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Abstract: Various formats of forest bathing have been receiving increasing attention owing to their
perspectives in health promotion and the treatment of chronic lifestyle diseases. The majority of
field studies are still being conducted in the Far Eastern region, and they often make psychological
assessments mainly in the green season. In our pretest–posttest field experiment, twelve healthy,
working-age volunteers participated in a 2-h leisurely forest walking program, first in the green
season (May) and then in the winter season (January), in the Mecsek Hills, next to Pécs, Hungary.
Systolic blood pressure decreased after the trips both in late spring and in the winter. Based on
changes in the expressions of CD69, an early activation marker, NKG2D, a major recognition receptor,
perforin, granzyme B, and TIM-3, an inhibitory immune checkpoint molecule, on CD8+ cytotoxic
T, NK, NKdim, NKbright, and NKT cells, we detected the stimulation of NKbright cells and activation
of all examined immune cell subsets in the green season. In the winter, a slight activating and an
interesting balancing effect regarding TIM-3 could be observed considering our finding that basal
(pretest) TIM-3 expression by NK cells was significantly lower in the winter. Our work expands the
knowledge on and potentials of forest medicine.

Keywords: forest bathing; forest walking; season; spring; winter; blood pressure; NK cells; CD69;
TIM-3; immune system

1. Introduction

The effects of the forest environment on human health and well-being have become
a growing field of research interest in the last decade due to its overall beneficial impact.
Field experiments were initialized in Japan investigating the effects of a forest bathing trip
(“Shinrin-yoku”), which is traditionally a three-day/two-night trip to forest areas involving
short, leisurely walks within the forest [1]. Li and colleagues found in a series of studies
that the natural killer (NK) cell number and activity and the percentages of perforin-,
granulysin-, and granzyme A/B-expressing cells among peripheral blood lymphocytes
significantly increased after a forest bathing trip compared to before the trip in healthy
male [2] as well as healthy female subjects [3]. A similar city trip to places without forests
did not lead to such immunological changes [4]. A forest bathing trip also decreased the
adrenaline concentration in urine [3,4], while a city trip did not [4].

The scope of the research field gradually expanded following these principal studies
of Li et al. regarding the examined parameters, the characteristics of the forest environment,
the duration of exposure to these environments, and the participants. The majority of the
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field experiments, however, were still conducted in Japan or other Far Eastern countries,
such as Korea, Taiwan, or China.

A one-day trip to a forest park involving two 2-h walking sessions—a morning
and an afternoon—also resulted in the enhancement of NK activity, number, and expres-
sion of cytolytic molecules, as well as enhancing the drop in blood cortisol and urinary
adrenaline concentrations [5]. In a similarly conducted study, blood pressure (BP) and
urinary dopamine and noradrenaline levels significantly decreased [6]. After a two-day
(one night) forest therapy program with 2.5- and 1-h forest walks on the first day and
then handcrafting on the second day, systolic BP was found decreased in middle-aged
women [7]. A significant reduction in BP was observed in another study, too, involving
office workers, who took part in a 1-day forest therapy program with more than 4 h of
various activities at the forest site [8]. Significantly lower pulse rates and salivary cortisol
levels were revealed in middle-aged females following approximately 3 h of strolling, deep
breathing, and resting in the forest on a forest therapy day [9]. The pulse rate reduced
significantly also in middle-aged males during two 80-min walking sessions in a forest
park, one in the morning and another one in the afternoon, compared to urban walking [10].
A one-day forest recreation program, conducted by Bielinis and co-workers in Poland,
including altogether more than 4 h of forest viewing, listening to sounds, touching forest
items, cuddling up to a tree, and short walking repeated three times consecutively at
three nearby locations led to a significantly lower systolic BP, mean arterial pressure, and
pulse rate [11].

A single 2-h exposure to a forest environment reduced serum interleukin-8 and tumor
necrosis factor-alpha and raised glutathione peroxidase levels compared to results mea-
sured in an urban environment among university students, suggesting an inflammation-
reducing and antioxidant effect [12]. A significant decrease was recorded in both the
systolic and diastolic BP of working-age people who participated in a 2-h forest bathing,
which involved slowly walking around the forest [13]. Yu et al. also observed a significantly
lower systolic and diastolic BP and pulse rate in middle-aged and elderly participants after
a 2-h forest bathing program including guided stimulation of visual, auditory, olfactory,
and tactile senses while walking around the forest site [14].

Even shorter visits to different forest sites or forest parks yielded detectable physiolog-
ical changes. Both a 15-min viewing of the forest landscape and a 15-min walk in the forest
setting were found to lower the BP, pulse rate, and salivary cortisol concentration in healthy
male university students [15,16]. In another study, the pulse rate and salivary cortisol level
reduced markedly following viewing the forest site for 15 min [17]. An approximately
15-min forest walk decreased the heart rate (HR) in young men [18], as well as in young
women [19]. In a study conducted in Helsinki, Finland, a 15-min period of viewing a large
urban forest in a sitting position was associated with a lower systolic BP and lower HR,
and the subsequent 30-min walking period was associated with a lower HR [20].

A three-day bamboo forest therapy session, including staying at, viewing, and walking
around the experimental sites, also decreased the BP and HR and increased NK cell activity
and the levels of perforin, granulysin, and granzyme A/B, while it decreased the level
of corticosterone in peripheral blood lymphocytes of young male participants [21]. The
percentage of activating NK cells rose after a five-day/four-night forest trip with altogether
seven 1.5-h walking sessions compared to before the trip [22]; furthermore, the percentage
of NK cells was higher in subjects living in a forest environment than in those living in an
urban environment [22].

Various formats of forest bathing have been demonstrated to have a favorable impact on
hypertension or high-normal BP [23–28], chronic heart failure [29–31], and chronic obstruc-
tive pulmonary disease in elderly patients [32], and on metabolic syndrome [33], chronic
widespread pain [34], and breast cancer, when applied as adjuvant forest therapy [35].

Further examinations of the physiological effects of forest environments, as well
as their psychological and mental impacts, have been well synthesized in detail in
some reviews [36–43].
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Considering the small number of field experiments conducted outside the Far Eastern
region and investigating immunological effects, the primary aim of our study was to
observe the immunological changes regarding the number and function of CD8+ T cells
and NK and NKT cells, and also the cardiovascular effects in working-age people, generated
by a single session of a 2-h forest bathing in the nearby woods next to Pécs, Hungary, the
location of our university.

The following immune cells or subsets and expressed molecules were in the scope of
our investigations.

CD8+ cytotoxic T cells, which are components of the adaptive or acquired immune
system, and NK cells, which belong to the innate or natural immune system, are both
effector lymphocytes recognizing and killing virus-infected or tumor cells [44–46]. One
pathway of the cytolytic process involves the release of the pore-forming molecule per-
forin and proteolytic enzymes such as the granzymes from cytotoxic granules inducing
apoptosis and thus elimination of the target cells [44–48]. During granule exocytosis, the
lysosomal-associated membrane protein-1 (LAMP-1 or CD107a) presents on the effector
cell membrane. CD107a is upregulated on the surface of cytotoxic CD8+ T cells [49] and NK
cells [50] following stimulation-induced degranulation, and CD107a expression correlates
with NK cell-mediated lysis of target cells, such as K562 cells, rendering CD107a a marker
of NK cell functional activity [50,51].

Natural killer group 2 member D (NKG2D) is a major recognition receptor for the
detection and elimination of various target cells, expressed both on NK cells and CD8+
T cells [52]. In CD8+ T cells, the role of NKG2D is costimulatory, whereby it enhances
T cell receptor (TCR) activation and T cell function [53], while in NK cells, NKG2D is
an activating receptor able to mediate direct killing of target cells [46,53]. NK cells can
be divided into two major subsets based on the density of CD56 on the cell surface.
CD56dim NK cells bear low-density expression of CD56, whereas CD56bright NK cells
express CD56 at a high density [46,54]. Natural killer T (NKT) cells are lymphocytes
originally defined as cells co-expressing T cell (a specific, semi-invariant TCR) and NK cell
markers (CD3+CD56+ cells) [55]. NKT cells are involved in the response to infections and
also in antitumor responses, and intensive research is undertaken related to them in the
field of cancer immunotherapy. NKT cells have several subsets characterized by unique
molecular markers and various functions [56,57].

CD69 appears rapidly on the surface of the plasma membrane following activation
of several immune cells including T cells and NK cells. Therefore, CD69 is considered
to be an early marker of leukocyte activation [58,59]. Immune checkpoint molecules are
inhibitory receptors on the surface of various immune cells, especially on T cells, negatively
regulating the immune response to prevent autoimmune reactions to self-antigens. Besides
autoimmunity, such receptors play a role in the immune defense against infectious diseases
and also in antitumor immunity [60]. Immune checkpoint molecules include programmed
death-1 (PD-1) [61,62] and T cell immunoglobulin and mucin protein-3 (TIM-3) [63], among
others, which are overexpressed on exhausted T cells having progressively lost their
effector functions [61–63].

2. Materials and Methods
2.1. Participants

Twelve working-age volunteers living and working in the town of Pécs, Hungary,
or its agglomeration were recruited to participate in the study. All subjects were ac-
tive workers during the accomplishment of the complete study with ages ranging from
25 to 63 years. Demographic data are provided in Table 1. Due to the relatively broad range
of ages representing working people, strict medical restrictions were used to exclude un-
healthy or potentially unhealthy individuals from the experiments. Autoimmune diseases,
malignancy, acute or chronic inflammation, infection, thyroid disorders, hypertension, car-
diovascular, pulmonary, liver, or kidney diseases, liver or kidney function tests more than
20% higher than the upper limit of normal in the examining clinical laboratory, diabetes,
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neuromusculoskeletal problems, pregnancy, abuse of alcohol or substances, and prior or
current mental illnesses were all exclusion criteria. One person out of all participants
was a regular smoker. Moreover, regular walking, excursion, or exercise in green spaces
were also exclusion criteria; furthermore, no forest walking, excursion, or exercise was
allowed in the last 4 weeks before the experiment based on the findings of Li et al. [4],
who found that the effects of forest bathing on NK cells may last for even 30 days. All
participants were provided with a detailed written description of the study protocol and
the planned sample collections and measurements, as well as the exclusion criteria, and
were enrolled in the study only after giving their full consent. The experimental procedure
was officially approved by the Regional Research Ethics Committee of the Medical Centre,
Pécs, Hungary (ethical registration number: 8099-PTE). The study protocol conforms to the
ethical guidelines of the 2013 revised version of the Declaration of Helsinki.

Table 1. Demographic data of the participants.

Demographic Data

No. of participants n = 12
Females n = 7
Males n = 5

Age (years) (mean, range) 38.5 (25–63)
BMI (mean, range) 24.71 (19.72–30.42)

Smoking n = 1
Status Active workers

BMI: body mass index.

2.2. Study Site and Design

In this pretest–posttest field experimental study, the participants walked for 2 h at an
easy pace with short rests in the nearby recreational woodland area next to the town of Pécs.
Pécs is located south of the slopes of the western part of the Mecsek medium mountains
(Figure 1). The woodland area surrounding Pécs is a recreational territory with pleasant,
sign-posted routes. The start, as well as the endpoint, of the experimental walking route
was the so-called tv tower in the hills at 535 m altitude, which is easily accessible by car
within 20 min from the town and has a parking lot as well.
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special ecological habitat. Overall, an oak forest with sub-Mediterranean features is lo-
cated in this territory, grown on rocky (chalk) and shallow ground. The area is covered 
mainly by various oak species such as Quercus pubescens, Quercus cerris, and Quercus vir-
giliana, as well as by ash (Fraxinus ornus) and linden (Tilia tomentosa). Additional tree spe-
cies include Sorbus torminalis and Acer campestre. The mean age of the trees is almost 115 
years, and no logging or active management is carried out in this region. The ground is 
covered with diverse vegetation including several species of shrubs and herbaceous 
plants. At the time of the May trip, fading wild garlic (Allium ursinum) was also present 
in abundance along the pathway in some areas. 

In order to enhance immersion into the forest environment in the recreational wood-
land site, the walk was slow and five short resting periods were also integrated: two at 
the 2 viewpoints, watching the scenery, then one for quietly listening to the sounds of the 
forest, one for carefully viewing remote and close items in the forest, and one for touching 
at least one optional plant, tree, or rock. Participants were encouraged to breathe deeply 
and slowly throughout the walk and to take notice of the scents of the forest as well. The 
experimental walk was conducted by one of the researchers. The group kept a comfortable 
pace for everyone between the resting periods, and no subject indicated any sign of fatigue 
or feeling tired. 

Figure 1. The study site in the Mecsek medium mountains, north of Pécs, the location of the
University of Pécs (source: Google Maps).
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The experimental forest walk was 6.3 km long, carried out in 2 h along sign-posted
tourist routes including two viewpoints with the sight of the western part of Pécs and the
Mecsek Hills, and also including the southern side of the so-called Rotary Promenade, a
local classical walking trail (Figure 2). The elevation during the whole walking route was
76 m. The woodland area where the walk was going through is a so-called hilltop forest
integrating northern and southern environmental effects leading to the development of a
special ecological habitat. Overall, an oak forest with sub-Mediterranean features is located
in this territory, grown on rocky (chalk) and shallow ground. The area is covered mainly
by various oak species such as Quercus pubescens, Quercus cerris, and Quercus virgiliana, as
well as by ash (Fraxinus ornus) and linden (Tilia tomentosa). Additional tree species include
Sorbus torminalis and Acer campestre. The mean age of the trees is almost 115 years, and no
logging or active management is carried out in this region. The ground is covered with
diverse vegetation including several species of shrubs and herbaceous plants. At the time
of the May trip, fading wild garlic (Allium ursinum) was also present in abundance along
the pathway in some areas.
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Figure 2. Participants walking on the tourist route in May.

In order to enhance immersion into the forest environment in the recreational wood-
land site, the walk was slow and five short resting periods were also integrated: two at
the 2 viewpoints, watching the scenery, then one for quietly listening to the sounds of the
forest, one for carefully viewing remote and close items in the forest, and one for touching
at least one optional plant, tree, or rock. Participants were encouraged to breathe deeply
and slowly throughout the walk and to take notice of the scents of the forest as well. The
experimental walk was conducted by one of the researchers. The group kept a comfortable
pace for everyone between the resting periods, and no subject indicated any sign of fatigue
or feeling tired.

The first 2-h forest walking session took place in May 2017, followed by another one
in January 2018 performed by the same participants. In May, the temperature was 23 ◦C
and the relative humidity was 47% at the time of the walk, on an overall sunny day with
no perceptible wind. In January, the temperature was 4 ◦C and the relative humidity was
81% also on a sunny day with no perceptible wind, but the landscape was covered with
12 cm snow.
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Three days prior to the day of the experimental forest walking program, in the morning
of a normal working day, between 8 and 9 a.m., participants visited the laboratory in our
university, and venous blood was drawn from a cubital vein by a phlebotomist. The next
day after the forest walk, another venous blood sample was obtained from the participants
in the morning, between 8 and 9 a.m., in order to avoid any possible effect of the circadian
rhythm on the investigated parameters.

On the day of the experimental forest walk, the 12 participants and two researchers
met at 2 p.m. at the starting point of the walk, in the parking lot, where they arrived
individually or in small groups (2–3 persons together) by car. After gathering and sitting
for 10 min at rest, blood pressure and pulse rate were measured with a portable automatic
blood pressure monitor (OMRON M3 Intellisense, Omron Corporation, Kyoto, Japan).
After completing the walk, blood pressure and pulse rate were again measured in the same
way following a 10-min rest in a sitting position.

2.3. Measurements

Venous blood samples were used to measure routine laboratory parameters: complete
blood count and differential cell counts (Sysmex XN 2000, Sysmex, Japan), ions, liver en-
zymes, urea, creatinine, C-reactive protein, thyroid-stimulating hormone, and fasting plasma
glucose (Cobas 6000, Roche, Switzerland), and to perform immunological measurements.

Peripheral blood mononuclear cells (PBMC) were separated by centrifugation (1800 rpm,
20 min, 20 ◦C) on a density gradient (Ficoll-Paque, GE Healthcare, Uppsala, Sweden).
Separated cells were counted and stored at −80 ◦C in a mechanical freezer after washing
in RPMI 1640 medium (Lonza, Verviers, Belgium) and resuspending in human serum
(Biowest, Nuaillé, France) containing 10% DMSO (Sigma-Aldrich, Le Chesne, France) for
cryoprotection. On the day of the flow cytometric analysis, cells were thawed and washed
twice in RPMI 1640 medium (Lonza) to remove DMSO.

For the fluorescent labeling of PBMC, the following monoclonal antibodies were
used: fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD3 (Clone: HIT3α,
BD Biosciences, San Jose, CA, USA), Brilliant Violet (BV) 510-conjugated mouse anti-
human CD8 (Clone: SK1, BD Biosciences), allophycocyanin (APC)-conjugated mouse anti-
human CD56 (Clone: B159, BD Biosciences), phycoerythrin (PE)-cyanine (Cy)7-conjugated
mouse anti-human NKG2D (Clone: 1D11, BD Biosciences), BV421-conjugated mouse anti-
human CD69 (Clone: FN50, BD Biosciences), PE-conjugated anti-human PD-1 (Clone:
PD1.3, Beckman-Coulter, Marseille, France), APC/Cy7-conjugated anti-human TIM-3
(Clone: F38-2E2, BioLegend, San Diego, CA, USA), peridinin chlorophyll protein (PerCP)-
Cy5.5-conjugated mouse anti-human perforin (Clone: δG9, BD Biosciences), Pacific Blue-
conjugated anti-human granzyme B (Clone: GB11, BioLegend).

Cell surface staining was performed with 106 thawed PMBC/sample in 100 µL
phosphate-buffered saline (PBS, PAA Laboratories, Pasching, Austria)/tube using the
above listed fluorochrome-labeled monoclonal antibodies to CD3, CD8, CD56, NKG2D,
CD69, PD-1, and TIM-3. After incubation for 30 min at room temperature in the dark, sam-
ples were centrifuged after adding 2 mL PBS (2000 rpm, 5 min, 20 ◦C), and the cells were
resuspended in 300 µL PBS containing 1% paraformaldehyde (PFA). Tubes were stored at
4 ◦C in the dark during the preparation of the intracellular staining. After surface labeling
with antibodies to CD3, CD8, and CD56, cells were fixed in 4% PFA, permeabilized with
1:10 diluted FACS Permeabilizing Solution (BD Biosciences, San Jose, CA, USA), labeled
with monoclonal antibodies to perforin and granzyme B (listed above), and finally fixed
with PBS containing 1% PFA.

The cytotoxic potential of the examined cell types was assessed by the flow cytometric
analysis of CD107a surface expression in a functional test. PBMCs were thawed and
washed, then the number of viable cells was determined by trypan blue (Sigma-Aldrich,
Gillingham, UK) dye exclusion. Then, 106 viable cells were incubated for 4 h at 37 ◦C
in 1 mL RPMI 1640 medium containing 10% fetal bovine serum (Gibco, Paisley, UK),
and 1 µg/mL ionomycin (Sigma-Aldrich) and 25 ng/mL phorbol myristate acetate (PMA,



Int. J. Environ. Res. Public Health 2021, 18, 2067 7 of 19

Sigma-Aldrich) for cell stimulation in the presence of PE-conjugated mouse anti-human
CD107a antibodies (BD BioSciences). After washing in PBS, surface labeling with antibodies
to CD3, CD8, and CD56 was performed, and, finally, the cells were fixed with 1% PFA.

All labeled samples were analyzed with a BD FACS Canto II flow cytometer (BD
Biosciences) with BD FACS Diva V6 software (BD Biosciences) for data acquisition. Flow
cytometer settings were checked using Cytometer Setup and Tracking beads (BD Bio-
sciences) according to the manufacturer’s protocol. To determine compensation values,
spectral overlap values were measured for all fluorophores, via single-color controls. Anal-
ysis of the flow cytometric data was performed with FCS Express V4 (De Novo Software,
Pasadena, CA, USA).

All 4 samples were collected from each single participant of the study, so samples
before and after the late spring trip and samples before and after the winter walk of the
same subject were thawed and processed, labeled, and analyzed parallelly, on the same
day, by the same person, under identical conditions.

The examined cells, their identifying cell surface markers, and the analyzed molecules
expressed on the surface or produced intracellularly are summarized in Table 2.

Table 2. Flow cytometric staining of the analyzed cells.

Analyzed Cells Markers Surface Staining Intracellular Staining Functional Assay

cytotoxic T cells CD3+ CD8+ NKG2D, CD69, PD-1, TIM-3 perforin, granzyme B CD107a
NK cells total CD3- CD56+ NKG2D, CD69, PD-1, TIM-3 perforin, granzyme B CD107a
NKdim cells CD56+ dim NKG2D, CD69, PD-1, TIM-3 perforin, granzyme B CD107a

NKbright cells CD56++ bright NKG2D, CD69, PD-1, TIM-3 perforin, granzyme B CD107a
NKT cells CD3+ CD56+ NKG2D, CD69, PD-1, TIM-3 perforin, granzyme B CD107a

2.4. Statistics

Statistical analysis was performed using the SPSS version 26.0 statistics software
(IBM Corporation, Armonk, NY, USA). A normality test was used to determine whether
sample data were drawn from a normally distributed population. Depending on normality,
comparisons of the means and ranks of the different seasons’ pre–post parameters were
achieved by the paired samples t-test and the Wilcoxon test, respectively, in order to
determine statistically significant parameters (p < 0.05). The independent samples t-test
and the Mann–Whitney test were used for the comparison of the seasons’ pre (basal level)
parameters. The p-values less than 0.05 were considered to be significant.

3. Results

Systolic blood pressure was found to become significantly lower owing to the forest
trip in late spring as well as in winter (Figure 3). No effect could be detected on diastolic
blood pressure or pulse rate (data not shown).

Values of routine clinical laboratory parameters, including total white blood cell
count, granulocyte, lymphocyte, and monocyte counts, red blood cell count, hemoglobin
concentration, platelet count, serum sodium and potassium concentrations, serum levels
of aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), urea, creatinine,
and C-reactive protein, and fasting plasma glucose, measured before the trip did not differ
from the values registered after the trip, either in May or in January (data not shown).

Regarding immune cell subsets, the proportion of NKT cells increased after the May
forest walk, and no other change was found in any subsets, in either walking session
(Table 3).
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Table 3. Proportions of the examined cell subsets (100% = all peripheral blood mononuclear cells;
data are presented as mean ± standard deviation); * p = 0.045 compared to the before value.

Late Spring Winter
Cell Subset Before % After % Before % After %

CD8+ T 17.41 (±5.73) 18.12 (±6.53) 17.52 (±6.98) 18.23 (±5.96)
NK total 17.94 (±6.66) 17.77 (±7.42) 21.83 (±8.84) 20.21 (±9.97)
NKdim 15.96 (±6.05) 16.17 (±6.94) 20.25 (±8.67) 18.42 (±9.39)

NKbright 2.11 (±1.15) 1.75 (±0.84) 1.73 (±1.06) 1.99 (±1.03)
NKT 8.06 (±9.36) 8.91 (±10.48) * 8.30 (±10.39) 7.87 (±8.85)

CD69 expression was shown to become elevated on CD8+ T, total NK, NKdim, and
NKT cells, while it remained statistically unchanged on NKbright cells following the May
intervention, and no alteration could be observed following the January version (Figure 4).

NKG2D expression was revealed to be raised on NKbright and NKT cells after the
late spring session and on total NK and NKdim cells after the winter session without any
change on any other cell subsets in either season (Figure 5).

Perforin and granzyme B expressions by NKbright cells were measured to be signifi-
cantly higher after the forest walk in May, and no other cell subset in either month showed
any change regarding such expressions (Figures 6 and 7).

TIM-3 expression decreased on total NK and NKdim cells following the forest bathing
in May and, on the contrary, increased on total NK and NKdim cells after the same trip in
January. No further changes in TIM-3 expressions could be demonstrated when comparing
pre and post values (Figure 8). PD-1 expression was raised on NKT cells following the
winter tour without any alterations on other cell subsets or in the spring season (Figure 9).

CD107a expressions did not show any significant changes on any cell subsets either in
May or in January (data not shown).
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When comparing the basal (pretest) values of each examined parameter between late
spring and winter, we observed strongly significant differences in the TIM-3 expressions on
total NK and NKdim cells, with the winter values being significantly lower than the spring
values (Figure 8). May and January values of all the other parameters were similar to each
other (Figures 4–7 and 9).

4. Discussion

In our study, twelve actively working adults of various ages participated in a 2-
h leisurely forest walking program immersing in the atmosphere of the woods in the
Mecsek Hills, next to Pécs, Hungary. The first walk was carried out in late spring, in May,
followed by a second identical one in the winter, in January. Certain cardiovascular and
immunological parameters were measured before and after each intervention. Systolic
blood pressure decreased significantly in both seasons as a consequence of the forest walks.
Effects of the May walk included elevated percentages of NKT cells, CD69-expressing total
NK, NKdim, NKT, and CD8+ cytotoxic T cells, NKG2D receptor-expressing NKbright and
NKT cells, and perforin- and granzyme B-expressing NKbright cells, as well as reduced
percentages of TIM-3-expressing total NK and NKdim cells. In the winter, in January, the
percentages of NKG2D receptor-expressing total NK and NKdim cells were raised, and
TIM-3-expressing total NK and NKdim cells, as well as PD-1-expressing NKT cells, also
increased. Furthermore, when comparing the basal (pretest) levels of the investigated
parameters between late spring and winter, we found that the TIM-3 expression of total
NK and NKdim cells was significantly lower in January than in May.

The duration of exposure to the forest environment in field experiments detecting any
physiological changes in the subjects varies from 15 min to a couple of days with complex
forest bathing programs. Differences in parameters related to the immune response could
be demonstrated after a 2-h walk in some studies [1,12] and after longer sessions in
others [21,22]. Since our primary aim was to observe potential cellular immunological
alterations besides blood pressure and pulse rate monitoring, we did not expect any
remarkable changes owing to a forest trip shorter than 2 h. From a preventive medicine
perspective, a 2-h leisurely forest walk seems to be feasible even for untrained persons
and could regularly be fitted into a healthier lifestyle of actively working people as well.
Considering all these aspects, we decided to assess the impact of a 2-h forest trip, both in
the green and the leafless season.

The systolic blood pressure-lowering effect demonstrated by our research work is
in line with several other studies that revealed similar results following 2-h forest walk-
ing [6,13,14]. These studies observed decreased diastolic blood pressure as well, and one
experiment also found a reduced pulse rate [14], while one study did not record significant
changes in the pulse rate [13]. We could not detect alterations either in diastolic blood
pressure or in the pulse rate. There are numerous data available on the generally beneficial
impact of various formats of forest bathing on the systolic and/or diastolic component
of blood pressure and/or the pulse or heart rate [41,64]. Cardiovascular outcomes con-
nected to nature interventions including forest walking and viewing, though, are highly
heterogeneous, according to the evaluation of a recent review [65].

Our study is the first to analyze NK cell subsets, NKT cells, CD8+ cytotoxic T cells,
and stimulatory and inhibitory receptors in the framework of forest bathing. Regarding
cell percentages within the group of peripheral blood mononuclear cells, we detected no
significant changes between before and after the forest trip, except for NKT cells, whose
ratio became higher following the trip in late spring. The levels of perforin and granzyme
B did not change in total NK and NKdim cells, neither did they change in NKT nor CD8+
T cells, but both showed significant increases in NKbright cells after the late spring walk.
Li and co-workers in numerous studies [2–5] and Lyu and colleagues in a bamboo forest
therapy study [21] equally found elevated NK cell percentages and perforin-, granzymes
A/B-, and granulysin-expressing cells in peripheral blood lymphocytes (PBL), as well as NK
cell (PBL) activity. We could not reveal any significant effect on cytotoxic activities of cell
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subsets indicated as CD107a expression. We could record, on the other hand, significantly
raised expressions of CD69, an early activation marker, on almost all examined populations:
NK cells, NKdim cells, NKT, and CD8+ T cells, owing to the late spring walk. The latter
findings are in accordance with the results of the study conducted by Tsao et al. [22],
who obtained elevated percentages of activating NK cells (CD3−/CD56+/CD69+) after
a complex forest trip program, without any change in the proportions of NK cells in
peripheral blood.

Further expanding the scope of our research, the expression of NKG2D, an activating
receptor, increased on NKbright and NKT cells in late spring, while the expression of TIM-3,
an inhibitory receptor, decreased on NK and NKdim cells. The two NK cell subsets, NKdim

and NKbright cells, have different receptor expression profiles. CD56dim NK cells have
high natural cytotoxicity; in turn, CD56bright NK cells are able to produce large amounts
of cytokines following stimulation [46,54]. According to the linear model of human NK
cell development, CD56bright NK cells mature into CD56dim cells, which subsequently
differentiate into adaptive NK cells in response to viral infection [66,67]; furthermore,
beyond their cytokine-producing and regulatory role, CD56bright NK cells may also have
potent cytotoxic functions as demonstrated in an ex vivo expansion study [68]. The
increased NKG2D receptor expression, and the raised perforin and granzyme B production
found only in NKbright cells, but not in the rest of the NK cells, suggest that the size of the
effect induced by the 2-h leisurely forest walk in the Mecsek Hills was able to stimulate
immature cells, but it seems insufficient to impact the cytolytic molecule production of
mature cells. Consistently, we detected the activation of all other cell types including total
NK and NKdim, NKT, and CD8+ T cells, together with decreased inhibition of NK and
NKdim cells, without a change in perforin or granzyme B production by any of them. We
suppose that on a hypothesized scale of the immune system-enhancing potential of forest
bathing, our field experiment generated positive but initial changes to the immune system
of the participants.

While Li and co-workers found significant changes in percentages of NK cells, activity,
and cytolytic molecule expression even after a 2-h long forest walk (after the first day of
forest bathing) in Japanese forests [1], Lyu and colleagues demonstrated such changes after
a three-day bamboo forest therapy session [21]. Jung and colleagues, on the other hand,
reported no effect of a three-day/two-night forest therapy program on NK cell activity [69],
but Tsao et al. revealed activation of NK cells following a five-day/four-night forest
trip [22]. While the 2-h leisurely forest walk generated an increased NK cell number and
activity and expression of anti-cancer proteins in a series of field experiments conducted
by Li et al. [1], we could not detect such explicit changes following our 2-h forest walking
program; however, activation of all examined cell subsets (by increased expressions of CD69
and NKG2D and decreased expression of TIM-3) and increased expressions of perforin and
granzyme B by NKbright cells were revealed in late spring. The directions of the changes
evoked by forest bathing in the two experimental settings are rather similar, and only
the intensity of the effect seems to alter between the two studies. In the works of Li and
colleagues, the subjects took part in a 3-day/2-night trip to forest areas and meanwhile
stayed at a hotel next to the forest, which was mainly composed of coniferous trees such
as Japanese cedar and cypress [1]. Contrary to these conditions, in our experiment, the
participants left the town only for 2 h to accomplish the forest walk, and the major tree
species were oaks, deciduous trees. Not only the duration of the forest walk itself, but also
the duration of the overall exposure to the forest environment may have an impact on the
intensity of the evoked effect on the cells of the immune system.

On the other hand, the composition and other features of the forest, which are unique
characteristics of the experimental site, may influence, to a great extent, the effects of forest
bathing. One study, for example, reported that different tree species, namely, birch, maple,
and oak, and different environmental factors have different effects on the blood pressure
and heart rate [70]. Due to this, results naturally alter to some extent in similar studies,
too. Moreover, the type of the forest at the experimental sites also has a great influence
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on the forest air, the compounds, and the concentrations of phytoncides present in the
air. Various phytoncides from coniferous trees significantly increased human NK activity
and the expression of perforin, granulysin, and granzyme A in in vitro experiments [71]
and raised the percentages and activity of NK cells as well as the expressions of perforin,
granulysin, and granzyme A/B in in vivo human studies [72]. High concentrations of
phytoncides were detected in the coniferous forests in the works of Li and colleagues [1],
while our study took place in a deciduous forest; moreover, we did not collect and analyze
forest air samples, which is a limitation of our experiment. The different composition of
the forest air in the two experimental settings may also account for the differences in the
findings of our study and that of Li et al. [1].

This is the first study that assessed seasonal variations in the effect of the same forest
environment on blood pressure, pulse rate, and immunological parameters in the same
subjects. The majority of forest field experiments evaluated the impact of the green sea-
son. Some works investigated changes evoked by other seasons: Bielinis and colleagues
examined psychological effects (the participants filled in psychological questionnaires) in
winter [73,74]; Song and co-workers also examined psychological effects and, moreover,
showed a lower heart rate due to short walks in urban parks in fall [75] as well as in
winter [76]. A reduction in blood pressure, but not in pulse rate, was observed follow-
ing a half-hour walk in a deciduous forest without leaves in fall in a field experiment
conducted by Janeczko et al. [77]. As for the seasonal impact on the same participants,
Bielinis et al. investigated the psychological effects of viewing the landscape for 15 min
in spring and winter [78], while Brooks and colleagues reported on three studies dealing
with mood measures in different seasons [79]. According to our results, the systolic blood
pressure-reducing effect of the 2-h forest walk in late spring could be reproduced in winter,
suggesting a persistent beneficial effect of the forest environment on blood pressure. Re-
garding components of the immune system, the higher expression of the NKG2D-activating
receptor on NK and NKdim cells in January also suggests slight immune enhancement,
although other activating markers found in late spring were missing in winter.

Interestingly, the expression of the inhibitory receptor PD-1 increased on NKT cells,
and, contradictory to the late spring results, the expression of the other examined inhibitory
receptor, TIM-3, on NK and NKdim cells also became raised following the winter walk.
What is more, the differential basal expression of TIM-3 by NK and NKdim cells in late
spring and in winter was an additional and surprising finding of our study, since we
expected no notable differences in any immunological parameters in time. We were un-
able to find any data in the literature relevant to seasonal variations in TIM-3 expression.
Seasonality, though, contributes, to a great extent, to the onset and exacerbation of autoim-
mune diseases such as multiple sclerosis, systemic lupus erythematosus, psoriasis, and
rheumatoid arthritis, with winter and early spring being the risk factors potentially due to
low vitamin D levels, low melatonin levels, or the increased incidence of certain infectious
diseases [80]. TIM-3, as an inhibitory immune checkpoint molecule, may play a role in the
pathogenesis of autoimmune diseases [81,82]. Based on our finding of a significantly lower
TIM-3 expression in winter by NK and NKdim cells, we may hypothesize that the reduced
inhibition might partially mediate the winter exacerbations. In this case, winter forest
bathing may balance immune regulation by elevating TIM-3 expressions, by enhancing a
favorable inhibition. On the other hand, the decreased inhibition in winter may simply be
an adaptive response to ameliorate the immune defense against pathogens common in the
winter. Lacking further investigations and objective data, only hypotheses can be set up,
which require further research and enlightenment.

The major limitation of our study is the relatively small number of participants. In
the few other field experiments assessing immunological parameters at the cellular level,
the number of subjects varied between 11 and 13 in case of actively working and/or older
people [2–5,22], and one study recruited 60 participants, who were college students aged
between 19 and 24 [21]. The 12 working-age volunteers in our study participated not only
in one forest walking session, but also in another one eight months later, thus enabling us
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to analyze the effects of a late spring and a winter forest bathing on the same participants,
which is a strength of our work. Another limitation is the lack of observation of the duration
of forest walking effects. Blood was drawn from the subjects only before and the day after
the interventions, both in May and in January, which meant admittance to the laboratory
and blood collection four times from a person. We applied for ethical approval with this
protocol presuming that six or more times would put too much strain on the potential
subjects and discourage them from participating.

The lack of an identical experiment featuring walking in a non-forested city area is
a further limitation. Such an experiment would have helped confirm the effects of the
forest environment itself. We designed our study as a pretest–posttest field experiment
carried out in late spring and then repeated in the winter with the same participants.
Finally, another limitation is that we provided only the description of the forest site and
the weather conditions but collected no forest air samples and made no analysis of its
compounds. We are planning to perform such measurements in future studies.

5. Conclusions

In this pretest–posttest experimental forest walking study, blood pressure and pulse
rate, and some cellular components of the immune system and their stimulatory and
inhibitory receptor expression profiles were investigated before and after a 2-h intervention
in late spring and winter involving the same subjects.

Our work demonstrates a blood pressure-lowering and an immune function-enhancing
effect of forest walking, both in May and in January, with a more pronounced effect in late
spring. Our study expands related immunological research, deepens our knowledge on the
cellular and molecular changes generated, and contributes to promoting forest bathing as a
possible useful and effective tool of preventive medicine and forest therapy. More research
in the field, especially physiological changes evoked by winter forests, is warranted.
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