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Abstract

Background: An algorithm is presented to compute a multiple structure alignment for a set of proteins and to
generate a consensus (pseudo) protein which captures common substructures present in the given proteins. The
algorithm represents each protein as a sequence of triples of coordinates of the alpha-carbon atoms along the
backbone. It then computes iteratively a sequence of transformation matrices (i.e, translations and rotations) to
align the proteins in space and generate the consensus. The algorithm is a heuristic in that it computes an
approximation to the optimal alignment that minimizes the sum of the pairwise distances between the consensus
and the transformed proteins.

Results: Experimental results show that the algorithm converges quite rapidly and generates consensus structures
that are visually similar to the input proteins. A comparison with other coordinate-based alignment algorithms
(MAMMOTH and MATT) shows that the proposed algorithm is competitive in terms of speed and the sizes of the
conserved regions discovered in an extensive benchmark dataset derived from the HOMSTRAD and SABmark
databases.

The algorithm has been implemented in C++ and can be downloaded from the project’s web page. Alternatively,
the algorithm can be used via a web server which makes it possible to align protein structures by uploading files
from local disk or by downloading protein data from the RCSB Protein Data Bank.

Conclusions: An algorithm is presented to compute a multiple structure alignment for a set of proteins, together
with their consensus structure. Experimental results show its effectiveness in terms of the quality of the alignment

and computational cost.

Background

This paper presents an algorithm to compute a multiple
structure alignment for a set of proteins and to generate
a consensus structure. The algorithm is called MAPSCI,
which stands for Multiple Alignment of Protein Struc-
tures and Consensus Identification. MAPSCI addresses
the problem of global structure alignment, which has
also been considered by CE-MC [1], MAMMOTH [2],
and MATT [3]. Specifically, MAPSCI computes an
approximation to the multiple structure alignment that
minimizes the so-called Sum-of-Consensus distance (SC-
distance), i.e. the sum of the pairwise distances between
the consensus structure and each protein in the set (see
the Methods section for the precise definition of SC-dis-
tance). Our experiments show that MAPSCI converges
quite rapidly and produces alignments that compare
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favorably with the alignments produced by MAM-
MOTH and MATT. The consensus structures generated
by MAPSCI are visually quite similar to the input pro-
teins. Although the consensus structures are not real
proteins, they could be used, for instance, as templates
to perform fast searches through protein structure data-
bases, such as the Protein Data Dank [4], to identify
structurally similar proteins.

MAPSCI has similar structure to the algorithm of Ye
and Janardan [5]. However, MAPSCI works directly on
the coordinates of the C, atoms and produces true
alignments; by contrast, the algorithm in [5] requires
that the backbone vectors be translated to the origin,
hence information about the relative positions of the C,
atoms in R® is lost and as a result the algorithm does
not generate true alignments. The Methods section pre-
sents the mathematical and algorithmic framework of
MAPSCI and provides the complete details where the
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two algorithms differ significantly; when there is an
overlap the reader is referred to publication [5].

Implementation

MAPSCI represents the input proteins and the consen-
sus as sequences of triples of coordinates of the alpha-
carbon (or C,) atoms along the backbone. It then com-
putes a correspondence between the coordinate triples
of the C, atoms in the different protein structures by
choosing one of the proteins as the initial consensus
and applying an algorithm that is analogous to the cen-
ter-star method for multiple sequence alignment [6].
Next, MAPSCI derives a set of translation and rotation
matrices that are optimal for the computed correspon-
dence and uses these to align the structures in space via
rigid motions and obtain the new consensus. The pro-
cess is repeated until the change in SC-distance is less
than a prescribed threshold. This iterative process is
well-defined as it is shown in the Methods section that
the SC-distance is non-increasing from one iteration to
the next. The computation of the optimal translations
and rotations and the new consensus is itself an iterative
process that both uses the current consensus and gener-
ates simultaneously a new one.

Table 1 summarizes the algorithm in pseudocode
form. The various steps in the pseudocode are described
in more detail in the Methods section. The algorithm
has been implemented in C++ and can be used stand-
alone or run remotely via a web-based interface. The
source code of the implementation is available for
download from the project’s website (see the Availabil-
ity section). The implementation is organized as a
library of algorithms and simple data structures that can
be integrated in other projects. Examples of using the
library within a C++ program are given in the README
file of the source code distribution. The iterative process
described above employs pairwise structure alignment as
an intermediate step and the parameters that control
the execution of the multiple alignment algorithm are
the parameters for the underlying pairwise alignment
algorithm. The current implementation uses the pair-
wise alignment algorithm described in [7]; however,
other algorithms for pairwise structure alignment can be
used instead.

Results

Web Server

MAPSCI has been incorporated into a web server for
remote access over the Internet (see Figure 1). This tool
allows for protein structures to be uploaded from files
on the local disk or retrieved from the Protein Data
Bank (PDB) [4] by specifying their PDB ids. The results
from the alignment are annotated in the standard
NBRE/PIR format, which can be previewed online via

Page 2 of 8

the Jalview applet [8]. Integrated with the server is the
molecular viewer applet Chemis 3D [9], which allows
for visualization of the aligned protein structures.

The web server offers a simple interface that allows
for remote access from within other software. Table 2
gives an example of using the programming language
Python to retrieve the transformed coordinates (in PDB
format) for the multiple alignment of the structures
from the HOMSTRAD CUB family. Additional exam-
ples and the complete set of options for remote access
can be found at the server web page (see the Availabil-
ity section).

Comparison

As discussed earlier, there are many algorithms for mul-
tiple structure alignment. In general, it is difficult to
make comparisons among them, since they operate
under different sets of assumptions and problem formu-
lations. We compare MAPSCI to two recent algorithms
— MAMMOTH [2] and MATT [3] — which also work
with coordinate triples, but employ a different objective
function. Our experiments show that MAPSCI is com-
petitive in terms of the sizes of the so-called conserved
regions and runs significantly faster than the other two
algorithms, hence can potentially scale to much larger
datasets.

The comparison is based on two benchmark datasets.
The first dataset is compiled from the HOMSTRAD
database [10], which is a curated database of structure-
based alignments for homologous protein families and is
considered the “gold” standard. The benchmark dataset
consists of the 232 HOMSTRAD families that have at
least 4 structures. The second dataset consists of the
superfamily set in the SABmark database [11] (version
1.65). It contains 425 families with low to intermediate
sequence similarity. The metrics considered in the com-
parison are the strict core (or just core) and the core
RMSD. This follows the experimental setup in [2] where
strict core is defined as “the set of positions with 100%
conservation, and within 4.0 A of each other in the final
structural alignment in 3D”. A similar metric is dis-
cussed in [12] and [13]. The results are summarized in
Figures 2 and 3, which show the pairwise comparisons
(MAPSCI, MAMMOTH), (MAPSCI, MATT) in terms
of the core size (expressed in percent of the length of
the shortest protein) and the core RMSD. Table 3 pro-
vides a comparison of the average core size and average
core RMSD for the three methods on the benchmark
datasets.

In general, it is difficult to compare two algorithms
based on these two metrics (larger cores tend to have
larger RMSD). However, on the HOMSTRAD dataset
MAPSCI outperformed MAMMOTH in 45% of the test
cases and MATT in 59% of the test cases by computing
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Table 1 Algorithm MAPSCI: Multiple Alignment of Protein Structures and Consensus Identification
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iteratively (Theorems 2 and 3). Transform P; by R and T for every

<n //mis a user-specified threshold (currently set at 0.0001)

alignments with both larger cores and smaller core
RMSD. (MAMMOTH and MATT were better than
MAPSCI on both metrics combined in 6% and 5% of
the test cases, respectively). MAPSCI computed cores
for all 232 test cases, while MAMMOTH failed to com-
pute a core for one family (bowman), and MATT failed
to compute a core for three families (asp, lipocalin, and
tin).

On the SABmark dataset MAPSCI computed larger
cores with better RMSD in 39% of the test cases when
compared with MAMMOTH and in 37% of the test

cases against against MATT. (MAMMOTH and MATT
were better than MAPSCI on the two metrics combined
in 15% and 26% of the test cases, respectively.) MATT
was the most robust of the three algorithms and failed
to compute a core in only five test cases; MAPSCI failed
on 40 families and MAMMOTH failed on 31 families.
MAPSCI took only 151 seconds to align the 425
families in the SABmark dataset and 85 seconds to align
the families in the HOMSTRAD dataset. MAMMOTH
took 1100 seconds on the SABmark dataset and 649
seconds on the HOMSTRAD dataset. By contrast,
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import urllib2

url = “http://www.geom-comp.umn.edu/mapsci/align.cgi?wsget=pdb&rcsb=1sfp+1spp:A+1lspp:B”

server = urllib2.urlopen (url)
output = file("alignment.zip”, ‘wb’)
output.write (server.read())
output.close ()

server.close (

)

An example of using the programming language Python to retrieve the transformed coordinates (in PDB format) for the multiple alignment of the structures
from the HOMSTRAD CUB family. Additional examples and the complete set of options for remote access can be found at the server web page (see the

Availability section).

MATT took several hours to process the two datasets.
Figure 4 shows the actual time taken by MAPSCI for all
families in the benchmark dataset in terms of the total
number of residues per family. The algorithm converges
very quickly and can potentially scale to large datasets.
The machine used for all experiments reported in the
paper runs Ubuntu Linux 8.04 and has 4 GB of RAM
with Intel°Core™2 Quad CPU Q9550 @ 2.83 GHz.
MAMMOTH and MATT were run with their default
parameter settings.

Methods

In this section, we provide the mathematical and algo-
rithmic framework underlying MAPSCI. As mentioned
earlier MAPSCI shares common elements with the algo-
rithm in [5], and therefore, we follow the same general
outline. However, we only present the full details when
there are significant differences and refer the reader to
[5] when there is an overlap.

Multiple Structure Alignment: Problem Formulation

Let {P;, Py, .., P} be the given set of K proteins and let
l; be the number of C, atoms along the backbone of
protein P;. We represent P; as a sequence of coordinate
triples 11;- = (x;,y}:,z}i), 1 <j < I; that represent the
coordinates of the jth C, atom of P; along the backbone.
(As is customary [14,15], we consider only the back-
bone, not the amino acid residues themselves.) Let P, =
ﬁ? - ﬁl(; denote the consensus structure, of length [,.

where Eij is either a coordinate triple belonging to the
ith protein or a gap. Distances between coordinate tri-
ples are based on the squared distance between them in
R3. The distance between a coordinate triple and a gap
is called a gap penalty, and is denoted by p.

The results reported in this paper use 16.0 for the
value of the gap penalty.

Let G; = (H; - T)R; = (H; - e x t;)R;, for i >0, where R;
e R3® * 3 is some rotation matrix, T; = e x {; is the
translation matrix, e € R* * ! is a vector with 1 in each
entry, and fi e R! * 3 is a translation vector. (The
transformation of a gap remains a gap.) Note that Py
remains unchanged, i.e. Gy = H,.

Under the multiple structure alignment we define the
distance between the consensus structure Py and protein
Pyas D(Py,Pj) = d(§o §;,)*» where d(, -) denotes
the following distance function:

||z —7]|,, ifbothi and v are coordinate triples.
@)= p
0, if both # and v are gap vectors.

if only one of # and v is a coordinate triple vector.

The distance between P, and P; can be represented
compactly as D(Py, P;) =| Gy - G; |7, where ||-||r
denotes the Frobenius norm [16], with the additional
convention that the squared difference between a coor-
dinate triple and a gap is p*. The total distance of the K
proteins to the consensus structure, called the Sum-of-
Consensus distance, or SC-distance, is then defined as

A correspondence of the K proteins in S and the con- SC = 2 D(Py, P;) = 2 1Go - G; I3, )
sensus structure P, can be represented as a matrix H = 1Sk 1Sk 1)
(hij)o < i< K1 <j< 1 for some L 2 maxo < ; < xili},

Table 3 Benchmark datasets performance
HOMSTRAD SABmark
Average Core (%) Average Core RMSD Average Core (%) Average Core RMSD
MAPSCI 7099 083y — 232 4889 1.000, — 385
MAMMOTH 66.74 083(r - 231) 4455 09%, — 304
MATT 63.79 085, — 220) 4788 09%, - 420

Statistics for the performance of the three methods on the benchmark datasets. The subscripts in the Average Core RMSD columns indicate how many values
were used in computing the statistics, since the algorithms failed to compute a core for some of the data sets. For the Average Core (%) columns all reported
values were used and therefore n = 232 and n = 425 for the HOMSTRAD and SABmark datasets, respectively.
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Figure 2 HOMSTRAD dataset comparison. Comparison based on the strict core metric (expressed in percent of the size of the shortest
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Intuitively, the SC-distance measures how well the
consensus structure represents the given set of K pro-
teins. A similar distance function is used in [17], where
each protein is represented as a set of vectors in R*.

We can now define the multiple structure alignment
problem as follows:

Multiple Structure Alignment Problem

Given a set {Py, P, ..., Px} of protein structures, compute
a transformation (i.e., rotation and translation) for each
protein, and generate a consensus structure Py, such that
the resulting multiple structure alignment has minimum
SC-distance as defined in Equation (1).

In the next section, we present a heuristic for this pro-
blem. Our algorithm approximates the global minimum
of the SC-distance by iterative refinement of an initial
multiple structure alignment and converges to a local
minimum.

Step I: Choice of the initial consensus structure

We consider four choices for initial consensus structure:
(i) median protein, i.e. the protein of median length; (ii)
center protein, i.e. the protein that minimizes the sum of
the pairwise distances to all the other proteins; (iii) the
minmax protein, i.e. the protein with the smallest maxi-
mum pairwise distance; and (iv) maxcore protein, i.e. the
protein that generates the largest initial core. (The first
three choices for initial consensus are considered in [5].)

The experimental results in Figure 5 indicate that
MAPSCI is quite robust in terms of the choice of initial
consensus. However, the data suggests that the median
protein occasionally leads to alignments with very low

core size, and therefore is the least reliable choice. The
other three choices seem to work well in practice,
although they are more expensive computationally. The
results reported in the Comparison section use the
maxcore protein as the initial consensus.

Step Il: Compute an initial correspondence

After we determine the consensus structure Py in Step I,
the K - 1 pairwise structure alignments between Py and
P, =z Py, for i = 1, ..., K, are computed using the algo-
rithm in [7]. (Other pairwise structure alignment algo-
rithms could also be used instead.) The K - 1 pairwise
structure are combined in Line 6 of the algorithm
(Table 1) using the center-star-like method described in
[5].

Step lll: Compute optimal rotation and translation matrices
and consensus structure -

Given a correspondence H = (h;;) the objective is to
find the rotation and translation matrices R; and T}, for j
=1, .., K, and the consensus structure J, such that the
sum of the pairwise alighment distances between ] and
each (transformed) P; is minimum; i.e. we wish to mini-
mize

S= 3T -(H;=T))-R; [} @)

1<j<K

Direct minimization of S over J, and the T}s and R’s
seems difficult. Instead, we propose an iterative proce-
dure for minimizing S. Within each iteration, the mini-
mization of S is carried out in two stages that are
interleaved: (1) computation of the optimal J for given
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Figure 3 SABmark dataset comparison. Comparison based on the strict core metric (expressed in percent of the size of the shortest protein)
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R/’s and Tj’s, and (2) computation of the optimal R;'s
and Tj’s for a given J .
Computation of the optimal consensus structure
First, we show how to compute the consensus structure,
given the rotation and translation matrices R/'s and T’s,
as stated in the following theorem:

Theorem 1. Assume that the correspondence is repre-

sented as a matrix H = (Eij) and T = (Jy, o J) T is the
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Figure 4 Execution time. The actual execution time of MAPSCI for
all families in the benchmark datasets plotted in terms of the total
number of residues per family.

optimal consensus structure. For each column j, let I, be
the set of indices of proteins with a non-gap in the jth
column and I, be the set of indices of proteins with a

gap in the jth column. Then 7]- , in the jth position of

the optimal consensus structure equals either the coordi-
) _ 1 7

nate triple X; = mzieln hij , or a gap.

Proof. For each j, we consider two distinct cases for Jj:
either it is a coordinate triple, x, or a gap. If J; is a gap,
then the sum of the distances between ] and each pro-
tein P; along the jth column is |L,|p?, where p is the gap
penalty. If J; is a coordinate triple, x, then the sum of

the distances between ] and each protein P; along the

jth column is |Ig|p2+2 ||Eij—X||2, which is

iel,

. | 7 .
minimized, for x=ux; ——“nlzie[n h,]. Therefore, if

2 2 > 2 .
[ p~ 2| p +2,€1n|| hi —x;[|”, then the optimal
choice for Tj is the coordinate triple x; otherwise, the

optimal choice for Tj is a gap.

Computation of the optimal translation matrix

In this section, we show how to compute the optimal
translation matrix T, for each i, for a given consensus
structure J . From Eq. (2), it is clear that the optimal T;
and T}, for i = j are independent of each other. Hence,
in the following, we focus on the computation of T}, for
a specific i. The translation matrix 7; can be



llinkin et al. BMC Bioinformatics 2010, 11:71
http://www.biomedcentral.com/1471-2105/11/71

Page 7 of 8

Core (%)

100

MINMAX
&

) 25 50 7% 100
CENTER

Core (%)
100 T

MAXCORE
8

) 25 50 75 100
MINMAX

Figure 5 Consensus choice comparison. Comparison between the sizes of the aligned cores for different choices of initial consensus protein.

Core (%)

100

75

MAXCORE
&

25

) 25 50 7% 100
CENTER

Core (%)
100 T

MAXCORE
g
x

[ 25 50 75 100
MEDIAN

decomposed as T; = e x t;, where t; € R" * ? is the
translation vector.

As mentioned earlier, the transformation of a gap
remains a gap. Hence the computation of the translation
and rotation matrices is independent of the mismatches
(i.e., where at least one of the two elements being com-
pared is a gap). We can thus simplify the computation
by removing all mismatches in the alignment between
the consensus structure J and the ith protein P;.

Let Ae R” *%and Be R” * ? consist of the coordi-
nate triples from the consensus structure and the ith
protein, respectively, after removing the mismatches.
(Here n is the number of matches between the consen-
sus structure and the ith protein, i.e., comparison of two
non-gaps). Without loss of generality, assume e”A = [0,
0, 0], i.e,, the coordinate triples in the consensus protein
are centered at the origin. The optimal translation vec-
tor is the one that matches the centroids of the coordi-
nate triple vectors from A and B as stated in the
following theorem:

Theorem 2. Let A and B be defined as above. Assume
that eTA = [0, 0, 0]. Then for any rotation matrix R,, the
optimal translation vector t; for minimizing
S; :||A_(TB_T1‘)'R1' [7=l| A~ (B~e-t;)- R; ||} is given
by t;=1e'B

More details can be found in [18].

Computation of the optimal rotation matrix

Next, consider the rotation matrix R;. We can assume
that the coordinate triple vectors from both A and B are
centered at the origin. It follows that

S; =|| A - BR; ||*= trace ((A — BR;)" (A - BR)))
= trace (A" A) - 2trace (A" BR;) + trace (B” B).

Hence the minimum of S; is obtained when trace
(ATBR)) is maximized.

Let the Singular Value Decomposition (SVD) [16] of
A'B be ULV, where U and V are orthogonal and X is
diagonal.

Theorem 3. The optimal rotation matrix R; that mini-
mizes S; = ||A - BR,||? is given by R; = UWV”, where W
= diag(1, 1, 1), if det(UV") = 1, and W = diag(1, 1, -1),
if det(UVT) = -1.

More details can be found in [18].

Convergence of the algorithm

In this section, we show that MAPSCI converges, by
showing that the SC-distance is non-increasing from
one iteration to the next.

Recall that from Eq. (1),

SC=Y D(Po,P)= Y || Ho = (H;~T)R; [[}.

1<K 1<K

Line 4 in MAPSCI decreases the distance between the
consensus structure and each of the K proteins, since
the dynamic programming produces an alignment with
minimum cost. By the property of the center-star-like
method, Line 6 leaves unchanged the distance between
the consensus structure and each of the K proteins. By
Theorems 2 and 3, the transformations computed in
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Line 7 do not increase the distance between the consen-
sus structure and the jth protein, for each j. It is clear
that Line 8 does not change the pairwise distance, since
the cost for aligning two gaps is zero. Finally, by Theo-
rem 1, Line 9 does not increase the sum of the pairwise
distances from the consensus structure to the other pro-
teins. Hence, the SC-distance is non-increasing, and the
algorithm converges.

Complexity analysis

Let n be the maximum length of the K proteins. Then
the overall running time of the algorithm is O(K*x?). (If
we choose the initial consensus structure as the protein
of median length, the running time is O(Kn? + K*n).)
The run time analysis is similar to that of the algorithm
in [5].

Conclusions

We have presented an algorithm, called MAPSCI, to
compute a multiple structure alignment for a set of pro-
teins, together with their consensus structure. The algo-
rithm represents the input proteins and the consensus
as sequences of coordinate triples and computes an
approximation to the optimal multiple structure align-
ment that minimizes the sum of the pairwise distances
between the consensus and each input protein. Experi-
mental results on a benchmark datasets derived from
the HOMSTRAD and SABmark databases show that the
algorithm compares favorably with existing algorithms
for multiple structure alignment (MAMMOTH and
MATT).

Availability and requirements
« Project name: MAPSCI
«+ Project home page: http://www.geom-comp.
umn . edu/mapsci
«+ Operating system(s): Platform-independent
+ Programming language: C++
« License: Free BSD
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