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Abstract: Antimicrobial resistance is a significant threat to human health worldwide, forcing scien-
tists to explore non-traditional antibacterial agents to support rapid interventions and combat the
emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being
developed while the old ones are being revised, resulting in creating unique solutions that arise at the
interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure,
temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified
or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance
mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to
their high bactericidal activity and specificity. Although the number of novel approaches for tackling
the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would
provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire
resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and
how bacteriophages have evolved to tackle them.

Keywords: antibacterial agents; resistance; bacterial adaptation; temperature; pressure; electric field;
nanoparticles; bacteriophages; mechanism

1. Introduction

The last decade has shown that antibiotic resistance is one of the most pressing
issues in the healthcare system, causing a financial burden on hospitals and societies due
to the prolongation of illness and subsequent treatment [1]. Infected individuals also
face significant health and economic consequences. This burden is estimated at USD
1.3 to 2.7 billion in the USA and USD 1.5 billion in the EU per year [2].

New strains of superbugs are discovered at an alarming rate due to human negligence
of antibiotics (misuse or overuse) and acquisition of new mutations leading to rapidly
evolving bacterial strains [3,4]. Spontaneous changes in bacterial genetic material (mu-
tational resistance) confer resistance towards a wide range of antibiotics [5]. It is also
proven that bacterial strains take only a few hours to prevent the antibiotic from reaching
its destination by modifying drug molecule uptake, sequestering the molecule, and bypass-
ing target sites [5]. Overuse of antibiotics leads to horizontal gene transfer of resistance
between different species [5,6]. Potent, unregulated drugs are made available over the
counter, further increasing the likelihood of generating more resistant bacterial species [7].
In 2015, the emergence of resistance against colistin was reported [8].
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Interestingly, the data on the global spread of gene mcr-1, responsible for the resistance,
was published in 2018 [9]. Later, the gene was found in several bacteria such as Escherichia,
Salmonella, Klebsiella, Kluyvera, Citrobacter, and Cronobacter [9]. Colistin used to be the drug
of last resort—used when all other antibiotics fail to treat an infection. With spreading
colistin resistance, we have entered the post-antibiotic era.

To combat multi-drug resistant (MDR) superbugs, a plethora of novel methods are
under investigation (e.g., nanotechnology-based), while old and momentarily forgotten
strategies (bacteriophages, physical factors) are being revised.

Physical factors, such as UV light, high pressure, and temperature, are used for
disinfection, especially in industries with a high risk of microbial contamination [10].
Physical factors are not targeted (they affect all organisms) that vastly limit their application.

Scientists have started exploring the prospects of using nanoparticles (NPs)—either
to deliver antimicrobial agents or as antimicrobial substances themselves [11,12]. There
are high expectations of the efficient killing of bacteria using nanostructures and their non-
chemical mechanisms such as contact killing [13], mechanical puncturing [14], and changes
in the local microenvironment via nano ions [15]. In addition, nanoparticles combined with
antibacterial agents are also being studied [16].

Since the early 1900s, bacteriophages are employed for medical purposes [17]. Several
companies and research laboratories pursue a treatment strategy involving phages in
infections caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli [11].
In some countries (e.g., Russia, Georgia, Poland, USA), bacteria that do not respond to
conventional antibiotics are treated by phages [18]. In Russia and Georgia, phage-based
products are available without a prescription [19]. For instance, Microgen, a Russian
company, sells phages as liquid preparations or as pills even via the internet [20]. Shall we
consider this action as the first step towards a similar overuse as in the case of antibiotics?

The question remains whether the use of non-antibiotic antibacterial agents is the
appropriate alternative to adopt in the post-antibiotic era? If yes, are we prepared to
eliminate antibiotics from our healthcare system without causing an outburst of adverse
reactions? This review summarizes the reported cases of the appearance of resistance and
adaptation (Figure 1) to such non-antibiotic antibacterial agents, with a particular focus on
the arms-race between bacteria and bacteriophages.
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2. Resistance to Physical Factors

Bacteria exist in extreme conditions where temperatures can reach up to 350 ◦C, in
places where hydrostatic pressure comes up to 600–1000 atmospheres or where multiple
adverse factors are present. Nevertheless, there are physical factors, especially those not
common in nature, that bacteria are vulnerable to. Variations in oxygen concentration
and temperature have shown changes in bacterial communities, while the use of pulsed
electromagnetic field (PEMF) on NPs decorated with nisin protein presents results similar
to electroporation or magnetic hyperthermia [21,22]. Other methods include the use of UV
light, high hydrostatic pressure, manosonication, a change in pH, and heat shock [23]. The
pH has proven to be a major contributing factor in enhancing the efficiency of antibacterial
agents. Several physical factors can enhance antibacterial effects by overcoming multi-drug
resistance in bacteria.

Heat, acidic, and alkaline shocks are generally more effective on Gram-positive bacte-
ria due to their cell walls’ constituents. A thinner wall of Gram-negative species makes
them more amenable to the effect of disinfectants. Amongst the Gram-negative species,
P. aeruginosa is the most resistant, owing to the higher degree of crosslinking of the pep-
tidoglycan. The higher degree of murein crosslinking makes the cell wall resistant to
rupture [24]. The efficiency of new methods, such as cold atmospheric-pressure plasma
(CAP), also relies on bacterial cell wall thickness. Biofilms formed by Gram-positive
bacteria that possess a thicker cell wall show greater resistance to CAP [25].

2.1. Temperature

Most mesophilic bacteria are eliminated at 55 ◦C [22]. Thermal treatment irreversibly
affects outer and inner membranes, the peptidoglycan cell wall, the nucleoid, nucleic
acids, ribosomes, and various enzymes. The higher temperature also damages the cell’s
chemiosmotic and transport functions [26].

Aeromonas and Campylobacter are two of the most temperature-sensitive genera, while
Enterococcus is thoroughly temperature resistant. The structural difference between Gram-
positive and Gram-negative bacteria also makes the prior generally more resistant [26].
High temperatures alter the bacterial cell wall. Gram-negative bacteria experience destabi-
lization of the outer membrane, thereby increasing the permeability barrier that leads to
the release of periplasmic proteins [27].

Magnesium ions play an essential role in the stability of ribosomal subunits. Some
chaperones also bind directly to the ribosomes to capture the nascent protein chains to
assist their folding and prevent aggregation [28]. Higher temperatures damage the cell
wall, causing a depletion of magnesium, leading to disruption of ribosomes’ stability [29].
It was established that RNA and ribosomes are more thermo-sensitive than DNA, and this
property can thus be further exploited during thermal inactivation [26].

There are cases of resistant bacteria, especially E. coli, secreting extracellular polysac-
charides such as colonic acid forming a mucoid matrix on the cell surface [23]. Other
modes of acquired resistance include adjusting membrane-lipid composition and mem-
brane fluidity via homoviscous adaptation [27]. Processes, such as slow heating, induce
heat adaptation via an increase of membrane fluidity. This thermotolerance is achieved by
the de novo protein synthesis, which is abolished after cooling [30].

2.2. UV Light

Another physical factor used to eradicate bacteria is UV light [31]. The properties of
the used medium determine the lethality of the UV treatment [28]. Experiments with UV
light revealed 4log-inactivation of both, Gram-positive and Gram-negative strains after
exposure for 360 min [32].

Devices such as Xenex Germ-Zapping RobotTM, are used to produce a high-intensity
flashing light (200–320 nm) that passes through the cell wall of bacteria, viruses, and
bacterial spores, hence causing damage to DNA, RNA, and proteins by photohydration,
photo splitting, photocrosslinking, and photodimerization [33].
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In the case of food contaminated with highly resistant bacteria, UV can be used as an
alternative to thermal preservation with the advantage of sterilization in mild tempera-
tures [28]. Importantly, it was observed that coliform bacteria, isolated on media containing
chloramphenicol, show a lesser ability to transfer resistance after UV irradiation [34].

Although UV light exhibits antibacterial activity, bacteria with pigments such as
melanin, scytonemin, and mycosporines form the first defense line and become resis-
tant [35]. Five genes that provide resistance to UV radiation in E. coli were identified [35].
Such tolerance to UV light depends upon dormancy of DNA replication at UV exposure:
When cells are in a dormant phase, they can evade death by safeguarding their essen-
tial components [36]. Physical protection and antioxidant osmoprotectants constitute the
second response mechanism for mutagenicity of DNA damage repair in microorganisms.
For instance, Rhodobacter sp. uses alternate means of energy production to meet energy
demands to synthesize molecules that prevent oxidative stress caused by UV [37].

UV radiation directly impacts bacterial DNA due to the reactive oxygen species (ROS)
formation and mutagenesis leading to oxidative stress. This is often combated by molecules
such as osmoprotectants, inositol or carotenoid pigments [35]. Another method of acquiring
tolerance against UV involves selecting mutations arising in different genes pertaining to
DNA repair and replication [38].

In Antarctica, certain UV-tolerant bacteria such as Pseudomonas, Hymenobacter, and
Sphingomonas have shown the presence of novel photolyases [39]. Intriguingly, Antarctic
bacteria also exhibit an antioxidant defense mechanism to prevent oxidative damage linked
to the presence of antioxidant enzymes such as catalases that cause detoxification of H2O2.

UV irradiation directly impacts DNA by the formation of cyclobutene pyrimidine
dimers and pyrimidine pyrimidone (6–4) photoproducts [40]. Deinococcus swuensi is an
example of a highly resistant strain, which shows a unique landscape of differentially ex-
pressed genes that distinctly determine resistance to UV radiation compared to commonly
observed mechanisms [41].

2.3. Pressure

High pressure evokes inactivation through membrane modifications, deactivation of
critical enzymes, and protein biosynthesis inhibition [42]. Other effects include protein
denaturation by ionization and ionic bonds forming between charged groups on proteins,
altering their solubility [43].

However, some bacterial strains are resistant to high pressures and can only be
deactivated by the combined action of temperature and pressure [44]. The inactivation
of bacterial spores is also carried out by associating heat and/or chemical treatment with
pressurization [44]. High-pressure sterilization is a method to kill endospores that are
typically resistant to most antibacterial agents. The boiling point is increased by artificially
increasing the pressure, thereby killing the endospores [45]. The inactivation mechanism
during high-pressure thermal sterilization (HPTS) passes through three states, namely
dormancy, activation, and inactivation. With increasing intensity, the extent of inactivation
also increases [46].

Depending on the composition and structure of the lipid bilayer of the cell membrane,
respiratory proteins, and the membrane-localized signaling system, some bacteria are more
resistant to high pressures than others [42]. For instance, spore-forming bacilli strains, such
as Bacillus alvei, Bacillus coagulans, and Bacillus subtillis, isolated from pressurized milk,
are found to be resistant [47]. This resistance is generally acquired due to treatment with
high-pressure pulses or short-duration treatments, often suppressing metabolic pathways
or adaptation of new ones when exposed to high pressure [48]. The pH also plays a vital
role in acquiring resistance among several species. A case in point is Bacillus subtilis that
shows a higher resistance at neutral or slightly basic pH [43].

Another example of resistant bacteria includes Lactobacillus sanfranciscensis that only shows
tolerance to high pressure when pre-incubated at a pressure range of 0.1–120 MPa [48]. While
experimenting with the coastal bacterial community, certain species such as Alphaproteobacteria,
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Gammaproteobacteria, Actinobacteria, and Flavobacteria showed elevated resistance to high
pressure than others, such as Epsilonproteobacteria, and these species are phylogenetically
similar to isolates from deep-sea environments [44].

2.4. Electric Field

In the literature, two main types of experiments on the influence of the electromagnetic
field on bacteria can be distinguished. Bacteria are subjected to the electromagnetic field
of constant frequency and variable intensity of electric strength over time. Typically, a
flask with bacterial suspension is placed inside the solenoid, and the number of bacteria is
measured over time. Such investigations are driven by the dominant magnetic component
of the electromagnetic field during bacteria exposure. The second type of study comprises
experiments where bacteria are subjected to the pulsed electric field. The bacteria are placed
between two metal plates, and then voltage pulses are applied between two electrodes. In
consequence, cells are subjected to the pulsed electric field, and the magnetic component is
negligible.

Electroporation is a well-known method utilized in microbiology. Upon application
of the pulsed electric field (PEF), holes are created in the cell wall, and thus, its perme-
ability increases [49]. It is used, among others, in biotechnology to introduce a foreign
DNA into the interior of bacteria [50]. In such a case, one usually tunes PEF parameters
so that creating holes is reversible [49]. The amplitude, pulse number, and pulse dura-
tion form are the factors that determine inactivation, especially for species such as E. coli
and Lactobacillus acidophilus [51]. The mechanism of electroporation is still not well under-
stood [52], but the parameters at which this phenomenon occurs are known. The most
important is the minimum value of the strength of the electric field strength, which is used
to expose the bacterium and induce reversible electroporation. For E. coli BL21 this value is
3.65 ± 0.09 kV/cm [53]. The most exciting fact is that antibiotic susceptibility is enhanced
by the application of PEF, as concluded by the increased zones of growth inhibition [51].
Currently, PEF is also evaluated as a new method for cancer treatment [54].

The most common effects of exposure to PEF include swelling of bacterial cells,
increased roughness on the outer membrane, noticeable stiffness, and a loss of hydropho-
bicity [55]. Other distortions include morphological and mechanical alterations of the
cell wall and partial destruction of coat protein structures [55]. In some bacteria, e.g.,
Bacillus pumilus, cell wall, and coat structure are directly involved in the process of inacti-
vation via PEF [55]. In some bacterial species, such as Streptococcus thermophilus, exposure
to the electric field increases the cell membrane’s permeabilization, which ultimately leads
to the reduction of the lag phase [56]. In the case of Pseudomonas fluorescens, the electric
potential also impacts the conformation of surface appendages, causing steric repulsion
allowing the cells to overcome the electrostatic energy barrier [57]. As opposed to most
vegetative bacteria, it is noteworthy that bacterial spores are highly resistant to the effect of
electric pulse, such as in the case of B. subtilis [58].

Pulsed electric field is being popularly used to inactivate pathogens, especially in
liquid foods such as fruit juices. Successful eradication of Listeria innocua in orange juice by
the action of PEF, has been reported and intensely investigated. Other examples include
the inactivation of Listeria monocytogenes in cherry juice [59].

The mistake often found in the literature is that the electric current flows through
the system in addition to the electric field. The voltage applied to uninsulated electrodes
immersed in the solution induces redox reactions on the electrodes. Consequently, the
electric current flows through the solution with bacteria, significantly contributing to the
overall effect.

3. Nanotechnology

Nanoparticles synthesized in laboratories are foreign to bacteria and thus evade ex-
isting resistance mechanisms [60]. Synthetic nanomaterials are abiological and, therefore,
can also circumvent deactivation by resistance mechanisms [61]. Many nanomaterials are
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used as antimicrobial agents, such as metal-based nanoparticles, carbon-based nanomateri-
als, polymers, nanocomposites, nanoemulsions, liposomes, and smart nanomaterials [60].
Depending on the nature of interactions between bacterial cells and nanomaterials, these
can be considered chemical and physical factors affecting bacteria functioning [62]. In-
teractions between cells (i.e., cell wall, membranes) and nanoparticles are based on van
der Waals forces, electrostatic interactions, hydrogen bonding, and chemical reactions [63].
Possible mechanisms of interaction between nanostructures and cells include uptake of the
nanoparticles [62,64–66], contact killing [67,68], the effect that arises from released species
(e.g., ions) [69–73], and mechanical stress [74,75].

The first step of uptake is the physical interaction between the nanostructure and
the cell membrane. This can induce segregation and clustering of nanoobjects on the
surface, followed by cell membrane response (lipid segregation, lipid-protein domain
formation, the formation of membrane invaginations) [76]. Nanoparticles have little chance
to get through the intact bacterial cell wall, where peptidoglycan is present [62]. Only
objects of size below a few nanometers can diffuse through the bacterial cell wall [77]. The
import of small molecules or peptides can occur, but larger objects need to be degraded
via extracellular enzymes (e.g., proteases). Small pieces can then be taken up passively
via channels in the membrane or actively via importing pumps [78]. The entry of bigger
particles is impossible without previous damage or destabilization of the cell wall (naturally,
e.g., during a horizontal transfer of genes or artificially, e.g., due to electroporation or heat
shock).

The release of chemical species or release-mediated killing is related to the generation
of active species (free ions, radicals) from the nanoparticle surface. Released ions can
diffuse inside the cell and block the active center of enzymes, deactivating the protein’s
functionality. There are a plenty of recent reviews that focus on the toxic potential of mate-
rials at the nanolevel [79–83]. Exposure of the nanomaterial to UV can lead to electron-hole
pairs’ activation and, consequently, bond splitting and radical formation. Produced ROS
can irreversibly damage cells (e.g., their membrane and cell wall, DNA, and mitochondria),
resulting in cell death. Several nanoparticles’ characteristics contribute to ROS generation,
which seems to be the best-known paradigm for nanotoxicity [80].

Contact killing or contact-mediated killing refers to the multistep mechanism of killing
microbes. There is no consensus on the exact sequence of events [84–86], mainly due to the
lack of consistency in applied protocols, used microbial strains, and tested experimental
conditions. Research suggests that the mechanism is initiated by (i) dissolved ions into the
medium that are causing (ii) cell damages, followed by cell membrane rupture. Perforated
cell wall allows (iii) ions to diffuse inside and (iv) generate toxic radicals, which lead to
further damages and DNA degradation [84]. It should be stressed that most of the data
are related to the contact killing effect, referring to copper nanoparticles [84,85,87–90] and
silver nanoparticles [73,86,91,92]. However, reports suggest an alternative contact killing
mechanism, namely local destabilization of cell envelope due to interactions with metal
atoms. This causes loosening of the envelope structure and rupture of the cell [13].

Mechanical killing is based on the physical killing of cells by mechanical rupture
caused by sharp nanostructures [93]. The first example of the nano-based antibacterial sur-
face was discovered at the wings of the clanger cicada. Such a surface comprises nano-sized
pillars that trap and kill microbes by pulling bacteria apart upon wings movement [75].

3.1. Nanoscale Antibacterial Agents
3.1.1. Nanoparticles

NPs are categorized into organic and inorganic groups [94], hybrid structures, and
carbon-based [95]. The inorganic group comprises metal [94], metal oxide [96] nanopar-
ticles, and quantum dots [97]. A comprehensive review on anti-infective applications of
metal-oxide nanoparticles was given recently by Abo-Zeid and Williams [98]. Carbon-
based nanostructures represent an individual group due to the large variety of structures,
namely: graphene, fullerenes, nanotubes, nanofibers, nano-diamond, nanodots, carbon
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onions, carbon black, and carbon rings. A review of antibacterial properties of carbon-based
nanomaterials was published recently by Xin et al. [99].

Organic nano-systems include liposomes, lipid-based nanoparticles, and polymeric
nanoparticles. The usage of organic components makes organic nanoparticles perfect can-
didates for application in controlled drug delivery systems [100,101], bioimaging [102,103],
biosensing [104], tissue regeneration [105], and antibacterial applications [106]. In addition
to the convenience in non-covalent encapsulation of active substances, such systems also
exhibit biodegradability, non-toxicity, stability in circulation in the bloodstream, and the
ability to permeate cell membranes effectively [104].

3.1.2. Nanozymes—Nanoparticles Mimicking Enzymes

Metals and non-metals with protein scaffolds (supra-molecular models) are now being
used to understand protein folding, optimization, and design. Known for their stability
and affordability, these models have been pivotal in discovering new reactivity patterns of
enzymes [107]. The models contain a receptor attached to an active site to mimic natural
enzymatic reactions [107]. The first metal oxide to be utilized for such a purpose was the
iron-oxide-based artificial peroxidase enzyme reported by Gao et al. [108]. Experiments
with this enzyme revealed that inorganic nanoparticles could facilitate the oxidation of
typical peroxidase substrates and can be used to identify, separate, and detect analytes of
choice [109]. The use of nanozymes combines the advantages of both nanoparticles and
natural enzymes, such as good stability, controllable size, ease of preparation, multifunc-
tionality, and superior catalytic activity.

Nanozymes might have rough surfaces that increase bacterial cell adhesion and highly
irregular edges that function as active sites, exhibiting higher levels of intrinsic peroxidase-
like activity [109]. Studies on drug-resistant Gram-negative E. coli and Gram-positive
S. aureus demonstrate the effects of high surface-irregularities on bacterial growth and
spurred research towards developing alternative antibiotics [108].

Nanozymes also have an antibacterial function due to their ability to regulate the
level of ROS free radicals. Similarly, hydrogen peroxide is used as a disinfectant as it
can be decomposed to generate free radicals that attack the major cellular components of
bacteria. Nanozymes, along with photocatalytic cooperation, were reported to kill bacteria
effectively [110]. Nanozymes, when surface-bound, help in the elimination of antibiotic-
resistant bacteria and delay the onset of bacterial resistance emergence. However, when
nanozymes are used as coating additives, they enable an inert substrate to inhibit biofilm
formation and suppress infection-related immune responses [111].

Nanozymes target the biofilm through the means of reactive oxygen species. ROS,
being strong oxidants, can destroy the entire biofilm thoroughly. Other methods include
the production of hypohalous acids to destruct the biofilm completely. Nanozymes are
often used in combinations for better bactericidal effects [112].

3.1.3. Polymer Nanoparticles

Polymer nanoparticles (PNPs), also called nanospheres or nanocapsules, are pre-
pared either by polymerization of monomers (micro/mini emulsion) or from preformed
polymers via solvent evaporation, salting-out, and dialysis [113]. They are defined as
antibacterial drug carriers that exhibit physical and chemical stability, are easy to fabri-
cate, and demonstrate easily controllable physicochemical properties, which boost greater
targeting efficiency [94].

Certain varieties of PNPs are formed to create lipid-polymer hybrid nanoparticles.
One such example, lipid-based surface-functionalized polylactic-co-glycolic acid (PLGA),
is both biocompatible and biodegradable. PLGA is also FDA approved for various drug
delivery systems and is widely chosen over other nanoparticle types [114]. Antibiotics can
also be infused with polymer nanoparticles to increase their activity in multiple ways, such
as binding to components around the biofilm, thus increasing the contact time between
the bacteria and the drug and protecting the antibiotic from degradation. [114]. Another
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class of PNPs mimics host defense peptides and finds an application in broad-spectrum
treatments [115].

Chitosan nanoparticles (CNPs) also possess antimicrobial activity against a wide
range of pathogens. CNPs are prepared by ionic gelation of different concentrations [116].
CNPs loaded with ampicillin, penicillin or diclofenac sodium show increased antibac-
terial properties [117]. Chitosan nanoparticles display a superior antimicrobial activity
against all microorganisms when compared to chitosan and chitin [118]. Additionally,
cellulose fibers modified with silver nanoparticles provide good antibacterial proper-
ties against Escherichia coli and Staphylococcus aureus [119]. Contaminated wounds, com-
monly infected by Gram-positive and Gram-negative bacteria, can be treated by cellulose
nanopolymers [120].

Other methods include the conjugation of silver nanoparticles graphene quantum dots’
surface (GQD-AgNP) to target bacteria. Such conjugated nanoparticles have improved the
production of reactive oxygen species in light-activable GQDs, and the subsequent trans-
formation of light energy to hyperthermia [121]. Carbon quantum dots can harvest light
over a broad spectral range from UV to near-IR [122]. Some of the successful experiments
of fabricated silica nanoparticles resulted in a complete and quick eradication of strains
such as E. coli and S. aureus [106]. In addition, nanoparticle systems containing silver have
gradually gained recognition in the quest to find the most efficient antimicrobial agent. The
broad-spectrum antibacterial properties of silver nanoparticles were also utilized in the case
of polymer-Ag nanocomposites synthesized using polysulfone amines as templates [106].
Gold nanoparticles, on the other hand, are primarily used as therapeutic agents when func-
tionalized with polymers. Magnetic nanoparticles have also gained attention over the past
decade. A class called super-paramagnetic iron oxide nanoparticles is given preference due
to their high biocompatibility and ability to turn off their magnetic properties to remove
the external electric field. Poly-rhodamine core-shell nanoparticles are one of the earliest
polymer-coated magnetic nanoparticles to be studied for antibacterial applications [106].

3.1.4. Antibacterial Surfaces

Colonization and biofilm formation are initiated by the adhesion of bacterial sur-
faces [123]. This adhesion leads to a clinical infection resulting in biomaterial failure and
chronic infections [11]. Due to the highly resistant nature of biofilms, most antibiotics
fail to disrupt them [124]. Hence, novel approaches are adopted to modify surfaces to
reduce bacterial adhesion and biofilm formation [125]. One such strategy includes the use
of titanium oxide by exploiting its photocatalytic effect resulting in ROS generation [125].
Other methods comprise immobilization of antibacterial substances (e.g., silver) [91], cre-
ation of anti-adhesion surfaces [16], and fabrication of structured arrays [126]. Various
experiments have proven that nanoparticles can disrupt bacterial membranes and hinder
biofilm formation [124,127,128]. For instance, the activity of green synthesized silver NPs
was demonstrated on P. aeruginosa [123]. Piper betle L. (Pb) plant functionalized AgNPs
(Pb-AgNPs) significantly decreased the biofilm formation of P. aeruginosa. Another ex-
ample of an antibacterial agent includes the green synthesis of silver nanoparticles using
Berberis vulgaris leaf and root aqueous extract [129].

Biofilm formation is synergistic with quorum sensing by maintaining cell-to-cell
proximity, bacteria can communicate effectively to synchronize gene expression, express
virulence, and luminescence via quorum sensing (QS). This enhanced networking greatly
favors the spread of biofilm-producing species versus those that do not [124,130,131]. To
inhibit QS in vivo, the inhibitory molecule must be of low molecular mass, non-toxic to the
eukaryotic hosts where the infection is present, highly specific for the QS-regulators, and
chemically stable to reside in the host for a longer duration. Examples of such inhibitors
are silver nanoparticles, furanones, QS quenching enzymes, garlic extract, peptides and
antibodies, and small molecules acting as enzyme inhibitors [130]. Specific transcription
factors control biofilm production and quorum sensing—this has led to the discovery of
small-molecule inhibitors (liposome, noisome, PGLA, dendrimers, chitosan) [132] that can
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modulate morphogenetic conversions and prevent biofilm development [133]. Nanoparti-
cles can help these compounds reach their specific target with a high degree of specificity
and accuracy [134]. Some surface-functionalized NPs with β-cyclodextrin (β-CD) or N-
acylated homoserine lactonase proteins can prevent the signal molecules from reaching
their receptor, thereby turning the system off [124].

3.2. Adaptation and Resistance of Bacteria to Nanomaterials

Some of the most common resistance mechanisms to nanoparticles’ antibacterial action
involve electrostatic repulsion, ion efflux pumps, expression of extracellular matrices, the
adaptation of biofilms, and mutations [96]. Other tolerance mechanisms cause enzyme
detoxification, often followed by volatilization [135]. A significant side-effect of such
resistance mechanisms to nanoparticles is that they are often accompanied by increased
resistance to antibiotics [136]. It was found that nano-resistance began with changes in the
shape of bacteria and the modulation in expression of membrane proteins, these changes
are reversed when the bacteria are no longer exposed to NPs [137]. In the case of wounds,
lung or blood, resistance to metal-based nanoparticles is mediated by biomolecules coronas
that reduce NPs binding to pathogens [138].

Although nanoparticles are commonly used in commercial products, there are also
worrying reports published on resistance against silver nanoparticles [139–142]. Recent
studies confirm that bacteria can evolve resistance to AgNPs through simple genomic
changes such as mutations that regulate heavy metals concentration in the intercellular
environment [143]. Silver generally causes isomerization of cis to trans unsaturated mem-
brane fatty acids, leading to increased membrane fluidity. The extent of this isomerization
is directly proportional to the toxicity and concentration of membrane affecting agents, i.e.,
AgNO3 and AgNPs [144].

Enterobacteriaceae acquire resistance to silver when AgNO3 is included in the agar
medium used for their culture [145]. This is also confirmed by samples collected from
burn sites of patients with infected burns treated with silver sulfadiazine for wound pro-
phylaxis [145]. Silver-resistant mutants have a decreased outer membrane permeability
to cephalosporins and are deficient in major porins [146]. Adaptation mechanisms in
Pseudomonas putida involve the change in the state of unsaturated fatty acids and modifica-
tion of hydrophobicity of their cell envelopes [144]. Studies on S. aureus showed mutations
that are protective against nanosilver. These mutations are observed after the removal
of silver exposure, denoting heritable characteristics. Thus, silver resistance traits can
spread even after silver use is discontinued [147]. However, it is noteworthy that bacteria
can only transfer such adaptability to nanoparticles after 114 generations at 0.2 h−1 [148].
Endodontic bacteria also show some exciting adaptation mechanisms to silver nanoparti-
cles. These mechanisms are of two types: (a) Intrinsic, which include efflux pumps and
downregulation of porins, chromosomal resistance genes, and (b) extrinsic, which include
point mutations and plasmids with resistance genes [136]. Studies on resistant clinical
bacterial isolates have revealed that such bacteria can reduce ionic silver to elemental
silver via reduction, thereby impacting wound management significantly [149]. In other
cases, bacteria continue to grow in the presence of AgNPs with an impaired metabolic
activity [148].

Bacteria such as E. coli develop a reversible resistance towards nanoparticles such as
ZnO [137]. Operons also play an important role in metal resistance, some of such metal
resistance determinants in bacteria include mer operon for mercury resistance, ars for
arsenic resistance, and cad for cadmium resistance [135].

The development of resistance to nanomechanical stress was reported by Matuła et.al. [150].
E. coli was exposed to numerous collisions with sharp ZnO nanorods. Nanorods exerted
pressure on the cell envelope and punctured them, but at the same time, the cells undergo
“healing” [151]. This allowed for adaptation observable in a time scale comparable to the
time of acquisition of resistance to antibiotics, i.e., hours [152,153]. It was found that the
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effect of exposure to physical contact is fixed in phenotype and genome after the removal
of the stressing agent.

4. Bacteriophages

In the late XIX century, Frederick Twort and Felix d’Herelle were the first to report
antibacterial agents with viral-like properties. Bacteriophages, i.e., viruses, that use bacteria
as hosts, undergo two major cycles: (i) Lytic, where progeny virions (single phage particles)
are created inside the bacterial cell, and their release results in disruption of the host cell,
and (ii) lysogenic, where the phage inserts its genetic material inside the bacterial genome
and lies dormant.

Temperate phages in the form of prophage (i.e., embedded in the bacterial genome)
can be activated, e.g., via external stimuli, and enter the lytic cycle [154]. Phages either
cause bacterial lysis via proteins called amurins or they form large pores in the cytoplasmic
membrane—through the action of small proteins called holins, which permanently affect
the integrity of bacterial cell wall [154,155]. Only in a few cases, especially filamentous
phages, can progeny virions be continuously secreted, causing chronic infections [156].

D’Herelle sought to exploit these agents’ therapeutic potential by using them on a boy
to cure dysentery. Immediately after this, companies such as L’Oréal and Eli Lilly began
preparations for the commercialization of phage therapy. Some institutes also started to be
devoted entirely to this aspect of microbiology (e.g., Eliava Institute in Tbilisi).

The world was now set to utilize phages to fight bacterial infections. However, this
growth was interrupted by the unreliability of phage therapy in the initial trials and the
successful use of penicillin during World War II. This led to a shift of interest towards our
present form of medicine. The third millennium showcased an increasing health burden
of infections with antibiotic-resistant bacteria, taking the researchers back to where it all
began. Phage therapy centers are being set up all over again to overcome MDR using
bacteriophages (such as in Hirszfeld Institute) [157].

Several phage-based products curing inner ear infections [158], urinary tract infec-
tions [159], typhoid [160], and systemic multi-drug-resistant infections [161] are being
tested. The first clinical trial approved by the Food and Drug Administration (FDA) is
for intravenous phage therapy in 2019 [162]. Abedon et al. [19] and Cisek et al. [163]
gave very compelling reviews on the history of phage therapy, and the current situation is
summarized by Altamirano and Barr [164].

Additionally, phage therapy also plays a significant role in veterinary medicine. Mice
and chicken infected with Salmonella spp. can be treated with Salmonella phages with a
90–100% success rate [165]. Other bacteriophage applications include phage-mediated
biocontrol, phage bioprocessing for food decontamination, and biodisinfection of objects of
veterinary supervision [166]. Certain phage-based products such as ListShieldTM are now
approved to be used in meat and poultry products against L. monocytogenes [167].

4.1. Phages Against Bacterial Infections

Despite early success, phage therapies got abandoned with the emergence of an-
tibiotics in the pharmaceutical industry [168]. However, the spread of drug-resistance
superbugs and lack of new antibiotics is causing the renaissance of the use of phages
against bacteria [169]. Bacteriophages are chosen for this purpose due to their bactericidal
effect, low toxicity, high specificity, high rate of replication, easy storage, and lack cross-
resistance with antibiotic classes [154]. Since bacteriophages are extremely specific, the
patient’s commensal bacteria are not negatively affected during the treatment. Moreover,
human cells are not directly affected [170]. There are particular examples of phage internal-
ization by eukaryotic cells. The structure of the E. coli receptor is similar to the structure of
polysialic acid present on the surface of neuroblastoma cells. Lehti et al. showed that the
penetration of eukaryotic cells by E. coli phage PK1A2 is possible in vitro [171]. The virus
remained in the cells for up to 24 h, but such “infection” did not affect the cells’ viability.
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Another example showed that the engineered phage could bind and enter the cell, but the
replication of M13 was not detected [172].

However, the human immune system reacts to the appearance of the phages in
the body. Phages impact immunity directly as they modulate the innate and adaptive
immune response through phagocytosis, cytokine response, and antibody production [170].
It is difficult to determine precisely which phage components are responsible for the
innate immune response modulation. Studies on induced immune reactions usually were
conducted using lysates of phages containing leftovers of lysed bacteria (i.e., membrane
proteins, LPS, etc.) [173–175].

Humoral response to the phages varies by the type of the virus and type of infec-
tion [176]. Immune reaction also depends on the location of bacterial contagion and
localization of therapeutic phage injection site [163]. In some instances, antibodies against
phages are formed, but in other cases, the human body tends to be non-responsive without
developing antibodies [176]. Even small differences in phage coats’ protein composition
may affect their circulation time and immunogenicity [177].

The frequency and high level of animal interaction with various types of phages in
nature are proved by anti-phage antibodies found in the human sera [163]. Research by
Łusiak-Szelachowska et al. has shown that sera of patients with bacterial infections treated
with phage cocktails (locally or locally/orally) had high anti-phage activity after fifteen
days. Sera of healthy volunteers treated with the same dose of phage therapy showed
a low phage inactivation rate [178]. Interestingly, sera of patients who received phages
orally did not exhibit high anti-phage activity [178]. On the contrary, Żaczek et al. showed
that the majority of 20 patients who received MS1 phage cocktail (orally and/or locally)
did not show an increased level of anti-phage antibodies at all. Those studies are of great
importance as they rant on human phage therapy effectiveness in humans.

Anti-phage immunoglobulins are one of the most significant factors that may poten-
tially limit the therapeutic effectiveness of phage therapy [179]. Neutralizing antibodies
bind viral epitopes within those parts relevant to infecting the bacteria [163]. This limits
the potential of using phages as drugs. On the other hand, phages can support inflamma-
tory response against bacteria via lysis of the bacterial cell wall, enabling them to release
pathogen-associated molecular patterns (PAMPs) and activate the immune system [180].
Therefore, phage therapies might be very effective since, in addition to direct damaging
bacteria cells, phages also activate the human immune system.

Bacteriophages also show antibiofilm activity through depolymerase production. Ex-
amples of such phages include the ones isolated from Belgrade wastewaters (ISTD) [181].
Smaller phages specifically encoding (enzyme polymeric substances) EPS-degrading en-
zymes can penetrate through the biofilms and cause a disturbance [182]. The same was
demonstrated in the case of P. aeruginosa biofilms in mouse models against cystic fibro-
sis [182]. Another approach to overcome multi-drug resistance is the use of phages with a
combination of antibiotics. A better clearance of bacterial cells with a reduced evolution of
phages or antibiotic resistance was observed [183]. The main challenge is to determine the
robustness of such an approach, explore the role of immune responses that determine thera-
peutic outcomes, and establish the phage and antibiotic levels necessary for the therapeutic
effect [184].

Supplementation of antibiotic treatment with phages is best suited for cases when the
antibiotics do not adequately reach the target area or when the antibiotic resistance is very
high. Phage-antibiotic synergy is an evolutionary trade-off wherein bacterial resistance
towards phages increases antibiotic susceptibility, resulting in bacterial growth reductions
and complete biofilm suppression [185]. Carmen et al. analyzed this relationship by
combining a real-time microtiter plate readout with a matrix-like heat map of treatment
potencies that measures the synergy between phages and antibiotics, so-called synography.
This synography is performed against a drug-resistant group of pathogenic E. coli with
antibiotic levels ranging from MIC across seven logs of viral load. The results suggest
that phages act as adjuvants by lowering the MIC for such strains. Therefore, it is estab-
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lished that lytic phages can rejuvenate an ineffective antibiotic for resistant bacteria [186].
Several new aspects have surfaced with success in antibiotic/phage combination therapy,
requiring further study and experimentation. The following questions require answers and
guidelines: Is there an optimal ratio of phage particles to the antibiotic molecules, which
triggers high clearance levels? Are there still unknown interactions with the host immune
system after application of phage/antibiotic treatment that can further our understanding
and aid better therapy design? It is also essential to explore the rate at which bacteria
develop or lose “immunity” towards phages. Another concern is the accurate identification
of the pathogen causing the infection, as phages are extremely specific in their action [187].
Further complications in the application of this therapy, e.g., combination with antibiotics,
and in-patient care, also require consideration [188].

Despite the effectiveness of the phage-antibiotic combination, this approach may
not be recommended in all cases. For instance, aminoglycoside antibiotics inhibit DNA
replication in mycobacteriophage and hence cause interference with pathogen elimination
by phages [189].

Another powerful tool against multi-drug resistance is the combination of phages
with nanoparticles. Metallic nanoparticles can be functionalized onto phages to support the
antibacterial action. While bacteriophages provide the specificity for delivery, the metallic
gold particles act as bactericidal agents. Such a combination of phages and nanoparticles
is easy to engineer, and the properties of the constituents complement each other in
eliminating resistant bacterial infections [96]. Bacteriophages can also be conjugated to gold
nanorods. These systems can then be used to kill specific bacterial cells using photothermal
ablation, i.e., local generation of heat causing bacterial cell death followed by excitation
with near-infrared light [190].

Phages can also be employed to produce novel bio/nanomaterials due to their rapid
multiplication with uniform copies. They can either be used as building blocks of such
materials or mere templates. Such phage-based nanomaterials have a wide range of applica-
tions, their use depends on the properties of individual phages and additional components
of the composites [191]. Phages can themselves be used as natural nanoparticles. They can
also be engineered to display peptides that have bactericidal effects [192].

4.2. Bacterial Adaptations against Phages
4.2.1. Physical Mechanisms

Bacteria can inculcate various changes to limit phage propagation. Under harsh
conditions, bacteria resort to the production of structured extracellular polymers, which
provides a physical barrier between phages and their receptors [193]. Cells of some marine
algae species, Pseudomonas and Azotobacter, produce alginates that offer an additional
protective layer against phages’ attack [77].

Modifications were also found within cell surface receptors’ structure to hinder phage
adsorption on the surface [193]. An example of such an adaptation is observed in S. aureus,
wherein additional cell-wall anchored virulence factors, such as immunoglobulin G-binding
protein A, are produced [194]. In consequence, this prevents phage adsorption. As observed
in F+ strains of E. coli, F plasmid encodes “Trat”—an outer membrane protein employed
to modify bacterial cells’ structural conformations, resulting in the inability of phage
adsorption [193].

After successful adsorption, phages prepare for DNA injection into the host cell.
Superinfection exclusion systems (Sie) act against phage DNA by blocking its entry into the
cell. Sie systems comprise membrane-associated proteins that are generally phage-encoded
and help protect a lysogenic host from infection by other phages [195].

Other means of protection against bacteriophages include the production of inhibitors
that specifically bind to the phage receptors rendering them unable for infection [193]. An
exciting example of such an inhibitor is noticed in E. coli, wherein the interaction between
coliphage and its respective receptor (FhuA) is prevented by the binding of FhuA with an
antimicrobial peptide (MccJ25) [196].
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4.2.2. Innate Mechanisms

Bacteria use innate mechanisms to protect themselves from their phage predators.
The most widely studied is the restriction mechanism (RM). It comprises two enzymes: a
restriction endonuclease (REase) and a methyltransferase (MTase) [197]. It is interesting
how these two enzymes influence the phage DNA fate such that the unmethylated phage
DNA is either recognized by REase and degraded or is methylated by MTase to start the
lytic cycle [193]. The REase functions to identify and lyse the foreign DNA sequences,
whereas MTase helps recognize self and non-self-DNA via the transfer of methyl groups
to the host’s genome. Due to this differentiation ability between self and non-self, RM is
considered to function as primitive immune systems [197].

A similar primitive immune mechanism, called bacteriophage exclusion (BREX), is
a six-gene cassette including an ATP-dependent protease, an RNA binding protein, a
DNA methylase, an alkaline phosphatase domain protein, an ATPase-domain protein,
and another protein with unconfirmed function [198]. This system does not affect phage
adsorption but inhibits phage replication without degrading phage DNA [199]. BREX
provides complete resistance to a broad range of phages by carrying out the host cell’s
DNA methylation pattern. This helps in discrimination between host and phage DNA.

The defense island system associated with restriction-modification (DISARM) is also
an innate resistance mechanism widespread in bacteria and archaea that protects them
against the major families of tailed double-stranded DNA phages. The system is based
on the expression of five genes encoding a DNA methylase and four others with a he-
licase domain, a phospholipase D (PLD) domain, a DUF 1998 domain, and a gene of
unknown function [200]. DISARM is a novel multi-gene restriction-modification mecha-
nism that helps the prokaryotes gain resistance against their viruses by marking host DNA
to differentiate from that of the pathogen.

The argonaute (ago) family of proteins, generally responsible for RNA interference and
silencing, also plays a vital role in providing a barrier against foreign phage DNA. In the
case of bacteria such as Thermus thermophilus, ago proteins are responsible for cleaving the
complementary DNA strands by affecting DNA interference [201]. This is a new addition
to the bacterial innate immune system, wherein differentiation between bacterial and phage
material is carried out by phosphorothioate (PT) modification on DNA sugar-phosphate
backbone [202].

4.2.3. Chemical Defense

Bacteria produce compounds that provide resistance against bacteriophages by inter-
calating with their DNA and inhibiting replication. There are up to eleven such compounds
known so far, out of which daunorubicin, doxorubicin, epirubicin, and idarubicin are used
against cancer. These molecules were first found to be produced by Streptomyces [203].
Other modes of chemical defense help increase the bacterial cell wall’s permeability for K+

ions, thereby preventing genome injection. Examples of such compounds are dequalinium
chloride and di-benzimidazole [204].

4.2.4. Abortive Defense

Infected bacterial cells resort to sacrificing themselves to protect the surrounding
bacterial population, hence taking one for the team. Such abortive systems (Abi) are
generally encoded by mobile genetic elements such as prophages and plasmids.

The best characterized abortive mechanism so far is a two-component rex system
comprising rexA and rexB proteins [195]. At the beginning of the infection, phages produce
protein-DNA complexes that activate rexA. RexA activates the membrane-anchored rexB,
which is an ion channel that causes a drop in membrane potential [193]. This decreases the
cellular ATP level and ultimately leads to cell multiplication prevention [193,195]. Due to
this, phage infection also aborts as both ATP and ATP-dependent cellular components are
now scarce [193].
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A type of Abi system, called cyclic oligonucleotide-based anti-phage signaling sys-
tem (CBASS), is one of the many mechanisms used by bacteria to plan a premature cell
death [205]. In the case of phage infection, CBASS leads to the production of signaling cyclic
oligonucleotides, which leads to the activation of an effector to promote cell death [205,206].

Other examples involve the action of a serine/threonine kinase (Stk) in S. epidermidis.
Activated Stk phosphorylates proteins play an essential role in all the major cellular
processes such as translation, transcription, metabolism, and repair. Changes in phos-
phoproteins levels lead to bacterial cell death, thereby preventing the spread of phage
infection [207].

HORMA proteins, found in several bacteria such as E. coli, also play an essential role in
abortive adaptation. These proteins detect phage products and activate a cGAS/DncV-like
nucleotidyltransferase to produce cyclic tri-AMP. This second messenger causes cleavage
of ds DNA and subsequent destruction of cells [207].

Lactococcus lactis shows various Abi systems due to a range of predators attacking
it [195]. Thus, Abi systems form a resistance mechanism limiting phage replication in a
bacterial population by promoting cell death.

4.3. Bacterial Resistance Mechanisms

Temperate bacteriophages form prophage by inserting their genome into bacterial cells.
Some DNA fragments are left behind that help surviving bacteria acquire immunity (from
bacteriophages) during subsequent infections. These fragments might also be horizontally
transferred to other bacterial cells, providing them with similar immunity. Such DNA
sequences family has come to be known as clustered regularly short palindromic repeats
(CRISPR).

CRISPR has an associated protein, an endonuclease responsible for creating cuts in a
double-stranded DNA, thereby helping modify the genome. This protein is called Cas9,
and its association with a guide RNA, responsible for matching the target gene, is called
the CRISPR-Cas9 system. Cas protein is directed by RNA-spacers (flanked by repeats) to
target DNA and cleave it [146]. These spacers are fragments of DNA congregated from
phages that have attacked the bacterial cell in the cell. Insertion of spacers into CRISPR
loci on the host genome ultimately leads to the prevention against phage infection [208].
A popular application of CRISPR-Cas9 is in the treatment of infectious diseases such as
HIV [145]. Other applications include the target and cleavage of DNA responsible for
antibiotic resistance [146].

It is speculated that the CRISPR-Cas immune system of certain bacteria such as P. aeruginosa is
controlled by quorum sensing [209]. The CRISPR-Cas9 system protects bacteria from hor-
izontally transferred mobile elements. MDR bacteria, lacking this system, acquire new
genes easily and rapidly adapt to new antibiotics [9]. On the other hand, CRISPR-Cas9
prevents the completion of the phage life cycle.

In the context of the ever-evolving arms race between bacteria and phages, it was now
crucial for the latter to develop a system of their own against CRISPR. Such a system, called
anti CRISPR, was soon discovered within bacteriophages. Anti-CRISPR (Acr) proteins
that can easily block different CRISPR-Cas systems were found in the genomes of viruses,
bacteria, and archaea. Acr genes were first discovered in P. aeruginosa where they encode
a range of small proteins preventing the functioning of the CRISPR-Cas9 system against
the bacterial genome [210]. Acr-phages overcome CRISPR with the first phage blocking
the host CRISPR-Cas immune system to allow a subsequent Acr-phage to attack [211].
Acr-phages work as a community to replicate and escape extinction successfully [212].

Acr proteins specifically inhibit the CRISPR-Cas system, and therefore have an enor-
mous potential for application as modulators of genome editing tools. Several approaches
were employed to discover Acr families, two primary ones being: (i) Guilt by association
and (ii) self-targeting. Guilt by association functions by searching for helix-turn-helix
(HTH)-containing proteins encoded downstream of Acr proteins. Such proteins are re-
ferred to as Aca (anti-CRISPR associated) and are more conserved than Acr themselves.
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Self-targeting is referred to CRISPR-Cas systems that enclose spacers targeting regions of
the same genome. Organisms with such self-targeting genomes can only survive with the
presence of Acrs to prevent CRISPR-Cas from functioning [213].

Anti-CRISPR proteins have also found application in precise and efficient gene editing.
One such example is the anti-CRISPR protein, AcrIIA4, fused with the N-terminal region of
human Cdt1 that is degraded in S and G2 phases of the cell cycle. The expression of AcrIIA4-
Cdt1 can increase the frequency of homology-directed repair (HDR) in these phases. This
efficiency can also be enhanced by tuning the delivery timing of SpyCas9-single guide
RNA (sgRNA) ribonucleoprotein (RNP) complexes. This combination of SpyCas9 and
AcrIIA4-Cdt1 is the cell cycle-dependent Cas9 activation system for successful genome
editing [214].

Acr genes are found adjacent to genes encoding the HTH DNA-binding motif. These
HTH encoding genes are used as markers to identify anti-CRISPR families. Interestingly,
another system, popularly known as the anti-CRISPR system, comprises these HTH encod-
ing genes. Their function is to act as the repressor of Acr promoter, thereby attenuating
CRISPR transcription. Not much is known about such systems yet, but they have given a
new direction to CRISPR-based genome-editing tools [215].

To summarize, bacteria counteract phage attack by preventing phage adsorption
through biofilms, inhibiting DNA injection via inactivation of proteins involved in the cell
wall synthesis, targeting bacteriophage nucleic acids with the help of nucleases, and em-
ploying CRISPR systems against the attacking bacteriophage. Another ingenious method,
known as abortive infection, is an altruistic action wherein the release of functional phage
virions is prevented by the host cell’s programmed cell death [216].

5. Discussion and Future Perspectives

Many new approaches are employed to fight antibiotic resistance in bacteria. Many of
these include a better delivery system for antibiotics that ensure a greater diffusion at the
target site via specific delivery systems. Scientists have also explored bacterial machinery
to use it against them in several ways. Quorum sensing and biofilm targeting are two
such approaches that have gained attention and produced successful results. Several
antibacterial agents are explored to target infectious bacteria that are now heavily resistant
to different antibiotics classes. The field of nanomedicine is growing every day to fight
the rapid evolution of superbugs. Metal and metal oxide NPs, polymer nanoparticles,
nanozymes, and phage mimicking nanoparticles are the main components of this treatment
mode.

Bacteriophages continue to surprise researchers with their antibacterial properties and
their specificity towards their host. This helps ensure the safety of the human microbiome
while eradicating pathological bacterial species. Phages are also modified to attack bacteria,
either in combination with antibiotics or with nanoparticles.

Phage therapies were mostly abandoned when antibiotics were discovered and de-
veloped. This was primarily because antibiotics were very efficient against a much wider
range of bacterial infections. In the case of phage therapies, each bacteria species requires a
separate phage to be administered. There are also specific requirements for the formulation,
storage, and administration of phages [217]. The main advantage of phages, and the cause
of the renaissance of phage therapies, is related to the appearance of superbugs. While
it is easier to gain resistance against antibiotics, bacteriophage-resistant bacteria are still
scarce. Phages undergo evolution, and thus there is a constant arms race between bacteria
and phages. Additionally, bacteriophages are harmless to any other cells apart from their
host. At the same time, antibiotics can produce side effects by interacting with human cells’
regular functioning. Their wide range of action also affects the bacteria required for the nor-
mal functioning of the body. Several reports of bacteriophages and antibiotics’ combined
effect showed a greater success rate than either of them used individually. Furthermore,
nanoparticles can also be used as both antibiotics and as vehicles for carrying antibiotics
for a site-specific treatment. NPs also show antimicrobial activity by targeting biofilms.
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It is intriguing how bacteria have found ways to escape these treatment methodologies
by developing resistance against physical/mechanical factors, the action of nanostructures,
and the attack of bacteriophages. CRISPR systems and their possible application in com-
bating MDR are very nascent and have yet to further be explored.

The main message for the researchers working on novel antibacterial agents is to
include studies on the sustainability of the newly developed methods and explore new
combination treatments. It is not enough to report the antibacterial action, but it is crucial
to create a means to verify if and how fast bacteria can develop resistance. It is imperative
in the case of agents, which utilize very general mechanisms to fight bacteria. Regrettably,
the appearance of resistance ultimately renders such antibacterial agents obsolete.
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170. Van Belleghem, J.D.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.J.; Bollyky, P.L. Interactions between bacteriophage, bacteria, and

the mammalian immune system. Viruses 2019, 11, 10. [CrossRef]
171. Lehti, T.A.; Pajunen, M.I.; Skog, M.S.; Finne, J. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into

eukaryotic neuroblastoma cells. Nat. Commun. 2017. [CrossRef]
172. Di Giovine, M.; Salone, B.; Martina, Y.; Amati, V.; Zambruno, G.; Cundari, E.; Failla, C.M.; Saggio, I. Binding properties, cell

delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology 2001. [CrossRef]
173. Weber-Dabrowska, B.; Zimecki, M.; Mulczyk, M. Effective phage therapy is associated with normalization of cytokine production

by blood cell cultures. Arch. Immunol. Ther. Exp. 2000, 48, 31–37.
174. Park, K.; Cha, K.E.; Myung, H. Observation of inflammatory responses in mice orally fed with bacteriophage T7. J. Appl. Microbiol.

2014. [CrossRef]
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