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Continuous Patient-Independent Estimation
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Using Robust Spectro-Temporal Features
Derived From Photoplethysmogram Only
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Abstract—Objective: A patient-independent approach for
continuous estimation of vital signs using robust spectro-
temporal features derived from only photoplethysmogram
(PPG) signal. Methods: In the pre-processing stage, we re-
move baseline shifts and artifacts of the PPG signal using
Incremental Merge Segmentation with adaptive threshold-
ing. From the cleaned PPG, we extract multiple parameters
independent of individual patient PPG morphology for both
Respiration Rate (RR) and Blood Pressure (BP). In addition,
we derived a set of novel spectral and statistical features
strongly correlated to BP. We proposed robust correlation-
based feature selection methods for accurate RR estimates.
For fewer computations and accurate measurements of
BP, the most significant features are selected using cor-
relation and mutual information measures in the feature
engineering part. Finally, RR and BP are estimated using
breath counting and a neural network regression model,
respectively. Results: The proposed approach outperforms
the current state-of-the-art in both RR and BP. The RR
algorithm results in mean absolute errors (median, 25th-
75th percentiles) of 0.4 (0.1–0.7) for CapnoBase dataset and
0.5(0.3-2.8) for BIDMC dataset without discarding any data
window. Similarly, BP approach has been validated on a
large dataset derived from MIMIC-II (∼1700 records) which
has errors (mean absolute, standard deviation) of 5.0(6.3)
and 3.0(4.0) for systolic and diastolic BP, respectively. The
results meet the American Association for the Advance-
ment of Medical Instrumentation (AAMI) and British Hy-
pertension Society (BHS) Class A criteria. Conclusion: By
using robust features and feature selection methods, we
alleviated patient dependency to have reliable estimates of
vitals.

Index Terms—Blood Pressure (BP), minimal redundancy
maximal relevance (mRMR), photoplethysmogram (PPG),

Manuscript received 31 July 2023; revised 20 September 2023 and
26 October 2023; accepted 26 October 2023. Date of publication 2
November 2023; date of current version 15 August 2024. This work
was supported in part by Engineering and Design Department, Western
Washington University (WWU) and in part by Islamic Development Bank
(IsDB), Transform Fund. The review of this paper was arranged by As-
sociate Editor Marianna Laviola. (Corresponding author: Wala Saadeh.)

Muhammad Ahmad Sultan is with the Electrical Engineering De-
partment, Lahore University of Management Sciences (LUMS), Lahore
54792, Pakistan (e-mail: m_sultan@lums.edu.pk).

Wala Saadeh is with the The Engineering and Design Department,
Western Washington University (WWU), Bellingham, WA 98225 USA
(e-mail: saadehw@wwu.edu).

Digital Object Identifier 10.1109/OJEMB.2023.3329728

respiration rate (RR), signal quality, vitals, and wearable
sensing.

Impact Statement— Continuous, robust, and non-
invasive monitoring of vitals with only one wearable sensor
having applications in remote, fitness, and mobile health-
care devices where both RR and BP are desired.

I. INTRODUCTION

R ESPIRATORY Rate (RR) and Blood Pressure (BP) are two
vital health signs that help in timely diagnosis of various

chronic respiratory and cardiovascular diseases (CVD) [1], [2].
Many health conditions such as sleep apnea, asthma, and hy-
pertension require monitoring both RR and BP [3], [4], [5]. Ob-
structive sleep apnea (OSA) is a sleep disorder due to breathing
problems, characterized by partial or full occlusion of the upper
airway during sleep which can generate sleep fragmentation and
recurrent oxyhemoglobin desaturations [6]. Sleep RR is a key
sign of critical illness, particularly for OSA monitoring. RR of
healthy adults in a relaxed state is around 12–20 breaths/minute
(bpm). However, the RR will be abnormal for the OSA case
when the sleep breathing is decreased or halted by the apnea [7].
Therefore, sleep RR is a primary and key indicator for OSA
patients. OSA which is considered a major risk factor for CVD
degrades human health and occasionally leads to nocturnal
death [8]. BP is part of the assessment of cardiovascular risk. In
patients with OSA, CVDs have a higher incidence and are linked
to worse functional results and higher mortality rates. Systemic
hypertension, which is usually present in OSA, can significantly
degrade cardiovascular health. In addition, fluctuating BP may
induce a further risk of higher incidence and rapid progression
of CVD. Therefore, for OSA patients it is essential to monitor
both BP and RR at the same time. Continuous monitoring of
RR and BP using wearable sensors can predict CVD earlier for
timely treatment and thus, can prevent severe conditions leading
to death [9].

Traditionally, measurement of vital signs requires wearing
bulky uncomfortable sensors which are performed in a hospital
with cumbersome devices. Respiration is observed using cap-
nometry or spirometry in clinical settings. Similarly, BP is mea-
sured conventionally using a cuff-based method with a mercury
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Fig. 1. PPG signal with arbitrary units (a.u.) showing the respiratory
Induced Variations (RIVs), where RIIV is the variation in beat peaks
(Envelope). RIFV is the changes in the inter-beat interval. RIAV is the
change in the beat strength.

sphygmomanometer [9]. The cuff makes this method incon-
venient for frequent usage. These traditional methods prevent
continuous monitoring of vitals which is required for accurate
diagnosis and treatment of CVD in a timely manner.

Recent research focuses on continuous monitoring of vital
signs using convenient wearable Photoplethysmogram (PPG)
sensors [10], [11], [12], [13], [14]. [15] utilizes a multi-layer
convolutional encoder–decoder framework that takes PPG as an
input and outputs respiratory waveforms. An end-to-end pipeline
for RR estimation using Cycle Generative Adversarial Networks
(CycleGAN) to reconstruct respiratory signals from raw PPG
signals was presented in [14] while an end-to-end deep learning
model which does not require feature engineering with raw PPG
signals as input was described in [16]. An automated Hilbert
envelope-based respiration rate estimation method using the
PPG signal was proposed in [17]. RR can be also measured by de-
riving respiration trends from the PPG signal as explained com-
prehensively in our previous work [18]. Respiration modulates
PPG in three ways: 1) Respiratory-induced intensity variation
(RIIV), 2) Respiratory-induced frequency variation (RIFV), and
3) Respiratory-induced amplitude variation (RIAV) [16], [19].
Fig. 1 elaborates these three induced variations from PPG for
respiration. Nevertheless, the existence of these modulations
relies on several factors such as gender, age, patient’s health, and
body position during measurement. They may also appear and
disappear for certain patients over time. The traditional fusion
approach for RR estimation provides equal weight (finds the
mean) to RR estimates from the overall modulations without
observing the respiration quality of the individual modulation
waveforms. This method raises the mean absolute error (MAE)
remarkably for many patients, degrading the overall measure-
ment accuracy. The smart fusion method enhances robustness,
however, it disregards several data windows which decreases the
system throughput. The technique in [19] utilizes an automatic
algorithm that selects the modulation segment with the highest
respiratory quality indices (RQIs) for RR estimation. Secondly,
the Kalman smoother (KS) is used to fusion multiple modula-
tions with RQI above a given threshold. However, it needs an
Electrocardiogram (ECG) signal in addition to PPG as inputs.
In this paper, we propose a Modulation Quality Index (MQI)

Fig. 2. Ideal PPG Morphology exhibiting morphological features for
Blood Pressure Estimation.

based fusion approach that mitigates the challenge of patient
dependency, offering robust and continuous RR measurements.
We incorporated more vigorous MQIs and we consider the
mean of only those RR readings which were computed from
exceptional standard and trustworthy modulation patterns. The
proposed method enhances the RR measurements by decreasing
the MAE by >20% compared to [16], [19].

For cuffless continuous BP monitoring, Pulse Wave Velocity
(PWV) methods have shown a great impact [20], [21]. Recent
PWV-based approaches use Pulse Arrival Time (PAT) and Pulse
Transit Time (PTT) which describe cardiovascular character-
istics in terms of blood vessels’ expansion and contraction.
These parameters are extracted from two physiological signals
i.e., PPG and Electrocardiogram (ECG) signals [22], [23], [24].
The acquisition of two physiological signals, however, makes
the implemented device more complex. These approaches not
only increase hardware complexity but also add to the pa-
tient’s discomfort by wearing and carrying multiple sensors for
continuous use. To determine blood pressure from PPG only,
there is no straightforward mathematical relation between PPG
and BP. However, variation in PPG morphology appears to be
correlated to BP [24], [25], [26], [27]. Therefore, an artificial
intelligence tool is required to uncover the hidden relation. In
the literature, deep learning was involved where features are
automatically extracted from time-domain signal and spectrum
using fully connected and convolutional layers [24], [28], [29].
Deep learning methods have also been proposed recently using
visibility graphs (VG). The work in [27] presented a data-driven
deep-learning-based end-to-end solution for estimating BP from
the short-duration PPG signals using VG and pre-trained deep
convolutional neural network (CNN) for image classification.
Hybrid neural network architecture consists of convolutional,
recurrent, and fully connected layers that operate directly on
the raw PPG time series and provide BP estimation has been
presented in [28]. However, machine learning methods based on
handcrafted features are more reliable when there exist physical
relations between features and the target variable [24], [26].
Previous studies have relied heavily on the PPG morphology
to derive various parameters such as diastolic peaks, inflec-
tion points, and dicrotic notch [26], as shown in Fig. 2. The
study in [26] has used only the PPG signal but it depends on
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Fig. 3. Output of IMS Algorithm showing peaks and onsets of valid
beats. The remaining beats are artifactual having clipped or saturated
pulses.

accurate and reliable extraction of these morphological fea-
tures and they have validated their approach on a small dataset
(only 21 patients). It has been noted that these methods do not
work when the feature extraction process gets erroneous due to
variation of the PPG morphology from patient-to-patient. Few
studies have explored the spectral features but they cannot work
solely; they need morphological parameters to estimate BP as
well [22], [23]. Therefore, both spectral and statistical features
that are morphology-independent are essential to obtain robust
BP readings.

In this study, we propose a single-channel PPG with a patient-
independent approach for BP estimation. We utilize a few
morphological parameters such as peak and onset which are
present in every PPG morphology as well as robust frequency
domain features based on spectral energy, entropy, and area.
The presented technique outperforms the current state-of-the-art
([22], [26], [27]) while being validated on a larger and more
diverse database. Our dataset has almost double the number of
patient cases (approx. 1700 patients) compared to [26], [27],
and [28], which proves the clinical robustness of our proposed
approach.

The proposed methodology involves a common pre-
processing step for both RR and BP estimations which includes
baseline wandering and artifact removal caused by body motion.
However, BP and RR differ in extracted features and estimation
methods afterward and hence are explained in separate sections.
This paper is organized as follows: Section II-A introduces pre-
processing step of PPG filtering and segmentation. Sections II-B
and II-C present feature extraction and feature selection for
both RR and BP. Section II-D describes RR and BP estimation
methods. In Section III, the results are described. The discussion
and conclusion are detailed in Sections IV and V, respectively.

II. MATERIALS AND METHODS

The proposed methodology is presented in the block diagram
Fig. 4. A) The patient’s PPG signal obtained using a pulse oxime-
ter goes to preprocessing block where it is filtered, and artifacts
are identified. B) Physiological features i.e., RIIV, RIFV, and
RIAV are extracted for characterizing respiration activity. For
Blood Pressure estimation, we extract different physiological,
spectral, and statistical features. C) Extracted features are then
analyzed for their significance in estimating RR and BP using

feature selection methods. Selected features then go to the final
estimation block. D) RR is computed using the breath counting
method and an average measurement is generated over the
selected modulation RRs for the desired PPG window. Similarly,
BP is estimated using a Deep Neural Network (DNN) regression
model. Finally, at the output terminal, we have desired values of
RR, systolic BP, and diastolic BP.

A. Pre-Processing

First, we filter the PPG signal using a bandpass filter (0.05–
10 Hz) to remove both low and high-frequency noise. Then,
baseline shifts are removed to observe main respiration and
cardiac activities. This is achieved by removing the varying dc
value from the PPG signal over time. PPG beats and artifacts are
characterized through Incremental Merge Segmentation (IMS)
and adaptive thresholding [30]. The IMS algorithm utilizes a
sliding-window technique which is straightforward, rapid, and
can be measured in run-time. In this segmentation algorithm,
line segments are formed using their slopes first. Then up-slope
segments are classified as valid beats and artifacts based on
their amplitude and inter-beat interval thresholds. This method
deploys adaptive thresholding which adapts to the PPG mor-
phology and results in the accurate detection of PPG key points
for robust discrimination of valid beats and artifacts. It detects
artifacts of both types i.e., motion artifacts having abnormal
amplitude and clipping noise having flat horizontal lines due to
sensor disconnection. Within each processing window, we use
only valid beats for the detection of key points to accurately
extract features from it.

From the IMS algorithm, we detect peaks and onsets of valid
beats along with motion and clipping artifacts (Fig. 3). The
time series of PPG is defined as {ti, xi}i=1...N where N is the
length of the PPG signal. Then we can define the time series of
detected peaks as {tpeak,i, xpeak,i}i=1...Npeak

and time series of
detected onsets as {tonset,i, xonset,i}i=1...Nonset

where Npeak

and Nonset are the number of peaks and number of onsets,
respectively, and Npeak = Nonset = Number of valid beats
identified. The detected key points of valid PPG beat i.e., peaks
and onsets are used to extract temporal features for both RR and
BP estimations, as discussed in the next section in detail.

B. Feature Extraction

After filtering the signal for artifacts, we extract useful fea-
tures from valid PPG beats to measure RR and BP. These fea-
tures depend on powerful time-domain and frequency-domain
parameters that lead to robust estimation of RR and BP. Note that
our proposed system requires only one physiological signal i.e.,
PPG while approaches described in [22], [23], [24], [25] need
two signals i.e., ECG and PPG to extract PTT and PAT-related
features. However, we have reduced system complexity by using
only the PPG signal as input. For RR and BP estimation, we
extract three sets of features from PPG only. These consist
of PPG morphology, spectrum, and statistical parameters, as
discussed below in detail:
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Fig. 4. Proposed approach. A: Baseline shifts of raw PPG are removed, and artifacts are identified. B: Physio, spectral and statistical features are
extracted from cleaned PPG. C: Extracted features are checked for their relative significance in determining RR and BP. D: Finally, RR is estimated
using breath counting, and BP (Systolic and Diastolic) is measured using a DNN regression model.

Fig. 5. Three PPG signals with different morphologies from the MIMIC
Database with (a) ideal morphology with visible critical points such
as inflection point, dicrotic notch, and systolic and diastolic peaks,
(b) and (c) nonideal shapes of PPG morphology due to missing or al-
tered peaks/points such as inflection points, dicrotic notch, and diastolic
peak.

1) Morphological Features: These features depend on the
morphology of the PPG waveform. Extraction of features in-
volves determining key points of the PPG signal. Here we have
used only peaks and onsets of PPG detected in preprocessing
stage because other key points (diastolic peak, dicrotic notch,
and inflection points) are highly dependent on PPG morphol-
ogy which varies from patient to patient as the cardiovascular
characteristics and skin textures vary. Extraction of other key
points leads to the erroneous calculation of features [18]. Fig. 5
shows three different PPG morphologies obtained from differ-
ent subjects. All three PPG signals are free from artifacts or
noise. First PPG has ideal morphology which presents critical
points such as inflection point, dicrotic notch, and diastolic peak
along with systolic peak and onset. However, the last two PPGs
have altogether different morphology although they are correct.
This difference in morphology leads to incorrect calculation of
morphological parameters which decreases the reliability of the
system. Therefore, we have limited morphological parameters’
extraction to peaks and onsets only. We have focused more on
spectral and statistical features whose calculation is accurate. In
this way, we have alleviated the problem of patient morphology
variation and developed a patient-independent approach. Here

we extract three respiratory modulations for RR estimation and
five morphological parameters for BP estimation.

As discussed earlier, three respiratory variations can be de-
rived from PPG: 1) PPG peaks changes during respiration,
forming RIIV. 2) Inter-beat interval changes i.e., compressed
beats during inhalation and expanded beats during exhalation
i.e., RIFV. 3) Amplitude of up-slopes of beats variations, forming
RIAV. From the peaks and onsets determined in preprocessing
stage, we obtain the following three respiratory modulations for
RR estimation:

1) RIIV: This is time series of amplitudes of PPG peaks i.e.,
xRIIV = {ti, xpeak,i}i=1...Npeak

. This effect represents
intrathoracic pressure variations, resulting in the change
of perfusion baseline.

2) RIFV: It is the time between successive PPG peaks;
xRIFV = {ti, xRIFV,i}i=1...(Npeak−1) where xRIFV,i

= tj+1 − tj for tj the time series of peaks. This phe-
nomenon is known as Respiratory Sinus Arrhythmia
(RSA) which is regulated by the vagal nerve.

3) RIAV: Amplitude difference between the peak and on-
set of a beat; xRIAV = {ti, xRIAV,i}i=1...Npeak

, with
xRIAV,i = xpeak,i − xonset,i. This effect is caused by
cardiac output variations which represent refill quantity
in the vessels at the periphery.

Fig. 6 shows a 32-sec window of PPG signal with de-
tected beats (onsets and peaks). From the identified peaks and
onsets, we derive three modulations i.e., RIIV, RIFV, and RIAV.
These derived modulations are re-sampled to 4 Hz with lin-
ear interpolation. Next, we calculate morphological parameters
for BP estimation (Fig. 7). These features represent periph-
eral resistance and arterial stiffness in terms of pulse expan-
sion and contraction in the systolic and diastolic regions of
PPG.

1) Systolic Time: It is the time between beat start (onset)
and beat peak. It represents upstroke beat expansion. This
parameter is related to the stiffness of blood arteries.
Mathematically, tsys,i = tpeak,i − tonset,i.

2) Diastolic Time: It is the time between beat peak and beat
end (onset of next beat); tdias,i = tonset,i+1 − tpeak,i.

3) Systolic and Diastolic Branch widths: It is the systolic or
diastolic time calculated at a fraction of beat amplitude:
tX,sys,i = tpeak,i − tX,i where tX,i : xi = X ∗ xpeak,i

and X = [0.1, 0.25, 0.33 0.5]. For example, t33,sys is the
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Fig. 6. 32 sec PPG window displaying Physiological Feature Extrac-
tion for RR estimation: RIIV, RIFV, and RIAV are formed using identified
peaks and onsets, and then re-sampled to 4 Hz. RIIV is the most
accurate representation of respiration activity.

Fig. 7. Morphological features extracted from PPG morphology for BP
estimation.

time when beat amplitude is 33% of the beat peak. This
is also a way of characterizing PPG morphology using
pulse expansion. Similarly, we can calculate different
percentages of diastolic time. These branch widths at
different percentages of amplitude are related to total
peripheral resistance.

4) Heart Rate: It is the time between two consecutive beats,
representing one cardiac cycle; tHR,i = tpeak,i+1 −
tpeak,i.

5) PPG Intensity Ratio: It is the ratio of peak and onset
amplitudes. It shows the amplitude intensity of the pulse.
We take the average of all valid beats’ peaks and on-
sets during the given window for accurate calculation.
PIRi = xpeak,i/xonset,i.

These features are calculated for only those PPG beats which
have been detected as valid beats by the IMS algorithm in the
pre-processing stage. We extract per-cycle parameters such as
systolic and diastolic times from individual cycles, and then
we average them over the current processing window. Note that
these morphological features are valid for all PPG morphologies

Fig. 8. PPG Spectrum showing 5 frequency bands from 0 to 10 Hz for
Spectral Feature Extraction.

presented in Fig. 5. Next, we extract the spectral and statistical
features which are calculated for only those PPG windows that
have artifacts less than an empirical threshold.

2) Spectral Features: Here we take FFT to get the
power spectrum of the PPG signal represented as H(w), for
frequency-domain feature extraction (Fig. 8). The spectrum
frequencies are concentrated in the range of 0 to 10 Hz, which
is the plausible range for PPG. We first take the spectrum peak
and the corresponding frequency (which is the heart rate) as
features. Then we divide the 10 Hz spectrum into 5 equal parts
i.e. [0–2, 2–4, 4–6, 6–8, 8–10]. We selected 5 as the number of
bands empirically after observing the main frequency content
variation in these regions of the FFT spectrum. Then we calculate
the following features from these bands as follows:

1) Energy bands: Energy in different frequency bands shows
the frequency content in a particular band. We calcu-
late normalized spectral energy for each frequency band,
given as:

Energy =
1

N

N∑
i=1

|H (wi) |2, (1)

where N is the number of frequency components in a
particular band. The extracted spectral energies relate to
the frequency content of the PPG signal which varies with
BP.

2) Entropy bands: Entropy gives the amount of information
present in a particular band. We calculate spectral entropy
for each frequency band using normalized frequency
components H(wi)N ;

Entropy = −
N∑
i=1

H (wi)N · log (H (wi)N ) , (2)

where H(wi)N = H(wi)/
∑N

i=1 H(wi)
3) Area bands: The area under the spectrum for each fre-

quency band has been calculated using the trapezoidal
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method:

Area =
1

2

N−1∑
i=1

[H (wi) +H (wi+1)] . (wi+1 − wi) ,

(3)
These parameters signify the harmonic content of the PPG

signal which is related to cardiac and respiratory activities. These
frequency-domain features are highly correlated to the output BP
values which makes our method robust (discussed below).

3) Statistical Features: We extracted a set of temporal fea-
tures based on statistics as well. These features model PPG
physiology variations in statistical ways. These include time-
domain PPG signal’s kurtosis, skewness, and temporal entropy
as important statistical parameters:

1) Kurtosis: It shows the flatness of a signal which is a
statistical way of describing the signal shape.

Kurtosis =

∑N
i=1 (xi − x̄)4

N. (
√
c)

4 (4)

whereN, x̄, c are signal length, signal mean, and variance,
respectively in the current processing window.

2) Skewness: This parameter checks symmetry of signal
distribution.

Skewness =

∑N
i=1 (xi − x̄)3

N. (
√
c)

3 , (5)

3) Temporal Entropy: This is the information entropy of the
PPG signal, calculated from the probability distribution
of the normalized signal.

Entropy = −
N∑
i=1

xn,i · log (xn,i), (6)

where xn,i = xi/
∑N

i=1 xi

As described earlier, PPG morphology varies from patient
to patient subject to cardiovascular properties and skin texture.
Similarly, the prominence of morphological features i.e., RIIV,
RIFV, and RIAV for RR estimation also vary due to several
factors including age, health condition, and activity during mea-
surement. Among the extracted modulations (Fig. 6), RIIV is
the most realistic depiction of the respiration pattern whereas
both the RIFV and RIAV are absent in the displayed PPG graph.
Therefore, we need to check the quality of extracted modulation
before estimating RR from it. Similarly, A total of 35 fea-
tures were extracted for BP estimation including morphological,
spectral, and statistical features (Table I). However, using all
the features increases computational load and regression model
complexity. Therefore, we performed feature relevance and re-
dundancy analysis and selected only the top 12 features which
are most relevant to the target BP value and least redundant
within the selected feature set.

C. Feature Selection

Since the quality of extracted modulations for RR estimation
depends heavily on patient health condition and activity, we
require accurate quality assessment measures to estimate RR

TABLE I
LIST OF FEATURES EXTRACTED FOR BP ESTIMATION

from extracted modulations. In the literature, PPG signal quality
has been assessed in the pre-processing stage to detect artifacts.
However, a little focus has been put into developing quality as-
sessment measures for respiratory-induced variations [31], [32].
Here we present robust modulation quality indices (MQIs) based
on Fourier analysis and correlation for RR:

1) Power Spectrum MQI (FFT): Fourier Analysis is utilized
to study the frequency content of a signal. We measure
the peak dominance of the FFT power spectrum to realize
how strong the respiration frequency is compared to other
frequencies in the extracted modulation.

MQIFFT = Ppeak/Ptotal, (7)

where Ppeak is the summation of three power values
centered on peak value andPtotal is the total power values
in the plausible respiration range of 0.1 to 1 Hz (6 to
60 bpm). MQIFFT close to one means the spectrum
peak is dominant over the whole spectrum, which means
that the respiration frequency is strongly present in the
modulation (Fig. 9).

2) Autocorrelation MQI (AC): Autocorrelation is utilized
to study the signal periodicity. We find the modulation
periodicity with a lag range from 1 to 10 seconds (k = 4
to 40 samples) corresponding to a plausible respiration
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Fig. 9. Examples of two 32 sec extracted modulation window (left) and
modulation power spectrum (right) where (a) shows that the respiration
frequency is strongly present in the modulation, and (b) shows that the
respiration frequency is weakly present in the modulation. The dotted
blue margins indicate a plausible respiration range of 0.1 to 1 Hz (6 to
60 bpm) while red ones show 3 power frequency components middling
the peak power value.

range of 6 to 60 bpm.

MQIAC = max

{
1

N−1

∑N−k
i=1 (xi − x̄)(xi+k − x̄)

c0

}
(8)

where N, k, x̄, c0 are signal length, time lag, signal mean,
and variance, respectively. Closer the MQIAC is to 1, the
more periodic modulation is.

3) Template Matching MQI (XC-Tmp): Cross-correlation is
used to study the similarity between signals. We compared
the similarity of the modulation with its smoothened
version generated after passing a moving average filter
considering a plausible respiration range of 0.1 to 1 Hz
(6 to 60 bpm), known as template-matching.

MQIXC−Tmp =
1

N−1

∑N
i=1 (xi − x̄)(yi − ȳ)

√
cx.cy

, (9)

where N, x̄, ȳ, cx, cy are signal length, signal mean, tem-
plate mean, signal variance, and template variance, re-
spectively. The closer the MQIXC−Tmp is to 1, the more
similar modulation is to its standard template (Fig. 10).
Note that MQIXC−Tmp is computed only if the corre-
sponding PPG window has percentage artifacts less than
an empirical threshold. Other MQIs need not to check arti-
facts because they automatically identify artifactual por-
tions in derived modulations. However, MQIXC−Tmp

requires constructing a template out of the given modu-
lation. Hence, the PPG window under analysis must be
free from any artifacts.

Fig. 11 elaborates the effect of changing threshold values of
one quality measure i.e., MQI-FFT on patient-wise performance
(a) and data retention (b) for CapnoBase dataset. As we increase

Fig. 10. Examples 32 sec window of extracted modulation (top) and
templates (bottom) where (a) represents a good quality waveform having
a strong correlation with the template, and (b) represents bad quality
modulation having less MQIXC−Tmp.

Fig. 11. Effect of changing Thresholds on (a) Performance measured
through mean absolute error (bpm) and (b) DataRetention measured
through % of windows discarded. As the threshold value is increased
(strict quality thresholds), Error decreases at the expense of discarding
many data windows. The red circle indicates the median and blue line
boundaries denote the Inter-Quartile Range (25th to 75th percentiles).

the threshold values for lesser errors, we drop a lot of data
windows. However, we tune the thresholds in such a way that we
get optimal performance while retaining all the windows. Note
that these threshold values are independent of a particular patient
i.e., they are fixed for the whole dataset. Then the quality of
each modulation is estimated using all the three MQIs illustrated
earlier and only the high-quality modulations are adopted for the
estimation of RR, which is vetted by all three metrics.

Feature relevance analysis reveals the significance of a par-
ticular feature for the target estimation and Feature redundancy
analysis removes redundant features, lowering computational
load and ML model complexity later.

1) Pearson Correlation Coefficient: To see the linear rela-
tionship of extracted features with target BP values, we
use the Pearson correlation coefficient. It is calculated as:

PCC =

∑N
i=1 (xi − x̄)(yi − ȳ)√

cx.cy
, (10)

where N, x̄, ȳ, cx, cy are feature-length, feature mean,
target mean, feature variance, and target variance, respec-
tively. The closer the PCC is to 1, the greater the linear
dependency between the feature and target is.

2) Mutual Information Coefficient: Mutual information is
used to find non-linear dependency between features
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TABLE II
FEATURE SIGNIFICANCE SCORE OF TOP 18 RANKED FEATURES USING
FOUR SELECTION MEASURES: PEARSON CORRELATION COEFFICIENT

(PCC), MUTUAL INFORMATION COEFFICIENT (MIC), CORRELATION BASED
MRMR (MRMR_PCC) AND MUTUAL INFORMATION BASED MRMR

(MRMR_MIC)

and target variables. It is based on entropy measurement
which reveals probabilistic relations among variables of
interest. Entropy calculation involves probability distri-
bution estimation by making histogram bins first. The
mutual information Coefficient is given as:

MIC =
I(X;Y )√
H(X).H(Y )

, (11)

Where I(X;Y ), H(X), H(Y ) are mutual information
between feature and target, the entropy of feature and
entropy of target, respectively. MIC value close to 1
indicates strong mutual dependence between feature and
target variables, which is highly desirable for decision
trees deploying information gain as attribute selection
criteria.

3) Minimal Redundancy and Maximal Relevance (mRMR):
To verify that features selected by PCC and MIC are
not redundant within themselves, we used this minimum
redundancy analysis [33].

max

⎡
⎣I (xj ; y)− 1

m− 1

∑
xi∈Fm−1

I (xj ;xi)

⎤
⎦ (12)

where xj ∈ X − Fm−1, I(xj ; y) is the MI between fea-
ture xj and target BP value y, and I(xj ;xi)is the MI
between features. Here X represents the complete feature
vector while F denotes the selected feature set. This
method selects features based on their maximum rele-
vance to the target variable and their minimum redun-
dancy among selected features. Note that we used this
method for correlation-based dependency as presented in
Table II.

TABLE III
PERFORMANCE COMPARISON OF IMPLEMENTED ML ALGORITHMS IN TERMS
OF MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION OF ERROR

(SDE) FOR SBP, DBP, PP AND MAP

Table II represents the results of our feature selection analysis
for BP. We have scaled the scores of individual features for all
four criteria between 0 and 1 for comparison purposes. Note that
mRMR analysis returns the top 12 features and the remaining
feature scores have been added from relevance analysis only i.e.,
PCC and MIC. As we can see, Spectral energies and statistical
parameters like entropy and kurtosis are among the top features
which are most relevant to the target BP values. Since the main
variations in the FFT spectrum happen in bands 1 and 2, these
bands prove to contain the most significant features after feature
relevance and redundancy analysis.

D. Estimation

After performing feature engineering, we use the most sig-
nificant features for the estimation of RR and BP. Note that RR
features i.e., RIIV, RIFV, and RIAV are checked for relative
significance for every patient. However, the top 12 features of
BP are the same for all patients, and feature engineering is not
performed in the real system.

1) RR Estimation: Based on the obtained good-quality
modulation signals, RR is computed using a peak detector. A
moving average filter with a frequency range of 0.1 to 1 Hz
(6 to 60 bpm) is applied before estimating the respiration cycle
period which simplifies the task of the peak detector. The average
time between two peaks within a window is associated with one
respiration cycle and it is reciprocally multiplied by 60 to find
RR in bpm. Selected RR estimates from reliable modulations are
then fused by finding the average to obtain one final RR value.

2) BP Estimation: For BP estimation, different ML and
deep learning algorithms have been used in the litera-
ture [34], [35]. We used simple linear regression, support vec-
tors, ensemble learning methods (bagging, boosting), and deep
learning methods for modeling the BP system. We have used
Grid-Search with 10-fold cross-validation to find the best set
of parameters. In addition, the data is not shuffled before train-
ing/testing, hence the data remains the same for all regression
algorithms. Table III shows the performance comparison of these
regression algorithms.
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Fig. 12. Neural Network Architecture for BP estimation.

1) Linear Regression: The baseline ML algorithm for any
data exhibiting a linear relation is linear regression. We
selected the top 12 features from the PCC criteria. These
models are easy to implement, less computational, and
take less training time as compared to other ML methods.
We used Scikit and NumPy libraries to train and cross-
validate our algorithm by minimizing the residual sum of
squares. We deployed 10-fold cross-validation to validate
the generalizability of the model.

2) Support Vector Regression: Support Vector machines are
kernel methods that use optimization to find the maximum
margin between the support vectors. We did input the top
12 features from PCC selection method into the model.
For choosing values of kernel transformation function and
miss-penalty coefficient parameters, we used grid search
with 5-fold cross-validation in Scikit-learn.

3) Random Forest Regression (Bagging): Random Forest is
an ensemble learning method that deploys many decision
trees in a parallel fashion. It averages the results of all trees
trained on a subset of the dataset. We selected 12 most
significant features according to the Mutual Information
measure. The model was trained using grid search along
with cross-validation to get optimal values of the number
of trees.

4) Adaptive Boost Regression (Boosting): This is also an
ensembling learning method that uses different estimators
in a series fashion such that each new estimator learns
from the mistakes of the previous estimator. Once again,
we used decision trees as estimators and used mutual
information as the feature selection criteria. Decision
tree learning uses information gain as attribute selection
criteria. That’s why it is closely related to the information
entropy of features.

5) Deep Neural Network Regression: We used deep learning
as well where we built a neural network architecture as
shown in Fig. 12. This model was finalized after trying
different combinations of architecture parameters i.e.,
number of layers, number of hidden units in a layer,
and activation functions. Similarly, the hyper-parameters
of the neural network such as learning rate, batch size,
and optimization algorithm i.e., Adam (adaptive moment

estimation) parameters were selected. Note that we im-
plemented the same Neutral Network (NN) architecture
for both Systolic BP (SBP) and Diastolic BP (DBP. For
the first hidden layer, we have:

Y1 = W1 ∗X + b1, (13)

A1 = tanh (Y1), (14)

Similarly, for second hidden layer:

Y2 = W2 ∗A1 + b2, (15)

A2 = tanh (Y2), (16)

And finally, the output layer:

Y3 = W3 ∗A2 + b3, (17)

III. RESULTS

A. Datasets

We have used two open-source databases to validate our RR
approach: The CapnoBase dataset (available at capnobase.org)
and the BIDMC dataset derived from MIMIC-II database (avail-
able at https://mimic.physionet.org/), as described below:

1) TBME Benchmark Capnobase Dataset: This dataset has
8-minute recordings of 42 patients (29 pediatric and 13
adults). It consists of both controlled ventilation and
spontaneous breathing cases. We adopted Capnometry
waveform as the reference “gold standard” to validate
the results. Both PPG and reference signals are sampled
at 300 Hz.

2) BIDMC Dataset from MIMIC-II Physionet: This dataset
contains 53 adult patient recordings, each 8 minutes in
duration. We did a performance comparison using the
reference thoracic impedance pneumography signal. The
PPG and reference signals provided have been sampled
at 125 Hz.

For BP validation, we used the Open-Source MIMIC-II
database [36] which had 12000 subject recordings of different
durations (accessed in November 2021). We performed dataset
cleaning by selecting only those records having a minimum
duration of 8 minutes to ensure enough recording period for
reliable processing. This left us with approximately 2064 sub-
jects. Then, we scanned the selected subjects for abnormal BP
values (SBP<80, SBP>180, DBP<60, or DBP>130) using the
given invasive ABP (arterial blood pressure) waveform which
returned in 117715 windows of 8 seconds and 3167797 heart-
beats, representing 1700 unique subjects in total. Both signals
i.e., PPG and gold standard ABP have been sampled at 125 Hz
which is sufficient to accurately extract temporal features from
PPG [37].

Fig. 13 shows the distribution of BP values across the final
selected records. We have divided the data into three BP levels
according to ACC/AHA standards. The normal BP or Normoten-
sion corresponds to (90/60 - 130/80) mmHg in SBP/DBP while
the abnormal levels are i) Hypotension: The low BP level is
below 90/60 mmHg and ii) Hypertension: The high BP level

https://mimic.physionet.org/
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Fig. 13. Histograms showing Percentage number of values corre-
sponding to a given BP level: (a) SBP and (b) DBP.

is above 130/80 mmHg. Similarly, Table VI gives some insight
into database statistics having a wide range of BP values.

Since the previous studies have used the standard sampling
rates provided with datasets, we have followed the same rule.
This allows us to make performance comparisons with other
state-of-the-art works. However, we will choose 125 Hz for
both RR and BP in case of a hardware implementation of
these methodologies because it would be sufficient to accurately
extract temporal features from PPG for both RR and BP [37].

B. Performance Evaluation

For RR, we adopted a 32-second moving window and shifted
by 3 seconds to obtain the results. For the sake of comparison,
a reference RR with the closest timestamp was adopted. We
computed MAE in bpm for the entire moving windows for each
patient. The patient-wise error distribution is presented in the
form of a boxplot in Fig. 14(a) for the CapnoBase dataset and in
Fig. 14(b) for the BIDMC dataset. Boxplots display the median
and inter-quartile range (IQR) of MAE for individual modula-
tions (RIIV, RIFV, and RIAV) without using any MQI, using
each MQI separately (FFT, AC, XC-Tmp), and our proposed
fusion approach using all MQIs i.e., MQI Fusion.

For BP, we used a window size of 8 seconds to evaluate the
results. The reference values were generated using the given
invasive ABP waveform. We measured mean absolute error
(MAE) in mmHg for each patient over all windows. Table III
represents a comparison of the performance of different ML
algorithms. We implemented Linear Regression and kernel ma-
chines i.e., support vector regression. Then we used complex
ensemble learning methods i.e., Random Forest and Adaptive
Boost to increase the prediction power. Finally, the deep neural
network performed best for BP estimation. We measured Pulse
Pressure (PP) and Mean Arterial Pressure (MAP) as well.

For the selected DNN model, the regression plot, Bland-
Altman Plot, and the patient-wise error distribution have been
shown in Fig. 15 for both SBP and DBP. The regression plots
show a strong correlation between actual and estimated BP
values with high R and R2 values. Similarly, the Bland-Altman
plots show promising mean error and limits of agreement of
error. In addition, the error histograms present a normal distri-
bution of error. Since the MAE is ≤ 5 mmHg with a standard

Fig. 14. Median and 25th to 75th percentiles of MAE for 32 seconds
window size using individual modulations without a quality check (RIIV,
RIFV, RIAV), using each quality measure one at a time (AC, FFT,
XC-Tmp) and proposed fusion methodology using the entire quality
measures (MQI-Fusion) for (a) CapnoBase and (b) BIDMC datasets.

deviation ≤ 8 mmHg it meets the American Association for
the Advancement of Medical Instrumentation (AAMI). Addi-
tionally, based on Fig. 15(e) and (f), the results also meet the
British Hypertension Society (BHS) Class Criteria that require
an absolute difference between standard and test device (%) is
>60% for (|error | ≤ 5 mmHg),>85% for (| error| ≤ 10 mmHg),
and >95% for (|error| ≤ 15 mmHg) [38].

C. Performance Comparison

The proposed RR method offers superior performance com-
pared to the current state-of-the-art with 3 robust respiration
quality measures (RR quality measures), presented in Table IV.
We obtained improved results on both datasets which means our
proposed methodology performs equally well on a wide range
of patients i.e. diverse patient cases. It involves both pediatric
and adult patients in different clinical conditions. We utilized
the entire PPG signal which means that the estimator is able to
find at least one good-quality modulation for all the patients.

As presented in Table V, the proposed method for BP esti-
mation offers robust results in terms of MAE and SDE. The
state-of-the-art work [22], [39], [40] have used VG with transfer
learning, CRNN, and adaptive regression, respectively, while we
have used a simple 2-layer neural network. We have followed the
“Data-Driven Approach” that enables us to have similar results
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Fig. 15. Regression Plots for (a) SBP, and (b) DBP, Bland-Altman Plots for (c) SBP, and (d) DBP, and Error histograms for (e) SBP, and (f) DBP,
where ‘R’ is the Pearson correlation coefficient and R2 is the coefficient of determination. In Bland-Altman Plots, solid red lines indicate mean error
while dotted red lines represent 95% confidence interval (−1.96σ to +1.96σ) where ‘σ’ stands for the standard deviation of error.

TABLE IV
RR COMPARISON WITH STATE-OF-THE-ART (FOR 32 SEC WINDOW SIZE WITH BOTH DATASETS): NUMBER OF PATIENTS CONSIDERED; RESPIRATION

QUALITY ANALYSIS IN TERMS OF NUMBER OF QUALITY MEASURES; MAE PRESENTED AS MEDIAN AND INTERQUARTILE RANGE (25TH TO 75TH
PERCENTILES) AND PERCENTAGE OF WINDOWS DISCARDED DURING FUSION

TABLE V
BP COMPARISON WITH STATE-OF-THE-ART: NUMBER OF PATIENTS CONSIDERED WITH DATABASE; NUMBER OF SELECTED FEATURES; NUMBER OF

PHYSIOLOGICAL SIGNALS ACQUIRED; USED ML MODEL AND ERROR IN TERMS OF MAE AND STANDARD DEVIATION OF ERROR (SDE) FOR BOTH SBP AND
DBP IN UNITS OF MMHG
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with robust and a smaller number of features as compared to a
larger number of features without feature engineering. We have
deployed robust spectral and statistical features. Furthermore,
we did feature optimization to select the most significant features
only. Furthermore, we corroborated our research on a hetero-
geneous database having 1690 patient records. This provides
clinical reliability for deploying BP monitors.

IV. DISCUSSION

We presented innovative respiration quality assessment mea-
sures to improve the fusion methodology by making it more
robust for the average RR readings. The template matching
cross-correlation MQI accurately identifies the respiratory mod-
ulations with high quality as shown in Figs. 9 and 10, respec-
tively. The right-most box in Fig. 14 reflects an overall reduction
in MAE when using the combined three MQIs to select the
modulation for RR measurements. It has no outliers i.e., MQI
Fusion performs well for all patients in both datasets. Similarly,
histograms in Fig. 15 show that BP error is concentrated around
0 for both SBP and DBP. As shown in Table IV, the proposed
method does not discard any PPG windows which means we
always have RR readings, which is essential for continuous mon-
itoring of vitals. The results show that the proposed method has
better MAE performance compared to state-of-the-art works.
The proposed approach is also independent of the patient’s
health condition, body position, or activity during measurement.
Hence, users can have a wearable pulse oximeter sensor while
performing normal daily activities.

As illustrated in Fig. 11, the performance of respiration quality
measures changes with the value of the quality thresholds. If we
assert strict threshold values, the MAE improves at the expense
of discarding many PPG windows. However, we tune threshold
values in such a way that we get desired performance while
retaining all data windows in the final MQI fusion methodology.
In addition, the empirical quality thresholds are not patient-
specific, they are the same for the entire dataset which allows
the proposed approach to be independent of individual patients.

The main challenge in developing a vitals monitoring device
is the PPG morphology variation from patient to patient. PPG
morphology changes as the measurement position, skin texture,
and activity change. This is also dependent on individual per-
son’s cardiovascular characteristics. In this paper, we have im-
plemented robust features which are independent of these factors
and perform equally well on all patients. These features include
physiological, spectral, and statistical parameters which we have
proved to be highly correlated to the target variables. This results
in improved performance compared to state-of-the-art methods
as shown in Table V.

Another problem in adapting to the use of vital healthcare
devices is the lack of reliability. Researchers so far have pro-
posed a large number of methods for vitals estimation, but they
have corroborated their approaches on small datasets having
a little number of patients with less diversity of cases. The
MIMIC-II database used is a heterogeneous standard database
having a variety of cases in different clinical conditions (Fig. 15
and Table VI). We have validated our methodology on this

TABLE VI
MIMIC DB STATISTICS OF SELECTED RECORDS DEMONSTRATING THE

RANGE OF BP VALUES

extensive database to provide credibility for clinical use. In this
way, we have added to the reliability of vital monitoring systems,
having applications in mobile and fitness health-care devices.

For embedded applications, we must consider power effi-
ciency. The main cost is the number of computations in terms
of multiplications and additions of designed algorithms. The
proposed methods in the literature are based on frequency-
domain analysis which involves a lot of computations. Similarly,
Machine Learning and Deep Learning approaches are computa-
tionally very intensive. They require specific hardware support
as well. Therefore, we have selected the 12 most significant fea-
tures only (Table II) by performing feature relevance analysis to
reduce the computational load. Future work needs to emphasize
on developing less computational, and more efficient algorithms
to measure vital signs.

For continuous monitoring of vital signs, another important
aspect is the Hardware Complexity involved. Current methods
using two physiological sensors are not only computationally
intensive but also the implemented devices are complex. They
require two sensors for acquiring two signals i.e., PPG and
ECG which might be from two different body positions. For
continuous wear, these devices are not comfortable to carry.
However, we have tried to minimize the subject’s distress by
using one pulse oximeter sensor for PPG only. This results in a
simple wearable device that gives continuous estimates of RR
and BP. Such a device is convenient to wear and carry for a long
time use.

V. CONCLUSION

In this paper, we alleviated the problem of patient depen-
dency in the measurement of vital health signs. For diverse
patients with variations in PPG physiology, we proposed a
patient-independent approach using robust Spectro-Temporal
features to increase the reliability of the BP estimation method-
ology. To tackle the variations in extracted physiological features
for RR estimation, we introduced powerful feature selection
measures. We have validated our research findings on a large
database MIMIC having diverse patient cases in different clinical
conditions. The obtained results prove the robustness of our
approach and meet the required clinical standards. Our proposed
approach requires only one physiological signal i.e., PPG to
estimate both vitals i.e., RR and BP. By acquiring single-channel
PPG using one convenient wearable sensor, we have enabled
continuous monitoring of vital health signs in a non-invasive
manner. Our research finds applications in fitness, remote, and
mobile health-care devices such as smartwatches where one can
monitor vital health signs continuously in a non-invasive way
while performing daily life activities.
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