
Frontiers in Oncology | www.frontiersin.org

Edited by:
Meng Xu Welliver,

The Ohio State University,
United States

Reviewed by:
Loredana Urso,

University of Padua, Italy
Natasha A. Jain,

Deaconess Henderson Clinic,
United States

*Correspondence:
Lauren A. Byers

lbyers@mdanderson.org

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 12 August 2021
Accepted: 29 September 2021

Published: 21 October 2021

Citation:
Cargill KR, Hasken WL, Gay CM and
Byers LA (2021) Alternative Energy:

Breaking Down the Diverse Metabolic
Features of Lung Cancers.
Front. Oncol. 11:757323.

doi: 10.3389/fonc.2021.757323

REVIEW
published: 21 October 2021

doi: 10.3389/fonc.2021.757323
Alternative Energy: Breaking
Down the Diverse Metabolic
Features of Lung Cancers
Kasey R. Cargill , William L. Hasken, Carl M. Gay and Lauren A. Byers*

Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston,
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Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse.
From the initial observation that cancer cells preferentially ferment glucose to lactate,
termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity
and mitochondrial metabolism are also important for tumor growth, the complex
mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in
metabolism must be further investigated in order to identify unique therapeutic targets for
individuals afflicted by this aggressive disease. Although novel therapies have been
developed to target metabolic vulnerabilities in a variety of cancer models, only limited
efficacy has been achieved. In particular, lung cancer metabolism has remained relatively
understudied and underutilized for the advancement of therapeutic strategies, however
recent evidence suggests that lung cancers have unique metabolic preferences of their
own. This review aims to provide an overview of essential metabolic mechanisms and
potential therapeutic agents in order to increase evidence of targeted metabolic inhibition
for the treatment of lung cancer, where novel therapeutics are desperately needed.

Keywords: lung cancer, metabolism, metabolic inhibitors, glycolysis (Warburg effect), oxidative phosphorylation
INTRODUCTION

Lung cancer continues to be recognized as the leading cause of cancer-related deaths in the United
States (1). Non-small cell lung cancer (NSCLC) accounts for around 85% of all lung cancers and
includes adenocarcinoma (40-50%), squamous cell carcinoma (SCC; 25-30%), and large cell
carcinoma (3-10%) (2, 3). Approximately 25% of these tumors are diagnosed early in disease
progression when surgical resection is the primary treatment leaving them with a 60% five year
survival rate (2, 4). Unfortunately the remaining diagnoses are ineligible for surgery due to advanced
disease and receive frontline chemotherapy or radiation and have a five year survival rate of 23% (2).
In comparison, SCLC accounts for 15% of all lung tumors, but has a substantially lower five year
survival rate of only 7% (1). SCLC is not routinely resected due to frequently advanced staging at the
time of diagnosis, therefore despite recent advances in chemo- and immunotherapies, prognosis
remains poor. The dismal survival rates and rapid relapse among all types of lung cancer, highlights
the importance of research into personalized therapeutic strategies.

Many cancer investigations have underscored the significance of altered metabolic phenotypes in
both the tumor and tumor microenvironment (TME), however few studies in lung cancer (both
NSCLC and SCLC) have been aimed at understanding the contribution of metabolic dysregulation
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to disease progression and therapy response. This review aims to
provide an overview of essential metabolic mechanisms and
potential therapeutic agents in order to increase evidence of
targeted metabolic inhibition for the treatment of lung cancer.
LUNG CANCER AS A
METABOLIC DISEASE

Cancer metabolism has been a prominent avenue of
investigation since the 1920s when Dr. Otto Warburg classified
what is now known as the Warburg effect (5, 6). This observation
that cancer cells exhibit enhanced glucose metabolism over the
more efficient oxidative metabolism became a hallmark of the
disease and is still a widely accepted and investigated
phenomenon. The Warburg effect is comprised of three main
aspects: 1) enhanced glucose uptake 2) increased lactate secretion
and 3) decreased oxidative metabolism (Figure 1) (7–9). Dr.
Warburg originally attributed the decrease in oxidative
metabolism to mitochondrial dysfunction; however this
hypothesis has since been disputed. While some tumors do
exhibit loss of mitochondrial density or altered dynamics
rendering the organelle non-functional, other types retain their
oxidative metabolic capacity entirely and may even up-regulate
oxidative mechanisms of nutrient production, particularly in
chemoresistant tumors (8, 10). This suggests that cancer cells are
adaptive in terms of the metabolic pathways needed for
tumorigenesis and cancer persistence. Therefore, today it is
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realized that each cancer needs to be independently evaluated
for metabolic pathway utilization. These crucial differences in the
metabolic preference of cancer are at the forefront of
investigation and may hold the key to identifying novel
molecules for therapeutic targeting with broad application to
the personalization of cancer medicine.

Metabolic Pathways Contributing
to Cancer
Increased aerobic glycolysis characterized by uptake of glucose
and lactate secretion is the most notable effect described by
Warburg (7, 8, 11). This phenomenon is observed in many
cancers, however the mechanisms driving this phenotype are
significantly more complex. For example, several oncogenic
pathways have been implicated in the up-regulation of
glycolysis, including MYC, PI3K-Akt-mTOR, and stabilized
HIF-1/2a to name a few (Table 1) (8, 29–31). Collectively,
these pathways are involved in increased expression of almost
every enzyme in the glycolysis pathway. More recently,
mechanisms such as HIF stabilization have been shown to
concurrently down regulate mitochondrial pyruvate oxidation
(32, 33). Other such mechanisms also exist including regulation
through reactive oxygen species (ROS) (34). Apart from
suppression of mitochondrial respiration, several reports have
revealed that mitochondria may also be crucial for energy and
biosynthetic precursor generation as well (35–37), but this has
been less readily interrogated. Because of the complexity and
differences of metabolic regulation in cancer cells, an emerging
A

B

FIGURE 1 | Normal and cancer cell metabolisms. (A) Common normal, non-cancerous metabolic pathways predominantly utilized by the cells. Bold arrows indicate
increased flux of pyruvate into the mitochondria for the generation of ATP. (B) Highly proliferative cancer cell metabolism utilizes numerous pathways to generate
energy, nucleotides, lipids, and amino acids. Bold arrow indicates preferential conversion of pyruvate to lactate, known as the Warburg effect.
October 2021 | Volume 11 | Article 757323

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cargill et al. Metabolic Features of Lung Cancers
hypothesis is that the metabolic profiles of individual cancer cells
may be as heterogeneous as the tumor itself.

Metabolic reprogramming is just one hallmark of cancer that
serves to facilitate rapid cellular proliferation, avoidance of cell
death, and mitigation of stress responses. Although non-
cancerous, terminally differentiated cells rely on oxidative
phosphorylation (OXPHOS) to meet energy demands, cancer
cells require nucleotides [generated by the pentose phosphate
pathway (PPP)], reducing equivalents [generated by glycolysis,
the PPP, and the tricarboxylic acid cycle (TCA)], and amino
acids (taken in from the TME or generated predominantly from
the PPP or TCA) in addition to energy produced from glycolysis
and OXPHOS to adapt to constant changes in their environment
(Figure 1). See the following review for an in-depth overview of
the aforementioned metabolic pathways in lung cancer (38). In
addition to these biomolecules supporting tumor growth, many
metabolites also play a role in anti-apoptotic signaling and
interaction with the TME (39, 40). The current literature
depicting the metabolic processes provides insight into why
lung cancers exhibit aggressive tumor growth, making it the
number one cause of cancer-related deaths (1, 41).

Non-Small Cell Lung Cancer
Although the morphological and genetic components leading to
NSCLC are largely known, long-term survival of disease remains
inadequate despite recent advances in personalized treatment
and immunotherapies (42, 43). Thus, recent studies have been
aimed at elucidating the metabolic properties and vulnerabilities
driving NSCLC (44). Unlike some cancers that exhibit clear-cut
dependence on a particular metabolic pathway, NSCLC utilizes
multiple pathways to drive proliferation (44)—however it is
unclear whether these pathways operate simultaneously or
arise due to the heterogeneous cell population found in
the diverse tumor environment. Studies investigating the
mechanisms that dictate tumor growth have shed light on the
importance of cellular metabolism in driving disease and have
become the focus of several therapeutic opportunities (17, 18).
While these reports show metabolic reprogramming is a
contributor to cancer, few treatment options have progressed
through early stage clinical trials despite promising pre-clinical
results. In NSCLC specifically, recurrently mutated oncogenes
and tumor suppressors (TP53, EGFR, KEAP1, and others) have
Frontiers in Oncology | www.frontiersin.org 3
been implicated as regulators of metabolism and major drivers of
metabolic reprogramming (Table 1) (44).

To determine whether metabolic heterogeneity is related to
increases in both glycolysis and TCA cycle intermediates,
one study profiling 80 NSCLC human cell lines found that
the ratio of glucose utilization and lactate secretion varied
greatly between samples indicating that the Warburg effect is
not a universal characteristic of NSCLC (44). In fact, NSCLC
can be divided into at least glycolysis-dependent and OXPHOS-
dependent subtypes (45). NSCLC cell lines subjected to Seahorse
extracellular flux analysis treated with either metformin
(OXPHOS inhibitor) or a MCT4 (lactate) inhibitor found that
OXPHOS-dependent cells were sensitive to metformin, whereas
cellular proliferation was attenuated by MCT4 inhibition
specifically in the glycolysis-dependent cells (45). Other
investigations have shown that NSCLC cells also take in lactate
through MCT1 lactate transporters to utilize as a carbon source
in the TCA cycle and lipid biosynthesis (36, 38, 46). This suggests
that an increased flux through glycolysis may directly supply
lactate for paracrine reuptake to meet both aerobic and anaerobic
cellular demands. Although cell lines are a valuable tool for
investigating the complexities of metabolism, the differences
between immortalized cell lines and primary resected tumors
adds difficulty to teasing apart metabolic discrepancies
between studies.

Several studies have interrogated the cellular and genetic
discrepancies among the most common subsets of NSCLC—
adenocarcinoma and squamous cell carcinoma (SCC) (2),
therefore is likely that there are metabolic differences as well.
Resected human adenocarcinoma and SCC tumors subjected to
stable isotope tracing indicated that squamous cell carcinoma
relies on NOTCH1-driven glucose and glutamine catabolism to a
greater extent than adenocarcinoma, suggesting enhanced
glycolysis is a crucial driver for the quick progression of SCC
(22, 47). A 24-gene signature comprised of glycolysis (ALDOC,
GAPDH, PGAM, and TPI), PPP (G6PDH and TALDO1),
nucleotide synthesis (CTPS1, GMPS, PAICS, and UMPS),
amino acid biosynthesis (AHCY, ASNS, BDH1, CKMT1,
GCLM, GGH, GSS, MTHFD2, PSAT1, and SHMT2), and TCA
cycle (GOT2, IDH2, MDH2, and ME1) genes was elucidated
between SCC and adenocarcinoma and conferred a worse
outcome in SCC patients (22). In addition to gene expression,
TABLE 1 | The effect of genetic mutation on metabolism.

Gene Mutation Expression Change Altered Pathway References

EGFR ↑ Glycolysis Nucleotide metabolism Jin et al. (12); Bethune et al. (13)
KEAP1 ↓ Glutaminolysis Romero et al. (14)
KRAS ↑ Fatty acid metabolism GlycolysisPPP Jin et al. (12); Pupo et al. (15); Jančík et al. (16); Padanad, et al. (17)
LKB1 ↓ Glutaminolysis Galan-Cobo et al. (18)
MYC ↑ Fatty acid metabolism Glutaminolysis Glycolysis Chalishazar et al. (19); Rapp et al. (20); Marengo et al. (21)
NOTCH1 ↑ Glutaminolysis GlycolysisOxidative phosphorylation Sellers et al. (22); Zou et al. (23)
NTRK1 ↑ Glutaminolysis GlycolysisOxidative phosphorylation Vaishnavi et al. (24); Yang et al. (25)
P53 ↓ Glycolysis Jin et al. (12)
PTEN ↓ Glycolysis Jin et al. (12); Georgescu (26)
RB1 ↓ Amino acid metabolism GlycolysisNucleotide metabolism Bhateja et al. (27); Mandigo et al. (28)
Lung cancers typically acquire specific genetic mutations leading to tumor formation and progression. Several commonly mutated genes lead to metabolic changes that result in therapy
resistance. ↑ indicates increased expression; ↓ indicates decreased expression.
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enzymatic activity was enhanced across 10 glycolytic enzymes in
SCC compared to adenocarcinoma, which correlated to the
NOTCH pathway (including MYC expression) (22).
Interest ingly , in addit ion to glycolysis , TCA cycle
intermediates, fatty acid synthesis biomolecules, and reducing
equivalents were all increased in SCC, however it is hypothesized
that this is to regenerate NAD+ for glycolysis (22). Another
explanation is that NSCLC has uniformly enhanced
bioenergetics or more likely, it is comprised of glycolytic and
oxidative regions that are challenging to delineate and will
require more sophisticated single cell analysis.

Other recent clinical work performed 13C-glucose diffusion in
nine NSCLC patients and found an increase in glucose and TCA-
derived metabolites (i.e. lactate, citrate, glutamate, and malate)
(48). Of these patients, four had EGFR mutations, two harbored
KRAS mutations, and the remaining three did not have either
mutation (48). The group further showed that neither mutation
status conferred unique metabolic alternations (48). Although
mutational status was not predictive of the exact metabolic
changes that would be induced in a patient, which may in part
be due to the small sample size, these mutations are quite
common among NSCLC. In fact, lung adenocarcinoma can be
classified by genetic mutations in TP53 (46%), KRAS (32%),
EGFR (27%), and KEAP1 (23%), among others (14, 49, 50) and
SCC may have mutations in TP53 (90%), KEAP1 (31%), and
PTEN (15%) and others (Table 1) (50–52). Further, these
mutations may provide insight into the metabolic state of each
cancer type.

TP53 mutations, implicated in both adenocarcinoma and
SCC, have profound significance in altering metabolism. Wild
type p53 plays a role in maintaining OXPHOS by assembling
complexes of the electron transport chain while simultaneously
inhibiting glycolytic enzyme transcription and the oxidative
branch of the PPP (38). In line with these observations, p53
expression has been identified as a biomarker of resistance to the
glycolysis inhibitor 2-deoxy-D-glucose (2DG) such that p53-
deficient NSCLC cells (H358) exhibit significantly reduced ATP
levels accompanied by profound oxidative stress when treated
with 2DG (53) suggesting that glycolysis inhibition would be
preferentially beneficial in tumors lacking p53.

EGFR mutations occur most often in lung adenocarcinomas
and play an important part in mediating global metabolic
reprogramming. Alterations in EGFR commonly result in the
Warburg effect through stabilization of glucose transporters.
Further, signaling through the PI3K/AKT/mTOR pathway
promotes glycolysis by regulating the localization of glucose
transporter GLUT1 to the plasma membrane in EGFR-mutated
NSCLC (54). Moreover, glutaminolysis is increased and
inhibition with erlotinib in combination with CB-839
(glutaminase inhibitor) in EGFR-mutated tumors resulted in
tumor regression (55). This sets precedence for combinatorial
approaches targeted at altered metabolism and genetic mutations
in lung cancer.

KRAS activating mutations are common andmutually exclusive
to EGFR mutations. In vivo lung tumors with depleted KRAS
exhibit reduced glycolysis and lipid gene expression leading to
Frontiers in Oncology | www.frontiersin.org 4
reduced uptake of these associated metabolites, consistent with
reports that show KRAS overexpression up-regulates these
pathways (17, 56). Further, inhibition of the glycolysis pathway
with 2DG in KRASmutant NSCLCmodels significantly attenuated
cell line and tumor growth (57). Because the mutant form of KRAS
has thus far been untargetable by conventional chemotherapeutic
agents, it is advantageous to identify targets enhanced by this KRAS
mutation (51). To this affect, studies have been aimed at
investigating targetable mechanisms downstream of the
mutation, including the consequential metabolic reprogramming
that occurs. This serves as yet another example of how targeting
major metabolic pathways may lead to treatment options capable
of reducing tumor growth regardless of mutation status.

KEAP1 mutations often occur concurrently with KRAS
mutations in adenocarcinomas, however can occur independent
of KRAS particularly in SCC (14, 58). Although KRAS mutant
tumors are largely characterized by glucose and lipid metabolizing
pathways, KEAP1 mutations are also highly dependent on
glutamine (14). This glutamine dependence has been
therapeutically targeted with CB-839 in lung adenocarcinoma
xenografts which revealed decreased tumor growth rates (14).
Interestingly, KEAP1 loss also decreases the production of ROS
and enhances resistant to oxidative stress (58). This is through the
regulation of NRF2 protein stability, a mediator of pathways
including cellular stress, autophagy, proliferation, and metabolism.
Together, KEAP1/NRF2 coordinate to reprogram cancer cells
towards pathways that support glycolysis, mitochondrial
respiration, and amino acid biosynthesis (14, 59).

Lastly, LKB1 inactivation or mutation occurs in nearly 20% of
NSCLC cases, and, similarly to KEAP1 mutations, occur
concurrently with KRAS mutations in 7-10% of NSCLCs (60).
LKB1 canonically phosphorylates the family of AMP-related
kinases, which are major sensors of cellular energy that target
mitochondria and fatty acid metabolism pathways. Due to this,
LKB1-deficient lung cancer cells were preferentially susceptible
to the mitochondrial electron transport chain complex I
inhibitor phenformin (60). This effect was not seen with the
similar agent metformin nor the glycolysis inhibitor 2DG, due to
an induction of ROS leading to increased mitophagy (60). In
addition to LKB1 and KRAS concurrent mutations, KEAP1
inactivating mutations are also often enriched for simultaneous
KEAP1 mutations. Collectively, these three mutations
cooperatively drive dependence on glutamine and thus, are
sensitive to CB-839 in vitro and in vivo (18). These data
indicate that LKB1 mutations do not reprogram towards
glycolysis and instead are reliant on OXPHOS to drive
tumor progression.

Studies such as these, that elucidate the contribution of
mutational status to metabolic rewiring, lay the foundation for
use of metabolic modulators in NSCLC. Although, it is clear that
additional phenotyping across cell lines and primary tumors is
required to identify biomarker predictors of metabolic pathway
utilization. In addition to this, it is likely that metabolic
signatures of tumors may be regulated by addition mechanisms
including DNA methylation (44). It is evident that there are
numerous contributors to cellular metabolism. Much like the
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genetic heterogeneity seen in solid tumors, there is growing
evidence that NSCLCs exhibit localized regions in the tumors
that may have different nutrient requirements, which may be
dependent on various factors including nutrient availability,
oxygenation, and immune infiltration (48).

Small Cell Lung Cancer
Unlike NSCLC, SCLC is characterized by universal loss of RB1 and
TP53 and traditionally diagnosed, classified, and treated as a single
disease (Table 1) (51, 61–64). The evolution of SCLC subtyping has
occurred over the past 30 years starting with the observation that
SCLC cell lines had two prominent biochemical signatures, which
resulted in classification of classical and variant subtypes (65).
Moreover, the variant subtype was further divided into categories
dependent on unique biochemical, morphological, and growth
properties (66). Once this initial characterization was established,
several studies began looking at the uniquemolecular signatures (67,
68), which included the identification of the neuroendocrine
transcription factor subtypes ASCL1 (67, 69, 70) and NEUROD1
(67, 79), the non-neuroendocrine, tuft-cell variant classified by
POU2F3 (67, 71), MYC-driven populations (19, 68), and YAP/
TAZ variant phenotype (67, 72). Although much effort has been
directed towards finding an appropriate characterization system,
less is known about the metabolic preferences and pathway
utilization, which may further delineate SCLC.

SCLC is most notably characterized by loss of RB1 and P53, both
of which regulate various metabolic pathways (Table 1) (28, 73–75),
therefore the observation of metabolic differences based on these
alone would not provide unique and targetable pathways.
Metabolically, the most well studied subcategories of SCLC are
driven by ASCL1 and MYC expression. ASCL1 is a transcription
factor dictating neuroendocrine lineage that can be stratified into
ASCL1high and ASCL1low populations (76). Interestingly, ASCL1low

cell lines and tumors often highly express the transcription factor
MYC, which is implicated in approximately 20% of SCLC (68, 73,
76). The ASCL1Low/MYCHigh phenotype also typically has high
NEUROD1 [in cell lines and genetically engineered mouse models
(GEMMs)] or POU2F3 (in patient tumors) expression, however
this discrepancy between cell lines, mouse models, and patient
tumors is not well understood (73, 74, 77, 78).

Combined metabolic and transcriptional profiling of a panel
of 29 SCLC cell lines and 47 primary SCLC tumors revealed that
ASCL1 was the top differential gene delineating two major
metabolomics profiles (76, 79). The identified metabolites were
linked to nucleotide biosynthesis, amino acid metabolism, and
the TCA (76). Interestingly, several purine, but not pyrimidine,
nucleotides were significantly elevated only in the ASCL1Low cell
lines (76). Similarly, transcriptional data from 81 patient tumors
(74) revealed that genes linked to purine synthesis (IMPDH1 and
IMPDH2) were also enriched in approximately 20% of the
tumors that also had low ASCL1 expression (76). Moreover,
MYC expression strongly correlated with IMPDH1 and IMPDH2
and ChIP-seq experiments confirmed direct MYC binding to the
promoter region of these genes (76). This led to a hypothesis that
IMPDH may be a targetable biomolecule and CRISPR/Cas9
IMPDH1 knockdown and treatment with the IMPDH inhibitor
Frontiers in Oncology | www.frontiersin.org 5
mycophenolic acid (MPA) both lead to significant decreases in
cellular viability in treatment-naïve and chemoresistant SCLC
(76, 79). Clinically, this provides a basis for investigation into the
use of IMPDH inhibitors such as MPA and mizoribine, but also
may in part explain why anti-folates and nucleoside
analogues are moderately successful in NEUROD1 and
POU2F3-expressing SCLC, which commonly exhibit MYC
overexpression (78, 80).

In addition to nucleotide synthesis, the ASCL1LowMYCHigh

phenotype has also been implicated in alterations in amino acid
and polyamine synthesis in SCLC (19, 76). Tumors from ASCL1-
driven Rb1fl/fl;p53fl/fl;Ptenfl/fl (RPP) mice and MYC-driven
(NEUROD1 phenotype) Rb1fl/fl;p53fl/fl;MycT58ALSL/LSL mice
exhibit metabolically distinct patterns with particular
enrichment in the arginine and proline biosynthesis pathways
(19). In line with this, inhibition of polyamine biosynthesis with
NOS, ODC1, or mTOR inhibitors and siRNAs against ODC1
reduced cellular proliferation and viability in MYC-driven SCLC
cell lines (19). Moreover, metabolic distinctions between
treatment-naïve and chemo-resistance revealed that chemo-
resistant cell lines exhibited a dependence on arginine and
polyamine biosynthetic pathways as well as the mTOR
pathway that was directly modulated by MYC expression (19).
Not only does MYC play a key role in the metabolic phenotype of
SCLC, but also in the evolution of the molecular subtype profile
(19). MYC has been shown to regulate the dedifferentiation of
ASCL1+ neuroendocrine cells through promotion of Notch
signaling to support the evolution of NEUROD1+ and YAP1+
cells (19). While MYC has not been directly implicated in the
emergence of chemo-resistance, MYC-driven fluctuations in
Notch signaling activation and metabolic alterations may
contribute to the plasticity of SCLC subtypes and appearance
of subtype evolution or tumor heterogeneity (19, 78, 81, 82)

Nucleotides and amino acids are essential for the rapid
proliferation that characterizes cancer; however, the specific
pathways that generate these biomolecules are relatively
understudied in SCLC. With the recent introduction of molecular
subtyping and the initiative to discover subtype-specific therapies,
metabolic profiling may offer valuable insight into new therapeutic
targets. Although, current pathway analysis is limited, Morita et al.
performed an investigation into the role of the glycolysis enzymes
PKM1 and PKM2 in neuroendocrine SCLC (80). PKM1 is often
expressed in terminally differentiated cells, while PKM2 is more
commonly expressed by proliferating cells and cancer regulated by
MYC (83). PKM2 is therefore likely favored by cells exhibiting the
Warburg effect, whereas PKM1 is preferred by more oxidative
tumors in most cases (84, 85). In a pan-cancer analysis, the
PKM1/PKM2 ratio was higher in SCLC compared to several
other types of cancer, however it is important to note that PKM1
was still not the major PK isoform expressed (only 16-38%) (80).
PKM1was also found to be required for PKM2 activation leading to
cellular proliferation and exclusive expression of PKM1 facilitated
active flux of glucose-derived carbons into the TCA with reduced
lactate production (80). With the regulation of both glucose
catabolism and OXPHOS by PK isozymes, inhibitors of these
crucial pathways may prove effective. Unfortunately, there are no
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current investigations into the use of glycolysis inhibitors, however a
Phase II clinical trial with CP-613 has been conducted in a small
cohort of 12 patients with relapsed SCLC (86). CP-613 is a lipoate
analogue that targets pyruvate dehydrogenase (PDH) and alpha-
ketoglutarate dehydrogenase (KGDH), two key mitochondrial
enzymes. Although efficacy was poor with no partial or complete
responses, all 3 patients who subsequently were treated with
topotecan exhibited robust response (86). Moreover, in vitro
combination of CP-613 with topotecan was synergistic and offers
evidence for a combinatorial approach of metabolic inhibitors and
chemotherapy in future investigations (86).

Large cell neuroendocrine carcinoma (LCNEC) is a rare form
of lung cancer (approximately 3%) associated with TP53 (86%)
and/or RB1 (36%) gene alterations (Table 1) (3, 87). While
LCNEC is classified as a variant of NSCLC, the transcriptional
properties and clinical treatment regimen is quite similar to
SCLC (3, 88). An integrative genomic and transcriptomic
profiling of LCNEC revealed two subclasses: Type I
(ASCL1High/DLL3High/NotchLow) and Type II (ASCL1Low/
DLL3Low/NotchHigh). Type I LCNEC shared closest similarities
with classic ASCL1-driven SCLC and exhibited increased
expression of genes involved in energy generation, OXPHOS,
ETC/ATP synthase pathways (88). This suggests that ASCL1-
driven SCLC and Type I LCNEC are more reliant on
mitochondrial respiration rather than the Warburg effect (88).
While we can extrapolate that Type II LCNEC is more similar to
variant NEUROD1- or MYC-driven SCLC, further metabolomic
profiling is required.
NUTRIENT COMPETITION AND THE
TUMOR MICROENVIRONMENT

With the recent emergence of immunotherapies (specifically,
immune checkpoint blockade; ICB) and their usage in both
NSCLC and SCLC, it is crucial to understand the role of
metabolism in the regulation of an immune response in
cancer. As previously demonstrated in this review, therapeutics
for cancer have the ability to alter cellular metabolic programs
used by cancer cells. Understanding the metabolic changes that
occur as a result of therapy may shed light on new opportunities
for combinatorial treatments that are more beneficial than front
line therapies. Importantly, immune cell activation, expansion,
and function require the same nutrients and metabolic pathways
as cancer cells, with a specific dependence on glycolysis (40).
Since tumor cells are often highly glycolytic, they outcompete
immune cells for glucose, amino acids, and fatty acids leading to
immune dysfunction and an inability to clear tumor antigens
(Figure 2). This nutrient competition has also been implicated in
driving tumor progression (40, 89). In addition to hoarding
glucose, cancer cells have the unique ability to evade the immune
system via metabolite secretion (lactate) and expression of
immune checkpoint molecules (PD-L1), both of which
decrease immune cell cytokine production (IFN-g), glycolysis,
and immune cell expansion (Figure 2) (90). This environment
favors cancer persistence and leads to decreased immune cell
Frontiers in Oncology | www.frontiersin.org 6
function while promoting an anti-inflammatory environment
that confers tolerance to the growing tumor.

The major product of the Warburg effect, lactate, is secreted
into the tumor microenvironment (TME) by rapidly
proliferating tumors (3, 36, 46, 91). This serves to acidify the
TME region, which 1) fuels mitochondria 2) suppresses the
immune system and 3) promotes metastasis through therapy
resistance (Figure 2) (91). The metabolic heterogeneity of
tumors allows for glycolytic and oxidative cells to work
symbiotically through a bidirectional pyruvate to lactate
conversion (91). As previously discussed in NSCLC, glycolytic
cells secrete lactate through MCT4 while oxidative cells uptake
lactate through MCT1 (46, 91), which maintains an acidic TME
while providing fuel for de novo amino acid, nucleotide, and fatty
acid synthesis. Moreover, a result of oxidative metabolism is
ROS, which act as signaling molecules to suppress immune
function (92, 93). More directly however, a decreased pH, due
to lactate secretion, augments signaling pathways of immune
cells, rendering them incapable of efficient activation through the
down regulation of glycolysis-promoting mechanisms, leading to
T cell exhaustion, apoptosis, and a pro-tumoral M2 macrophage
phenotype (Figure 2) (91).

Current investigations have examined the efficacy of ICB as a
single agent and in combination with chemotherapy and
glycolysis inhibitors and found that glycolysis inhibition does
not negatively affect immune function, since these drugs are
taken in most rapidly by glucose-addicted cancer cells (94).
Together, metabolism and nutrient availability are important
factors that dictate the microenvironment’s ability to promote
immune evasion and tumor progression. In addition to altering
the metabolic reprogramming required for proper immune cell
activation, many tumors, including NSCLC and SCLC, express
immune checkpoint molecules, such as PD-L1 (89). PD-L1-
expressing tumor cells engage with PD-1 on lymphocytes to
actively suppress immune cell expansion and effector function
(Figure 2) (89). Apart from this, PD-L1 and glycolysis have been
shown to be positively correlated, although it is currently unclear
whether PD-L1 expression enhances glycolysis or vice versa. One
study has shown that glucose deprivation lead to an up-
regulation of PD-L1, while siRNA knockdown of PD-L1
likewise decreased expression of glycolysis enzymes
(specifically PFKFB3) in NSCLC cell lines (95). Further,
another investigation found that PD-L1 increased expression of
the glycolysis enzyme HK2 in SCC NSCLC (96). These studies
suggest that PD-L1 may be directly involved in the up-regulation
of glycolysis and elude to potential signaling mechanisms such as
PI1K/AKT/mTOR, EGFR, and HIF-1a (95–98). Interestingly,
other investigations have concluded that the metabolic switch
towards glycolysis is essential for PD-L1 overexpression (99,
100). Regardless of the mechanisms leading to synergy between
glycolysis and PD-L1, it is clear that their up-regulation
facilitates immune dysfunction and is associated with poorer
survival (99, 101). Due to this, it would be interesting to
investigate the ability of PD-L1 to be a potential biomarker of
highly glycolytic tumors, which would allow for metabolic
intervention with inhibitors of the glycolysis pathway. While
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use of ICBs have variable success in the clinic, combinatorial
therapies utilizing frontline chemotherapy and ICB plus
glycolysis inhibitors may be more effective to restore the
nutrient balance in the TME and promote reinvigoration of
the immune system to promote tumor clearance.
METABOLIC IMPLICATIONS OF THERAPY
IN LUNG CANCER

Fueling Resistance: Metabolic Alterations
and Standard of Care
Current frontline efforts aimed at mitigating lung cancer is
highly dependent on the subtype of disease and stage of
progression at the time of diagnosis. Regardless of the
treatment regimen, the baseline metabolic profile of the tumor
plays a role in therapy sensitivity and rate of relapse. Cisplatin (a
common platinum-based chemotherapy) resistance in particular
is thought to be a result of lung cancer with a more oxidative
phenotype, characterized by increased mitochondrial density,
ROS, and dependence on glutamine and fatty acid oxidation
mechanisms (102–105). Carboplatin (another platinum-based
chemotherapy) resistance, however is associated with a greater
dependence on glycolysis, possibly mediated by MYC expression
(102, 106, 107). It is unclear whether these profound differences
in resistance mechanisms are due to metabolic reprogramming
events triggered by the treatment or whether the treatment
Frontiers in Oncology | www.frontiersin.org 7
selectively targets cells utilizing specific pathways from a
metabolically heterogeneous population.

The recent approval of immunotherapies to be used as a
standard of care has offered benefit to only subsets of patients
(108). Understanding the role of immunotherapy in altering both
tumor and immune metabolisms could provide key insights into
why the rates of relapse for NSCLC and SCLC have not
dramatically changed since this advancement. As previously
discussed, the tumor and the immune system are in constant
competition for access to the essential nutrients required for
expansion of both cell populations. Therefore, optimal inhibition
would block nutrient flux into the tumor leaving the essential
molecules in the TME for immune activation. The addition of
immunotherapy enhances mitochondrial activity and ROS
production in tumor cells, which serves to divert glucose to the
immune cells, and thus promoting activation unless terminal
exhaustion has been attained (40, 109). ROS, however, can act
as a double- edged sword for the immune system. While the
canonical role is often associated with cytotoxic capabilities and
promotion of DNA damage, another emerging role for ROS is as
critical secondary messengers important for T cell differentiation
and function (110). Metabolically, low to moderate levels of ROS
are required for T cell metabolic reprogramming towards aerobic
glycolysis upon T cell activation, and use of a manganese
metalloporphyrin (ROS scavenger) significantly reduced
function and engagement in the glycolysis pathway (111). In the
TME, similar studies suggest that ROS levels exceed an
advantageous amount, therefore a strict balance is required for
FIGURE 2 | The interplay between tumor metabolism and the tumor microenvironment. Increased PD-L1 expression facilitates enhanced binding to PD-1, thereby
inhibiting T cell function. Synergy between PD-L1 and glycolysis benefit tumor growth while inhibiting immune cell function. Increased glycolysis reduces the pH of
the tumor microenvironment to inhibit T cell activation and promotion of pro-tumoral M2 macrophages. The tumor preferentially takes in nutrients such as glucose,
glutamine, and lactate, which are all essential for T cell activation. This nutrient competition leaves resources scarce for optimal T cell activation.
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inducing T cell activation without causing functional inhibition
(110). Although ICB attempts to facilitate immune activation,
infiltration into large tumor masses often remains futile due to
high ROS levels, lack of proper nutrients, and an acidic
environment. This necessitates additional management of tumor
growth and metabolic inhibitors would be a prime course of
action. In fact, ongoing studies have seen improvement in ICB
intervention with the addition of glycolysis, metabolite, and
OXPHOS inhibitors in pre-clinical investigations (109, 112, 113).

Antimetabolites as Anticancer Drugs
While a portion of lung cancers have been meticulously
characterized by alterations in gene expression and oncogene/
tumor suppressor mutations, there has been little progress in
developing therapies that target these mutations and effectively
achieve adequate therapeutic outcomes in all patients. Because of
this, it may be beneficial to explore treatment options that target the
accelerated DNA replication that occurs in lung cancer cells. First
employed clinically in the 1940’s by Dr. Sidney Farber,
antimetabolites work by mimicking substrates to irreversibly
inhibit enzymes needed for DNA replication (114, 115).
The effects of antimetabolites are generally cytotoxic, conferring
the most pronounced effects on cells that are most metabolically
active (116). While this class of drugs was originally used to treat
lymphoblastic leukemia in children nearly a century ago, the use of
antimetabolites as broad anti-cancer drugs did not achieve
substantial popularity until much more recently (114, 115). What
started as a single class of synthetic folate analogues has since
expanded to a much broader collection of drugs targeting a larger
array of enzymes essential to cellular metabolism. Two agents –
gemcitabine and pemetrexed – are examples of antimetabolites used
clinically today that may give way to new, more efficacious therapies
in lung cancer. These antimetabolites, if any, may bear
more exploration.

The nucleoside analogue gemcitabine is a potent pyrimidine
antimetabolite that has historically been used as a first-line
therapy for pancreatic adenocarcinoma, but has also been used
to treat solid tumors in patients with breast, ovarian, and lung
cancers (117). In its active form, gemcitabine interferes with
cellular metabolism by acting as a nucleoside analogue to inhibit
DNA synthesis (117). Gemcitabine has been particularly useful
as an anti-cancer therapy because of additional effects that
preferentially stimulate apoptotic signaling pathways in
malignant cells through caspase activation. While this
treatment offers a seemingly reliable way to target distinctly
metabolically active cancer cells through restriction in DNA
synthesis, literature shows chemoresistance develops quickly in
a large subset of patients (117, 118). Although resistance often
occurs within just weeks of initial treatment response, the
mechanisms contributing to resistance are multifactorial
stemming from genetic expression of the tumor and the
immune cell profile. Interestingly however, a study evaluating
chemoresistant SCLC patient’s response to gemcitabine
exhibited an overall response rate of 13% (119). Furthermore,
clinical trials in NSCLC comparing gemcitabine alone and in
combination with other classic therapies have shown little
difference in treatment groups (120). Together, these studies
Frontiers in Oncology | www.frontiersin.org 8
suggest that metabolic intervention to delay nucleoside
biosynthesis may be most effective as a late-stage treatment for
patients that have acquired resistance to front-line therapies.

Another antimetabolite that has been in use clinically over the
past two decades is pemetrexed. A synthetic folate analogue akin to
the drugs Farber originally employed to treat lymphoblastic
leukemia, pemetrexed acts in at least three mechanisms to disrupt
production of both purines and pyrimidines, thus reducing cellular
proliferation. Specifically, inhibiting thymidylate synthase,
dihydrofolate reductase, and GAR formyl-transferase broadly
depletes folate conferring anti-tumor effects against an assortment
of cancers (121). Several clinical trials have sought to discern if
pemetrexed is suitable for use as a single agent or combinatorial
therapy for those with NSCLC. In clinical trial, pemetrexed
exhibited a significantly increased progression free survival rate
compared to placebo and was relatively well tolerated by patients
(122). Similarly, Karayama et al. treated chemo-naïve non-
squamous NSCLC patients with either pemetrexed or docetaxel
and found a significantly increased period of toxicity free survival in
pemetrexed-treated patients (123). Other studies have evaluated
pemetrexed in combination with platinum-based chemotherapy as
front-line treatment, with no discernable added efficacy to
traditional chemotherapy (124). Although pemetrexed is a
common front-line therapy for lung adenocarcinoma NSCLC,
resistance is common (125).

Gemcitabine and pemetrexed are just two examples of the
many chemotherapeutic agents under the broad category of
antimetabolites. As single agents, antimetabolites have not
proven incredibly successful for the treatment of lung cancer
(126), however in combination with other chemotherapy agents
there is least modest improvement of efficacy in vitro and in vivo
(118, 126–128). Antimetabolites that interfere with cellular
metabolism by inhibiting the synthesis of the building blocks
of nucleotides appears as an ideal method of slowing tumor
growth. In clinical practice, however, antimetabolites require
high therapeutic dosages leading to toxic side effects in some
NSCLC and SCLC patients (126, 127, 129), although toxicity has
been partially mitigated through the addition of chemotherapy
protective drugs (129). The progress seen in clinical trials, as well
as experiments with adjuvant agents that increase efficacy, offer
promise for the use of antimetabolites, however further research
into patient stratification and biomarkers of efficacy should
be considered.

Are Metabolic Inhibitors Effective in Lung
Cancer Treatment?
Cellular metabolism consists of intricate pathways with the
regulating molecules often rendered dysfunctional in tumors.
Although signaling cascade pathways are potential therapeutic
targets, toxicity in non-cancerous cells is often detrimental. To
overcome this, directly modulating the metabolic pathways may
prove advantageous, as the most metabolically active cells tend to
be targeted by their increased uptake of nutrients—known as
cellular selectivity based on demand (130). This provides several
avenues for intervention by 1) stopping glucose/glutamine/
lactate transport into the cell or 2) inhibiting enzymatic
conversions in glycolysis and OXPHOS pathways (Figure 3).
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Several studies have been aimed at blocking the major energy-
producing carbon sources (glucose, glutamine, and lactate) from
initial transport into a cancer cell (Table 2). Based on the
predominant physiological need for glucose to support cancer
cell proliferation, glucose transport inhibitors may be useful in
limiting the amount of glucose taken in by the tumor. In human-
derived NSCLC A549 cells, siRNA against GLUT1 inhibited
colony formation, reduced proliferation, and increased apoptosis
(131). When compared to non-tumorigenic lung (NL20) cells,
A549 cells treated with the GLUT1 inhibitor WZB117 exhibited
far less proliferation, indicating that A549 cells are inherently
more glucose-dependent (Table 2 and Figure 3) (132).
Moreover, xenografts with A549-derived tumors that were
treated with WZB117 had a 70% reduction in tumor growth
compared to vehicle controls (132).

Another molecule relied on by cancer is glutamine, which is
transported into the cell through amino acid transporters
including SLC1A5 (133). SLC1A5 is highly expressed in
NSCLC cell lines and human tumor samples (133). Studies in
NSCLC using the glutamine analogue L-g-Glutamyl-p-
nitroanilide (GPNA) revealed that glutamine is transported
through SLC1A5 and that this transporter is required for
proliferation in glutamine-dependent cell lines (A549, HCC15,
and H520), which was confirmed using siRNA against SLC1A5
(Table 2 and Figure 3) (133). Inhibition of SLC1A5 using GPNA
also showed a marked increase in ROS generation due to a
blockade of the glutamine to glutathione (ROS scavenger)
conversion (133).

The last carbon source discussed is lactate, which is
transported by MCT1/MCT4. Treatment with the MCT1
inhibitor SR13800 decreased lactate transport and enhanced
OXPHOS in SCLC cell lines (Table 2 and Figure 3) (134).
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Another small molecule inhibitor of MCT1, AZD3965, has been
tested in SCLC cell lines and human-derived H526 xenograft
models, which both exhibited a notable delay in cell proliferation
and tumor growth, respectively (Table 2 and Figure 3) (135,
136). Similarly, metabolites analyzed from in vitro
experimentation with AZD3965 had alterations in amino acid
and nucleotide biosynthesis and increased ROS generation (135),
contributing to reduction in proliferation. Although a number of
pathways are used by cancer cells, blocking the initial transport
of carbon-source molecules have shown promise and deserve
further attention of research in the treatment of lung cancer,
where new treatment options are desperately needed to improve
patient outcome and survival.

In addition to blockade of nutrient transport, inhibitors have
been produced to target many enzymes in the glycolysis pathway,
have high potential for efficacy, but have not been introduced
into clinical practice as lung cancer therapies. When targeting the
glycolysis pathway, the most well characterized inhibitor is 2DG
(Table 2 and Figure 3). In H23 human-derived NSCLC cells,
treatment with 2DG inhibited cell growth and induced cell cycle
arrest (57). Another study using human-derived H460 NSCLC
cells found treatment with 2DG also activated PI3K/AKT
signaling and phosphorylated Raf/MEK/ERK kinases, cell cycle
and DNA damage molecules, and JAK/STAT proteins suggesting
that the off target effects are far reaching and affect multiple
pathways (137). Therefore, while promising, exploration into
other enzymatic glycolysis inhibitors with fewer off targets would
be more optimal. For that reason, inhibitors of PFKFB3 (rate-
limiting enzyme of glycolysis) and LDHA (pyruvate to lactate
converter) have been developed. Among the PFKFB3 inhibitors
PFK-15 and the more potent PFK-158 have been the most
encouraging and progressed into preclinical and clinical trials
FIGURE 3 | Inhibitors of cancer cell metabolism. Inhibitors (red) can target many metabolic pathways in an attempt to stop or delay energy and nutrient generation
necessary for cellular proliferation.
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(Table 2 and Figure 3) (38, 138). Unfortunately, these studies
have not been conducted in NSCLC or SCLC models, however
lung metastasis was reduced in head and neck squamous cell
carcinoma (HNSCC) Cal27 xenografts treated with PFK-15
(139). Moreover, mesothelioma (a cancer that affects the
pleural lining of the lungs and is linked to asbestos exposure)
cells treated with PFK-158 exhibited reduced glycolysis and cell
proliferation and this treatment alone was sufficient in reducing
tumor growth without associated toxicities in xenograft mice
(140). PFK-158 is currently undergoing clinical trial
(NCT02044861) (141). Similarly to PFKFB3 inhibitors, several
LDHA inhibitors have be produced, yet none of been extensively
evaluated in preclinical or clinical trials. Although LDHA
inhibition has not been previously examined, LDHA knockout
NSCLC models have decreased tumor formation and even show
regression of stablished tumors (142), providing evidence that
LDHA may be a future viable target for lung cancer therapies.

Lastly, several reports on lung cancer metabolism suggest these
tumors, particularly NSCLC, may be more oxidative, which
provides an opportunity for metabolic intervention of
mitochondrial respiration. Surprisingly, one of the most studied
OXPHOS inhibitors in lung cancer is metformin, a common
diabetes mellitus medication that blocks complex I of the ETC
(Table 2 and Figure 3) (42, 143). The anti-cancer activity of
metformin has been documented in numerous cancer studies
(143) and studies have found that diabetic patients with NSCLC
onmetformin even experience prolonged survival (144–146). While
data investigating the therapeutic benefit of metformin in cancer
may be encouraging, some evidence suggests that metformin use
increases adaptive glycolysis activity (147), which would be
counterproductive in metabolically-heterogeneous tumors and
could increase therapy resistance. Additionally, it requires high
dosing to achieve therapeutic advantage. Similar ETC complex I
have been developed to overcome these drawbacks. phenformin, a
structurally-similar anti-diabetic drug, was developed in an attempt
to increase potency, however a therapeutic dose could not be
achieved due to toxicity (Table 2 and Figure 3) (42). Currently, a
third ETC complex I inhibitor, IM156, with heightened potency and
attainable therapeutic dosing is in Phase I clinical trial (Table 2 and
Figure 3) (148).
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With the inherent metabolic nature of cancer, metabolism
inhibitors are an underutilized category of therapy and should be
considered as effective anti-cancer agents. Most metabolism-
altering agents have displayed strong efficacy in cell lines and
mouse models and those that have progressed into clinical trial,
have been well tolerated. Further, metabolic inhibitors are
actively taken in by the most metabolically active cells (i.e. the
tumor) and therefore do not negatively affect cellular processes in
non-malignant cells. With this knowledge future investigations
of metabolic inhibition alone and in combination with the
standard-of-care is essential for driving personalized lung
cancer treatment options for all patients.
DISCUSSION

Cancer is an inherently metabolic disease, however cell origin,
mutation status, oxygenation, and nutrient availability all
contribute to the utilization of a particular metabolic program.
To date, few metabolic inhibitors have progressed to clinical trial
and those that have been clinically evaluated show moderate
efficacy at best. Unfortunately, there has only been limited effort
to metabolically characterize patient lung tumors or identify
patients most likely to benefit. This is, in part, due to the difficulty
of obtaining clinical samples since many lung cancers are not
routinely surgically resected. Further difficulties may stem from
the transient nature of metabolic pathway preference and
differences between in vitro and in vivo cancer cells. These
pitfalls highlight the urgency to identify viable biomarkers
corresponding to the tumor metabolic profile.

We and others have previously shown that tumor heterogeneity
exists in both NSCLC and SCLC and the administration of frontline
treatment further exacerbates this phenotype (82, 149–151). It can
be hypothesized that tumoral metabolism is also heterogenic, which
would likewise enable clusters of glycolytic and oxidative cells that
would become more profound after chemotherapy (Figure 4). For
this reason, methods for patient metabolic phenotyping should be
developed to assist with selecting the optimal combination of
metabolic inhibitor in addition to frontline chemotherapy and
ICB to delay tumor growth.
TABLE 2 | Inhibitors of cancer cell metabolism.

Name of Drug Target Pathway Lung Cancer Clinical Trail (Clinicaltrials.gov)

AZD3965 MCT1 (Lactate transport) NCT01791595
CB-839 (Telaglenastat) GLS (Glutaminolysis) NCT02771626
CD-613 (Devimistat) Mitochondrial PDH/KGDH N/A
IM156 Mitochondrial ETC Complex 1 NCT03272256
L-g-Glutamyl-p-nitroanilide (GPNA) Glutamine transport N/A
Metformin Mitochondrial ETC Complex 1 NCT02285855 NCT01997775
PFK-15 PFKFB3 (Glycolysis) N/A
PFK-158 PFKFB3 (Glycolysis) NCT02044861
Phenformin Mitochondrial ETC Complex 1 NCT03026517
SR13800 MCT1 (Lactate transport) N/A
WZB 117 GLUT1 (Glycolysis) N/A
2– Deoxy-d-Glucose (2DG) HK2 (Glycolysis) NCT00096707 NCT00633087
Many metabolic inhibitors have been utilized in clinical trials, however few have led to FDA approval. This table provides a list of the inhibitors described in Figure 3 and any associated
clinical trials that have accepted lung cancer patients.
N/A, not applicable.
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In conclusion, the effort to characterize lung cancermetabolism is
at the forefront of investigation. There is ample evidence in support
for targeting metabolic pathways to delay tumor growth as second-
line single agents or in combination with frontline chemotherapy
plus ICB. It is of utmost importance, however, to identify specific
patient populations that would respond to such treatment efforts
through biomarker analysis of cell surface or secreted molecules.
Since cellular metabolism is a transient phenomenon, time course
monitoring of identified biomarkers would be critical. If this can be
achieved, the road will be paved for personalized therapies for
targeted inhibition of metabolic pathways in lung cancer.
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FIGURE 4 | Combinatorial approaches for standard-of-care with metabolic inhibition. Hypothesis that common platinum-based chemotherapies select for cells
dependent on their particular metabolic profiles. Cisplatin-based therapy selects for cells that are mostly oxidative, which leads to enhanced ROS production and
reduced immune function leading to relapse. Carboplatin-based therapy selects for glycolytic cells leading to enhanced lactates production and reduced immune
function resulting in relapse. A general chemotherapy plus immune checkpoint blockade provides some benefit in a few patients, but often ultimately leads to
relapse, however metabolic intervention may provide additional efficacy by targeting pathways required for cellular proliferation.
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