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Aims Determining the aetiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical pres-
entation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with
hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension
(HTN) is of major importance for family screening and the prevention of sudden death.We hypothesized that an artificial
intelligence method based joint interpretation of 12-lead electrocardiograms and echocardiogram videos could augment
physician interpretation.

Methods
and results

We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead
took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (of-
ten including molecular testing) among physicians in an HCM centre of excellence. Using more than 18 000 combined
instances of electrocardiograms and echocardiograms from 2728 patients, we developed LVH-fusion. On held-out
test data, LVH-fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head com-
parison with human readers LVH-fusion had higher sensitivity and specificity rates than its human counterparts. Finally,
we use explainability techniques to investigate local and global features that positively and negatively impact LVH-fusion
prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T-wave inversion
on the ECG and proximal septal hypertrophy on the echocardiogram for HCM.

Conclusion These results show that deep learning can provide effective physician augmentation in the face of a common diagnostic
dilemma with far reaching implications for the prevention of sudden cardiac death.
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Graphical Abstract

We present LVH-fusion, a multi-modal deep learning method to jointly model electrical (ECG) and ultrasound-based (ECHO) time series data of the
heart. We demonstrate its potential with application to the diagnosis of left ventricular hypertrophy. Furthermore, we explored explainability techni-
ques to investigate local and global features that positively/negatively impact predictions to provide actionable insight to model estimates.

Keywords Artificial Intelligence • Multimodal data • Electrocardiogram • Echocardiogram • Hypertrophic cardiomyopathy •
Hypertension

Introduction
Hypertrophic cardiomyopathy (HCM) is the most common cardiac
genetic disease with an estimated prevalence in the general population
of 1:500 to 1:200.1 Hypertrophic cardiomyopathy is an autosomal
dominant mendelian disease that can be associated with significant
morbidity in the form of heart failure and sudden death.2 Thus, iden-
tifying patients with HCM has significance well beyond the individual,
with many proband diagnoses leading to screening of several genera-
tions of a family. Diagnosis of HCM can be difficult due to the high
prevalence of manifest hypertension in the general population,
present in up to 45% of US adults3 (this before counting the occult
disease). Thus, a commondiagnostic dilemma for clinicians when faced
with left ventricular hypertrophy (LVH) on the ECG or echocardio-
gram is how to rule out HCM. In a small study, the rates of misclassi-
ficationofHCMwere as high as 30%with hypertension being themost
common misdiagnosis.4 Although the American Heart Association
provides guidelines for the diagnosis of hypertension and HCM
separately, distinguishing between them is a task that most physicians
may feel ill equipped to perform. This provides an opportunity for
physician augmentation through artificial intelligence (AI).

New advances in AI have led to rapid expansion of medical deep
learning applications with an emphasis on medical specialties that
hold a high degree of visual pattern recognition tasks such as radi-
ology, pathology, ophthalmology, dermatology, and most notably
cardiology.5 Imaging and electrical phenotypes of HCM6,7 are the first
line clinical tools.
Interpretation of the ECG relies on direct visual assessment mak-

ing it ideal for deep learning approaches. Previous work has demon-
strated that demographic and medical data can be learned including
detection of low ejection fraction, something typically requiring
echocardiography to confirm.8–11 Our prior work using video com-
putation of echocardiograms has demonstrated efficient detection of
left ventricular hypertrophy and the identification of a broad range of
cardiovascular disease.12,13

Combining data sources as human diagnosticians do, has the po-
tential to provide an AI algorithm with greater diagnostic power.14

We focus here on the two most frequent diagnostic modalities in
cardiology. To date, no published work has explored the benefits
of a multimodal deep learning model using electrocardiogram and
echocardiogram data, although there has been some exploration
of combining separately trained diagnostic models in a single pipe-
line.15,16We hypothesize that multimodal deep learning may provide
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added benefit in distinguishing patterns that are not easily discernible
from individual modalities. We present LVH-fusion, the first model
to jointly model electrical and ultrasound-based time series data of
the heart. We demonstrate its potential with application to the diag-
nosis of left ventricular hypertrophy.

Methods

Data acquisition and study population
The HCM cohort was derived from patients with diagnosed HCM and
followed at the Stanford Center for Inherited Cardiovascular Disease.
Patients were diagnosed with HCM with consideration of the 2020
ACC/AHA guideline for HCM17 and inclusive of multimodality imaging,
family history, and genetic screening. The definition of hypertension
was based on the 2017 ACC/AHA guidelines,18 SBP .130 mmHg and
DBP .89 mmHg based on an average of≥ 2 readings, on≥ 2 occasions
at least 2 weeks apart. The hypertension cohort was derived from pa-
tients selected based on medical record evidence of at least five separate,
consecutive outpatient systolic blood pressure readings.150 mmHg, at
least 2 weeks apart. Exclusion criteria included any ECG clinical annota-
tions of ventricular-pacing, left bundle branch block, and patients who
had concurrent presence of both HCM and hypertension. In addition,
we excluded any data from both electrocardiograms and echocardio-
grams data sets if the date acquired was after a documented myectomy
procedure.

We retrieved 15 761 electrocardiograms (ECGs) and 3234 transthor-
acic echocardiograms from 2728 unique individuals at Stanford Health
Care. Standard 12-lead ECGs were divided into training, validation, and
test partitions based on a unique patient identification number to ensure
that no patient overlap existed across data partitions. Echocardiogram
videos from Stanford Medicine were curated for apical four-chamber
view videos.

Data processing and selection
Electrocardiogram signals were filtered to remove any baseline wander
and powerline interference. Normalization of 12-lead ECGs was per-
formed by lead over a random subset of the study sample population,
using mean and standard deviation. Echocardiogram videos were pro-
cessed identical fashion as Oyuang et al.13 Single apical-4-chamber 2D
greyscale videos were identified by unique patient identifiers.
Preprocessing of echocardiogram videos to standard resolution and re-
moval of identifiable information outside of the ultrasound sector such as
text, ECG and respirometer data was removed according to previously
described methods.13 Given multiple electrocardiograms and echocar-
diograms per individual present within our dataset, we examined the ef-
fects of different data selection methods on model training and
performance metrics. We selected three different data selection meth-
ods to understand the impacts of incorporating different timepoints
into model training and evaluation; (i) first clinical presentation for all
data partitions, (ii) all clinical presentations in the training partition with
only first clinical presentation selected for the validation and test parti-
tions, and (iii) all clinical presentations for all partitions. Extended details
of each selection method can be found in Supplementary material online,
Table S1.

Overview of model training framework
Training for the single-modal and multimodal neural network models
were executed independently.

Models were trained using a two-stage grid search approach to find
the optimal hyperparameters. In the initial hyperparameter search, evalu-
ation metrics from the validation set can be found in the Supplementary
material online, Tables S2 and S3. The hyperparameters that yielded the
best-performing models were selected for additional training and hyper-
parameter search considering various loss functions, loss weighting for
minority class and minority class oversampling. Final models were se-
lected from the lowest validation loss.

Single-modal model training
For electrocardiogram single-modal model training, the following hyper-
parameters included: model architecture: {VGG11, VGG13, VGG16,
VGG19, densenet169, densenet121, densenet201, densenet161 re-
snet18, resnet34, resnet50, resnet101, resnet152, resnext50_32× 4d,
resnext101_32× 8d, wide_resnet50_2 wide_resnet101_2}; batch size:
{32, 64, 75}; Optimizer: {SGD, Adam}, and Hz: {500, 250}. The first hy-
perparameter search involved training all combinations of hyperpara-
meters above for 100 epochs and saving results from the epoch with
the lowest loss. Furthermore, we explored a second hyperparameter
search which explored class weighted loss functions, oversampling mi-
nority class samples and setting final bias term to the expected class ra-
tios from top performing models from the initial hyperparameters
search. We examined expanding training to 150 epochs and considering
both loss and auPRC results for selection of the final model. The selected
hyperparameters that resulted in best performance on the validation set
were the following: ResNet 34model, oversampling minority class, Adam
optimizer, batch size of 64, and sampling rate of 500.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Demographics of hypertrophic
cardiomyopathy subjects

Sex Race/ethnicity % of
total

% of
sex

Female American Indian or Native

American or Alaskan Native

0.264% 0.654%

Asian/Asian-American 5.898% 14.597%

Black/African-American 1.144% 2.832%

Latina/Latino/Hispanic 3.609% 8.932%

Middle Eastern 0.264% 0.654%

Native Hawaiian or other pacific

islander

0.880% 2.179%

Other 4.313% 10.675%

South Asian-Indian/Pakistani/

Bangladeshi

0.880% 2.179%

White/European-American 23.151% 57.298%

Male American Indian or Native

American or Alaskan Native

0.264% 0.443%

Asian/Asian-American 5.370% 9.010%

Black/African-American 3.081% 5.170%

Latina/Latino/Hispanic 4.225% 7.090%

Middle Eastern 0.704% 1.182%

Native Hawaiian or other pacific

islander

1.232% 2.068%

Other 9.067% 15.214%

South Asian-Indian/Pakistani/

Bangladeshi

1.144% 1.920%

White/European-American 34.507% 57.903%
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For echocardiogram unimodal model training, the following hyper-
parameters included: Model architecture: {r2plus1d_18, mc3_18,
r3d_18}, Number of frames: {96, 64, 32, 16, 8, 4, 1}; Period: {2, 4};
Pre-trained weights: {True, False}. For pre-trained models, weights
trained on the Kinetics-400 data set were used.19 The first hyperpara-
meter search involved training all combinations of hyperparameters
above for 100 epochs and saving results from the epoch with the lowest
loss. Furthermore, we explored a second hyperparameter search which
explored class weighted loss functions, oversampling minority class sam-
ples and setting final bias term to the expected class ratios from top per-
forming models from the initial hyperparameters search. We examined
expanding training to 300 epochs and considering both loss and
auPRC results for selection of the final model. The selected hyperpara-
meters that resulted in best performance on the validation set were
the following: r2plus1d_18 model, pre-trained weights, weighted minor-
ity class, Adam optimizer, batch size of 20, and frames 16 with sampling
period of 4.

Multimodal model training
For multimodal training models, the electrocardiogram and echocardio-
gram data were paired according to unique patient identifiers. Data selec-
tion for the earliest clinical encounter was selected for all training,
validation, and test set partitions; this resulted in a total of 1414 training,
176 validation, and 168 internal test samples. The detailed demographic
characteristics of the data set can be found in Table 1. We hypothesized
that using the learned weights from the trained single-modal models
would benefit training so we explored both pre-trained late fusion and
random late fusion models. All multimodal models were trained to 300
epochs, and we considered both loss and auPRC results for selection
of the final multimodal model. We implemented LVH-Fusion using
PyTorch on the Stanford University Research cluster, Sherlock. The se-
lected hyperparameters that resulted in best performance on the valid-
ation set were the following: r2plus1d_18 model+ResNet 34,
pre-trained weights, weighted minority class, Adam optimizer, batch
size of 10, and frames 16 with sampling period of 4.

Comparison to feature-based models
Standard reported features from TraceMaster electrocardiogram ma-
chines were extracted for each ECG considered in this study. We
used these features for input into a XGboost model to determine if a
feature-based method would exceed the performance metrics of the
unimodal neural network models, Supplementary material online,
Table S4. The list of ECG features used were modelled from Kwon
et al. 2020.10

Comparison with normal samples
In order to explore how our neural networks perform on non-left ven-
tricular hypertrophy individuals, we sampled electrocardiograms with
clinical annotations of sinus rhythm and echocardiograms with a normal
ejection fraction.45. We took the best-performing single-modal model
and retrained them to include an additional non-LVH class; details of sam-
ple size and performance metrics can be found in Supplementary
material online, Table S5 and Supplementary material online, Table S6,
respectively.

Ablation experiments
To further understand how the neural networks make their predictions,
we explored various ablation studies.

We retrained the single-modal echo model with data ablated in the
following ways:

(1) a single randomly selected frame of each echo, repeated for the
length of the original video to compare with the best-performing
unimodal model.

(2) The end-diastolic frame from each echo, repeated for the length of
the original video to fairly compare with the best-performing uni-
modal model. The end-diastolic frame was identified by a trained
sonographer from EchoNet-dynamic.13

(3) Using the estimated left ventricular segmentation from
EchoNet-dynamic,13 we set all pixels to zero except a segmented
box around the left ventricle.

For electrocardiogram, we retrained the single-modal models for the
following experiments:

(1) Using eight of the 12 leads, to compare with the best-performing
unimodal model.

(2) Masking out each lead independently to compare with the best-
performing single-modal model and understand impacts each
lead holds on performance.

Echocardiogram models were trained to 300 epochs and electrocar-
diogram models were trained for 150 epochs.

SHAP interpretation experiments
SHAP GradientExplainer20 uses an extension of integrated gradient va-
lues and SHAP values, which aims to attribute an importance value to
each input feature by integrating the gradients of all interpolations be-
tween a foreground sample (test samples) and a provided background
samples (training data). The importance scores sum up to approximately
the difference between the expected value of all background samples and
the individual prediction estimate of interest. We applied this method to
both ECG and echocardiogrammodels; 1500 samples were used to build
the background distribution for the ECG model and 80 samples were
used to build the background distribution for the echocardiogrammodel.
In both cases, the full test set was used as foreground samples.

Results
We developed a multimodal deep learning framework, LVH-fusion,
that takes as input time-based electrical and echocardiographic
data of the heart. We applied this framework in a common clinical
challenge: the determination of the aetiology of left ventricular
hypertrophy. Motivated by prior work on deep learning applied to
electrocardiogram signals and echocardiogram videos,9,13,21

LVH-fusion jointly models both electrocardiogram and echocardio-
gram data. It is trained not with proximate human-derived ECG
and echocardiogram labels but rather via a gold standard diagnosis
independently derived from the Electronic Health Records (HTN)
or through the consensus diagnosis of HCM within a centre of
excellence.
In this study, both single-modal and multimodal neural network

models were examined (Figure 1). Four different multimodal fusion
architectures were explored, combining ECG and echocardiogram
information in different ways. For both late-average fusion and
late-ranked fusion models, decision level fusion was used to combine
the outputs of electrocardiogram and echocardiogram classifiers.22

In the late-average fusion model, soft voting is performed by comput-
ing the average probability for each class from the individual ECG and
echocardiogram classifiers and predicts the class with maximal aver-
age probability. In the late-ranked fusion model, the probabilities for
each class from the individual ECG and echocardiogram classifiers
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are ranked and a prediction is determined from the highest ranked
probability. For the late fusion models, both pre-trained and random,
the learned feature representations from each modality were conca-
tenated together before the final classification layer. In this situation
the fusion model considers both inputs and during training and the
loss is calculated jointly. We explored the benefits of randomly initi-
alized weights and pre-trained weights in the late fusion model.
Finally, the single-modal models provide a benchmark against which
to compare multimodal models that jointly consider the paired elec-
trocardiogram and echocardiogram data, demonstrating the benefit
of a combined approach.

Data acquisition and selection
With the approval of Stanford Institutional Review Board, we re-
trieved electrocardiograms and echocardiograms from patients be-
tween 2006 and 2018 at Stanford Medicine. The data were split
into training, validation, and test sets with no patient overlap be-
tween sets. Owing to the fact that multiple electrocardiograms
and echocardiograms are present within the healthcare system re-
cord, we explored various data selection scenarios to understand
what selection methods are best suited for this specific task. The
quantitative comparison of all data selection used can be found
in Supplementary material online, Table S1. The final model was
trained using a patient’s first ECG and first echocardiogram in the
system.

Model performance
Four multimodal fusion models were explored: late-average,
late-ranked, pre-trained late fusion, and random late fusion (Figure 1).
The performance metrics of each model is detailed in Table 2.

The late-average model achieved the highest F1-score and specifi-
city rates 0.73 and 0.96, respectively, on the held-out test set. We
conducted experiments to study the performance of single-modal
models trained on only ECG and echocardiogram to demonstrate
the benefit of multimodal models. The multimodal models outper-
form single-modal model F1-scores, which increase from 0.51 to
0.73. Furthermore, the false-discovery rates are significantly reduced
from 0.59 to 0.27. To provide context for these results, we also
trained the single-modal models to predict left ventricular aetiology
using standard quantitative features from the electrocardiogram.
This baseline model achieved sensitivity rates of 0.50 for predicting
HCM which is considerably lower than LVH-fusion (see
Supplementary material online, Table S4). These results show that
the proposed electrocardiogram signals model discover novel char-
acteristics not accounted for with the quantitative features. Finally, to
examine the discriminatory power of our methodology, we per-
formed a sensitivity analysis for predicting LVH aetiology including
the additional classification task of ‘normal.’ In this context,
LVH-fusion maintains high discriminatory power in predicting LVH
from normal ECG and echocardiogram videos, suggesting that false
positive rates of hypertension or HCM would be low if the model
was extended to this use case (see Supplementary material online,
Table S5 and S6).

Understanding model performance
In order to improve our understanding of how LVH-fusion classifies
left ventricular aetiology, we implemented a series of ablation studies
similar to Hughes et al.23 to determine what information models rely
on to make predictions. For electrocardiogram single-modal models
we examined the impact of varying the number of leads from the

Figure 1 LVH-fusion study design.
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standard 12 leads to 8 leads, and masking each lead to understand the
impact each lead holds for prediction estimates. We find that al-
though no single-lead harbours a statistically significant impact on
the overall model performance, masking out lead V3 and aVR had
the highest negative impact on prediction estimates, Figure 2. Next,
since the standard 12-lead ECG contains eight algebraically inde-
pendent leads, we considered the impact of masking multiple leads
combinations. We observe an overall reduction in classification me-
trics when masking multiple leads at a time with no significant differ-
ence between masking the four dependent leads (III, aVL, aVF, aVR)
and a random subselection of four leads, Supplementary material
online, Figure S1. These results suggest LVH-fusion benefits from
the complete 12-lead input and classification metrics are negatively
impacted with any non-specific reduction in leads.
For the echocardiogram single-modal model, we examined seg-

mentation, restricting the prediction algorithm to (i) only the region
around the left ventricle, (ii) random single frames, and (iii) single end-
diastolic frames. Restricting the echocardiogram model to the area
around the left ventricle caused a decrease in accuracy, showing
the model relies on information outside of that region to make clas-
sifications. This is interesting given the focus of clinicians on the left
ventricle when considering LVH, even despite the fact that hyperten-
sion could impact the left atrium by causing restriction and HCM af-
fects all four chambers. Restricting the model’s input to a single frame
further decreases accuracy, demonstrating that motion information
is important in distinguishing between HCM and hypertension.
Figure 2 details the performance of each ablation experiment.

Model interpretations
To improve our understanding of how LVH-fusion classifies left ven-
tricular aetiology, we implemented SHAP GradientExplainer, a game
theory approach to explain the output of a machine learning algo-
rithm.20 Relating this method to the ECG model, this approach takes
the prediction of a model and estimates the gradient with respect to
each individual timestep for every lead from the input signal. For
echocardiogram videos, an analogous methodology applies: the gra-
dient of the model’s prediction was calculated with respect to every
pixel from the input video. In each case, the calculated value is then
compared to a provided background distribution, the training data.
The value of the calculated gradients for each timestep/pixel is
then assigned an importance score such that highly impactful scores
(denoted in red) hold positive impacts on prediction estimates.
Values with low importance scores negatively influence prediction
estimates (denoted in blue), Figure 3 and Figure 4.
We emphasize samples of ECG and echocardiograms from the

test partition to deduce regions the model found most impactful
to prediction estimates, Figure 3 and 4. In Figure 3, the ECG interpret-
ation results highlight an overall focus on V3 and T-wave inversion in
leads V1-V6. Both the observed early R wave progression and
T-wave inversion are indications of HCM. Summarized local inter-
pretations for each lead provides explanations of the overall impact
each lead has on prediction estimates. Additional examples of ECG
interpretation tracings can be found in the Supplementary material
online, Figure S2. Comparably, the interpretation results of the echo-
cardiogram videos, Figure 4, clearly depicts asymmetric proximal sep-
tal thickness, a hallmark distinction of HCM across all frames of the
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Figure 2 Ablation studies impact on model performance. Bootstrap 95% CI for performance metrics, F1-score and average precision score, for
each model trained on ablated input data. for each prediction metric is shown. (TOP row) Results from ablating ECG input. (BOTTOM row) Results
from ablating echocardiogram input. For each ablation setting, a separate model was trained on that type of ablated data to quantify the information
content in the data.

Figure 3 LVH-fusion ECG interpretations. SHAP explanations of one true positive, HCM sample (A). Red areas indicate timesteps that hold a
positive impact on prediction, whereas blue timesteps indicate a negative impact on prediction, no colour is neutral. (B) Selected regions of ECG
leads denote timesteps of high estimated importance, focusing on inverted T-waves and lead V3 R peaks. (C) Local explanations of the cumulative
SHAP values on prediction output across leads. Lead V3 overall contains the highest values of SHAP values for this sample presented.
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video. Next, to examine local summary interpretations, we segmen-
ted the left ventricle on each frame for duration of a video’s length.
This allowed us to quantitatively compare the positive and negative
impacts the estimated LV size had on overall prediction estimates,
Supplementary material online, Figure S3.

To further examine if the regions of importance identified in dis-
tinct samples are globally similar across all predictions, a summation
or averaging across all local instances was performed. This approach
provides a highly compressed, global insight into the model’s behav-
iour. We considered per lead contributions to predictions in ECGs
and left ventricular segmentation in echocardiogram videos. Global
summary results for ECG corroborates our results from the ablation
studies, lead V3 and aVR holds valuable information for model’s pre-
diction estimates, Supplementary material online, Figure S4.

Comparison against physician
interpretation
Wehad two expert readers review ECG tracings and echocardiogram
videos and asked them to make a diagnosis of HTN or HCM. We se-
lected 45 samples (40 HTN and 5 HCM) from the test set to compare
LVH-fusion. The LVH-fusion model outperformed these expert cardi-
ologists (one of whom has 20 years of experience in diagnosing HCM).
LVH-fusion correctly classified three of the five ECG and echocardio-
gram HCM samples. Variability between cardiologists varied greatly,
with one cardiologist matching LVH-fusion sensitivity estimates but
with a reduction in specificity, while cardiologist two failed to correctly
classify any of the HCM ECG samples provided.

Discussion
In this study, we report the first multimodal (ECG and echocardio-
gram based) deep learning model in clinical cardiology and use it to

predict the aetiology of left ventricular hypertrophy. Combining
complementary knowledge from multiple modalities can improve
diagnostic performance in clinical practice. The trained model de-
monstrates high discriminatory ability in distinguishing HCM from
hypertension with an AUC of 0.91, AUPRC of 0.78. Furthermore,
ablation studies provided independent support from unsupervised
analysis for clinicians’ focus on ECG lateral repolarization and echo-
cardiographic proximal septal hypertrophy for the diagnosis of HCM.
Combining complementary information from multiple modalities is
intuitively appealing for improving the performance of learning-based
approaches. Our results can be directly applied in general medical
and cardiology clinics where exposure to rare conditions such as
HCM limits confidence in human diagnostic prediction alone.
Deep learning models specifically focused on single modalities in

cardiology have shown impressive results for arrhythmia detection,
age, and other clinical actionable insights.8,10,21 Previously Ko et al.,
focused on using convolutional neural networks (CNN) for ECG in-
terpretation with respect to HCM.24 They showed high discrimin-
atory power in classifying HCM against a background population of
left ventricular hypertrophy by ECG alone. However, approximately
28-30% of HCM cases had concurrent hypertension, inhibiting a dir-
ect comparison of possible distinction between HCM and hyperten-
sion. Zhang et al16 focuses exclusively on echocardiograms in a fully
automated approach to disease detection. Our method differs in
three important ways, first we consider both ECG and echocardio-
gram jointly to make a classification prediction in differentiating be-
tween HCM and hypertension. Secondly, LVH-fusion model
architecture differs significantly from the aforementioned study.
We explored model architectures with variable integration of tem-
poral convolutions instead of an image-based 2D CNN which oper-
ates on individual frames of the video. Empirical studies have shown
the benefits of different spatiotemporal convolutions for video-
based classification over 2D CNNs which are unable to model

Figure 4 LVH-fusion echocardiogram interpretations. SHAP explanations for two true positive samples, HCM (top row) and HTN (bottom
row). Each class has three frames selected with SHAP values overlaid. Red areas indicate pixels that hold a positive impact on prediction, whereas
blue pixels indicate a negative impact on prediction, no colour is neutral. We observe red areas of importance converging on the asymmetric septal
wall in the HCM example.
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temporal information and motion patterns, which one would deem
to be critical aspects for correct video analysis.25 Additionally, two
different video views were necessary for detection of HCM, our
method holds high discriminatory power using only one video
view. To date, deep learning research addressing non-pulmonary
hypertension detection using both electrocardiogram and echocar-
diogram was unknown.

One previous approach successfully used both ECG and echocar-
diogram data individually with a stepwise approach to diagnosis of
cardiac amyloidosis,15 whereas here we focus on fusion method ap-
plications of multimodal deep learning of electrocardiograms and
echocardiograms together.

Limitations of this study
We introduce a combined method to include both ECG and echo-
cardiogram videos, in line with common clinical practice to initiate
a new approach in AI applied to cardiology. It is important to note
the limitations of this study despite the benefits it may provide.
Ascertainment bias may exist within our study due to selecting
HCM patients from our centre of excellence. In addition, we lack
the availability to test our model at an external validation site. To
mitigate this limitation, we have open source the code and released
the trained models to facilitate reproducibility and further research
on multimodal research. Medical decision making is complex, often
relying on a combination of physician’s judgment, experience, diag-
nostic and screening test results, and longitudinal follow-up. In the
case of a patient presenting with anything other than severe, grossly
asymmetric LVH, suspicion for HCM would be higher for patients
who do not obviously have hypertension. However, occult hyperten-
sion is common and challenging to rule out and with mild ‘grey zone’
hypertrophy, it is not uncommon to make this assumption. Similarly,
for patients who present with LVH and manifest hypertension, the
question is always ‘is hypertension alone enough to explain this de-
gree of LVH?’ Given the implications of missing a diagnosis of
HCM—a mendelian disease associated with heart failure and sudden
death—most generalists do not feel confident ignoring the possibility
of HCM. In these cases, aggressively treating hypertension and re-
reviewing the patient can help but challenges in follow-up, adherence,
and effectiveness of therapymake the window of equipoise long. This
process extends the critical and necessary process of evaluation for
at-risk relatives enabling early diagnosis and identification of patients
with the overall goal of contributing to improvement in clinical care.

These are the clinical scenarios into which LVH-fusion will have the
most benefit. Yet, this is merely the first application of the approach. A
similar approach to the identification of other causes of LVH such as
Fabry disease or cardiac amyloidosis can be applied using similar
‘gold standard’ diagnostic labels to those we use here. The future of
deep learning in medicine is a move beyond reproducing human-
derived label features to capitalizing on unsupervised machine learned
features vs. a gold standard diagnostic or prognostic label. This will al-
low machine augmentation of the human led diagnostic journey.

Conclusion
In summary, we develop a deep learning model incorporating ECG
and echocardiogram time series data and apply it to help identify

HCM patients from within the much larger group of patients pre-
senting with LVH due to hypertension or unknown causes. We pre-
sent various well known fusion methods of combining data streams
from multiple modalities and compare these comprehensively to
single-modal models. Further studies should explore the real world
application of physician augmentation approaches such as
LVH-fusion in medical practice.

Supplementary material
Supplementary material is available at European Heart Journal – Digital
Health.
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