposure, increasing the risk of
hepatic inflammation [123].

In another experiment, human liver cell lines (Lo2) were exposed to 80 nm nanoparti-
cles at concentrations of 0.125 and 0.25 mg/mL. The results showed that high NP concen-
trations caused a reduction in cell viability. A dose-dependent increase in mROS generation
was seen after NP administration. The outcomes of metabolic pathways demonstrated
that NP exposure altered the metabolism of nicotinate and nicotinamide in L02 cells. The
tricarboxylic acid (TCA) cycle, glutathione (GSH) metabolism, and purine metabolism
were all negatively influenced by the NPs exposure, as well as the urea cycle and electron
transport chain (ETC) in the mitochondria [8].

Medaka was treated with 100 nm of PSNPs at a concentration of 10 mg/cm3 which
resulted in the alteration in the enzyme activities as well as antioxidant activity such as
SOD and CAT activity. Exposure to a high concentration of NPs inhibited antioxidant
enzyme activity and produces toxic effects due to increased ROS levels [124].

4. Alteration in Gut–Liver Axis Due to Nanoplastic Toxicity

The portal vein, which carries blood from the human digestive system to the liver
and establishes the foundation for a strong bidirectional interaction between these two
critical organs, connects the human liver and stomach. The liver participates via bile acid
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production and the facilitation of some parts of the human immune response via the portal
vein, which transports different metabolites from the digestive tract to the liver [125].

There is evidence that gut microbiota and liver are related as a result of environmental
pollutants. Mice were exposed to 1 mm polystyrene microplastics at a concentration of
10,000 g/L in one experiment. The main metabolic alterations in the liver after one week of
microplastic exposure may be divided into two categories. The mice provided protection
against the oxidative damage in the first section. In the second section, the mice’s gut–liver
axis was disturbed, which increased in developing insulin resistance. After one week of
exposure to microplastics, metabolites were altering, which raises the chance of developing
diabetes. The regulation of these metabolites has significant effects on insulin resistance and
the gut–liver axis metabolism. The gut–liver axis was linked to two elevated metabolites,
4-guanidinobutyric acid and CDP-choline. Mice showed significance for experiencing
oxidative stress and building up resistance to it after one week of exposure to microplastics.
The exposure to microplastics in mice disrupted the gut–liver axis based on information on
intestinal microbiota and differently expressed metabolites [126]. In another investigation,
a dose of 1 mg/L of 5 m PS-MPs was exposed to chickens. The findings showed that
liver injury was caused by disruption of the intestinal flora through the intestinal liver
axis, and that pathogenic bacteria and their byproducts were implicated in liver damage
through translocation of the gut–liver axis. According to metabolomics and transcriptome
data, apoptosis and abnormal lipid metabolism were the primary contributors to the liver
damage produced by PS-MPs [126].

In another study, male marine medaka were given treatments with 2 m and 200 m
PS-MPs at concentrations of 0.3 g/mg and 3 g/mg, and the findings demonstrated growth
suppression and inflammation, and caused oxidative stress, which resulted in a noticeably
higher level of SOD (Superoxide dismutase) activity, MDA (Malondialdehyde), and CAT
(Catalase) activity. The intestinal bacteria of Enchytraeus crypticus were altered by MP
exposure, with an increase in Amoebophilaceae and a decrease in Isosphaeraceae, Rhizobiaceae,
and Xanthobacteraceae. The presence of many bacteria, which eventually affects the gut–liver
axis, is also substantially associated with the metabolic pathways related to glycerolipid
metabolism, energy/carbohydrate metabolism, amino acid metabolism, cholesterol, and
stress. Fish liver injury can also result through intestinal–liver axis disorders rather than
microplastics’ direct effects. The host metabolic changes that modify the structure or
functional capacity of the gut microbiome and liver were shown to be related to the changes
in gut microbial composition in this study [127].

In a continuation of the previous section, it is seen that nanoplastics show toxicity to
other organs directly or indirectly. Based on our findings, we can conclude that the micro-
plastics exposure of organisms shows disturbance in the gut–liver axis. As nanoplastics are
smaller in size than microplastics, they have a high surface volume and are more susceptible
to cause toxicity. Hence, it is hypothesized that nanoplastics can easily invade the intestinal
barrier and affect the gut–liver axis to the metabolism pathways. Therefore, there is a scope
for future studies and analysis on the gut–liver axis towards nanoplastic toxicity.

5. Conclusions and Future Perspective

With the increased usage of plastic products and human exposure, people have pro-
gressively begun to pay attention to the negative consequences of plastic products. The
liver is the body’s largest organ, responsible for cleansing and metabolism, and it performs
numerous critical functions. Researchers are paying increasing attention to the harmful
effects of NPs on the liver. According to the findings, many studies focus on the toxic
effects of NPs on the liver, and NPs have unique characteristics that have stronger ef-
fects in inducing the production of ROS (Reactive Oxygen Species) in the liver and the
development of oxidative stress and inflammation, and more research on the effects of
NPs should be conducted. In contrast to the well-studied toxicity of nanoplastics, which
has been extensively reviewed, the toxicity caused by the variety of NPs has yet to be
properly examined.
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Further research should also take into account how stable plastic particles react when
they are combined with other environmental pollutants because this might change how
organisms interact with them. Investigating whether or if the pollutants that have been
adsorbed onto NPs are desorbed inside the organism, and whether this results in increased
or decreased egestion, would also be essential. It is crucial to take into account how
changing the species of pollutants or the shape of plastic particles might affect the mixture’s
overall toxicity.
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