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Abstract

The control, prediction, and understanding of epidemiological processes require insight into how infectious pathogens
transmit in a population. The chain of transmission can in principle be reconstructed with phylogenetic methods which
analyze the evolutionary history using pathogen sequence data. The quality of the reconstruction, however, crucially
depends on the underlying epidemiological model used in phylogenetic inference. Until now, only simple epidemiological
models have been used, which make limiting assumptions such as constant rate parameters, infinite total population size,
or deterministically changing population size of infected individuals. Here, we present a novel phylogenetic method to
infer parameters based on a classical stochastic epidemiological model. Specifically, we use the susceptible-infected-
susceptible model, which accounts for density-dependent transmission rates and finite total population size, leading to a
stochastically changing infected population size. We first validate our method by estimating epidemic parameters for
simulated data and then apply it to transmission clusters from the Swiss HIV epidemic. Our estimates of the basic
reproductive number R0 for the considered Swiss HIV transmission clusters are significantly higher than previous
estimates, which were derived assuming infinite population size. This difference in key parameter estimates highlights
the importance of careful model choice when doing phylogenetic inference. In summary, this article presents the first
fully stochastic implementation of a classical epidemiological model for phylogenetic inference and thereby addresses a
key aspect in ongoing efforts to merge phylogenetics and epidemiology.
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Introduction
Phylogenetics is becoming increasingly popular thanks to a
large availability of genetic sequence information, and conse-
quently phylogenetic methods have successfully been applied
to pathogen sequence data in order to obtain estimates of
transmission and death rates (Pybus et al. 2001; Rasmussen
et al. 2011; Stadler et al. 2012). The basis of these phylogenetic
methods is the evolutionary tree reconstructed from the sam-
pled pathogen population (see Pybus and Rambaut [2009]
and references therein). If the evolutionary rate of the
pathogen is sufficiently high such that the evolutionary and
epidemiological timescales are similar, then the evolutionary
trees can give insight into the transmission dynamics of
the disease (Pybus et al. 2001; Drummond et al. 2003;
Grenfell et al. 2004). These phylogenetic methods are of
statistical nature and assume an underlying model that
describes both the evolutionary and the population dynamics
of the genetic sequences (Pybus and Rambaut 2009). The
choice of phylogenetic method thus comes with model
assumptions that may or may not be appropriate to a specific
question. Phylogenetic methods are therefore susceptible to
model misspecification that can lead to incorrect parameter
estimates.

Models from mathematical epidemiology that describe the
spread of a disease in a population are well established

(Kermack and McKendrick 1927; Anderson and May 1991).
These models are quite different in character from population
models traditionally used in phylogenetic inference. There
has been great effort to extend previous phylogenetic meth-
ods to account for the particularities that accompany the
population dynamics of infectious diseases (Volz et al. 2009;
Frost and Volz 2010, 2012; Rasmussen et al. 2011). One of the
important aspects of many epidemiological models is that
they account for saturation effects in the number of infected
individuals, meaning that transmission decreases as the pool
of susceptible individuals is depleted.

Most of the methods that infer epidemiological parame-
ters from phylogenetic trees assume a population model that
is based on the coalescent, which in its original formulation
makes strong limiting assumptions (Kingman 1982). To over-
come some of these limitations, there has been a range of
work that has extended coalescent theory to incorporate
more complex epidemiological models (Volz et al. 2009;
Frost and Volz 2010; Koelle and Rasmussen 2011; Volz
2012). Yet, these extensions all assume a deterministically
changing population size. Stochastic effects, however, have
been shown to be of importance when considering epidemi-
ological processes (Rohani et al. 2002).

More recently, Rasmussen et al. (2011) have used coales-
cent models and sequential Monte Carlo methods together
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with stochastic ordinary differential equations (ODEs) to infer
parameters of the epidemiological process. Sequential Monte
Carlo methods such as particle filters are powerful statistical
tools that can approximate the likelihood exactly but come at
a large computational cost (Wilkinson 2011).

Alternatively, methods based on the birth–death model
can be used for phylogenetic inference (Kendall 1948;
Nee 2006; Stadler 2010). The birth–death model is a discrete
stochastic description of the process governing the popula-
tion dynamics. Phylogenetic trees are then produced by
adding a sampling process to the birth–death model.
Birth–death models naturally account for the stochasticity
of the population size in epidemiological models and allow
for the estimation of epidemiological parameters when the
assumptions of the coalescent are not justified.

The birth–death model has recently been extended to
account for saturation effects in the case of species evolution,
which has allowed for a much better fit to the number of
lineages over time in small species trees (Etienne et al. 2012).
This method cannot be directly applied to viral phylogenies
as it requires all sequences to be sampled at a single point
in time, a condition that is rarely satisfied for disease surveil-
lance data. Furthermore, the method requires the solution
of a series of high-dimensional initial value problems, which
is computationally challenging and has only been success-
fully performed for population sizes of the order of tens
of species.

Here, we present a new method for phylogenetic inference
of epidemiological parameters which is based on the birth–
death model. Our method accounts for both sequentially
sampled genetic data (Stadler 2010) and saturation effects
(Etienne et al. 2012). In particular, we estimate transmission
and death rates, as well as the susceptible population size
from sequence data under a stochastic susceptible-infected-
susceptible (SIS) model. The SIS model is the standard model
used to describe the spread of sexually transmitted diseases
without immunity (Anderson and May 1991). We derive
an expression for the likelihood of a transmission tree,
which can then be used to estimate the model parameters
in either a maximum likelihood (ML) or Bayesian framework
(Drummond et al. 2002, 2005). We use a recently developed
method to calculate matrix exponentials (Al-Mohy and
Higham 2011) in order to solve the high-dimensional initial
value problems required to compute the likelihood. Our
method can calculate the likelihood of a single tree for pop-
ulation sizes of the order of 10,000 individuals. Using estimates
for the epidemiological rates and the susceptible population
size, we calculate the basic reproductive number, R0

(Anderson and May 1979). We validate our method by rees-
timating parameters from simulated data using an SIS model.
We then estimate epidemiological rates, the susceptible pop-
ulation size, and R0 for ten transmission clusters of the Swiss
HIV epidemic (Kouyos et al. 2010; Schoeni-Affolter et al. 2010;
Stadler et al. 2012).

New Approaches
In this section, we will give a brief summary of the new
method used and refer to the supplementary information,

Supplementary Material online, for a more detailed descrip-
tion. In short, we calculate the likelihood that the observed
phylogeny is a realization of a stochastic SIS model (see
Materials and Methods).

We assume a susceptible-infected (SI) model with constant
total population size N as a model for transmission (see
Materials and Methods). An outbreak begins with a single
infected individual and the disease is transmitted with rate
�=N to susceptible individuals. Infected individuals are
removed either through “death” with rate� or through sam-
pling with rate  . Sampling corresponds to the case where
individuals are sequenced (e.g., prior to treatment) and
become noninfectious thereafter, for example, due to success-
ful treatment or behavior change (Stadler et al. 2013). We
assume that a removed individual is immediately replaced by
a new susceptible individual, resulting in a constant popula-
tion size N. Under this assumption, the SI model is equivalent
to an SIS model.

Based on a sampled phylogeny of an epidemic outbreak
(see Materials and Methods), we derived an expression for the
likelihood of a phylogenetic tree under an SI/SIS model. In the
following, time will always be measured going backward from
the present t0 into the past. As with serial sampling in the
coalescent framework (Drummond et al. 2002), we can split
up a phylogenetic tree into time intervals between sampling
times x and branching times y. During these time intervals,
the number of lineages in the tree is constant, but it increases
by 1 at a sampling event and decreases by 1 at a branching
event (see fig. 1). We introduce the probability piðI; tÞ, which
is the probability that within the i-th time interval, exactly I
infected individuals at time t gave rise to the phylogeny
observed between that time t and the present time t0.
Thus, for every i and t, we can write the probabilities that
0,1,2, . . . ,N infected individuals gave rise to the phylogeny as
a vector piðtÞ ¼ ðpið0; tÞ,pið1; tÞ, . . . ,piðN; tÞÞ. The time
evolution of this vector of probabilities piðtÞ is then governed
by a birth–death master equation (see supplementary meth-
ods, Supplementary Material online). The master equation
translates to a system of linear ODEs for piðtÞ within the
i-th time interval,

dpiðI; tÞ

dt
¼ � Ið�ðIÞ+�+ ÞpiðI; tÞ+ ðI + kiÞ�ðIÞpiðI + 1; tÞ

+ ðI� kiÞ�piðI� 1; tÞ:

ð1Þ

Here, ki are the number of tree lineages during the i-th
interval, � is the death rate of individuals,  is the sampling
rate, and �ðIÞ ¼ �ðN� IÞ=N is the rate at which new
infections occur in the SIS model. The above equation is
linear in the piðI; tÞ and its solution can thus be written in
matrix form as,

piðtÞ ¼ eCiðt�ti�1Þpiðti�1Þ: ð2Þ

The tridiagonal matrix Ci contains all the information of
the ODEs within the i-th time interval. This allows us to
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calculate piðtiÞ at the end of the i-th time interval given the
value of piðti�1Þ at the beginning of the i-th time interval.

At the end of each time interval, the number of tree lin-
eages ki either decreases by 1 at branching events or increases
by 1 at sampling events. At a branching event, the number
of tree lineages decreases by 1, so that the vector of
probabilities has to be shifted and multiplied with the instan-
taneous probability that a branching event occurred,

piðI; ti�1Þ ¼ 2�ðIÞ pi�1ðI + 1; ti�1Þ: ð3Þ

The factor 2 indicates that either one of the two descendants
of the branching event may be the donor-infected individual.
At a sampling event, the number of tree lineages increases
by 1 and the vector of probabilities is multiplied by the
sampling rate  ,

piðI; ti�1Þ ¼  pi�1ðI� 1; ti�1Þ: ð4Þ

These shifts of the vector of probabilities can be summarized
in a matrix Di. We can find the vector of probabilities at the
root of the tree by iteratively applying eCi and Di until we

reach the root at time t2n. This gives us the likelihood of the
tree at the root,

lðT Þ � p2nðt2nÞ ¼
Y2n

i¼1

Die
Ciðti�ti�1Þ

 !
p1ðt0Þ: ð5Þ

If we assume that the epidemic was started by a single indi-
vidual at time t2n, then the likelihood of the tree LðT ; �Þ is
the entry of lðT Þ for which the number of infected individuals
I ¼ 1 and � represents the model parameters N,�,�, and  .
The vector of initial conditions p1ðt0Þ can be chosen to reflect
prior knowledge on disease prevalence at the present time. In
the absence of any prior information, all prevalence levels
are equally likely, p1ðt0Þ ¼ ð1,1, . . . ,1Þ. Finally, we condition
the likelihood LðT ; �Þ on sampling at least one infected
individual throughout the epidemic, L0ð�Þ (see supplemen-
tary information, Supplementary Material online). We use
the conditioned likelihood LðT ; �Þ=L0ð�Þ to estimate
epidemiological parameters from the sampled phylogenies.

The computation of the above likelihood using traditional
matrix multiplication methods suffers from either poor

FIG. 1. Example of an epidemic with sampled (red) and unsampled (gray) individuals. The top panel shows the infective periods of all individuals in
the epidemic. The middle panel shows the infective periods of only the sampled individuals as well as the recreated transmission tree. The red dots are
the sampling times of the individuals and the black triangles the branching times on the sampled phylogeny. Note that while we do not know the
exact infectious periods of the sampled individuals, the transmission chain between two events can pass through multiple individuals. The bottom
panel shows the corresponding phylogenetic tree with branching times xi and sampling times yj. In this example, the joint event time vector is
t ¼ ð0,y1,y2,y3,x1,x2,y4,x3,x4Þ. The axis at the bottom of the figure shows how the matrices in equation (5) are applied to the probability vector piðtÞ
from the present time t0 to the root of the tree t2n (here n = 4 and t8 ¼ x4). The numbers along the axis are the number of extant lineages within
that time interval. Note that the Ci matrices are applied as matrix exponentials, i.e., piðt + hÞ ¼ eCihpiðtÞ. The likelihood of the tree given that a single
infected individual started the epidemic is then the entry of the vector of probabilities at the root, i.e., p7ðt7Þ for which the number of infected
individuals I = 1.
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accuracy or computational intractability. To get around this,
we use a novel method that can accurately and efficiently
calculate matrix exponentials such as in equation (5)
(Al-Mohy and Higham 2011). Our method is available both
as an R package expoTree and C function (Leventhal 2013).

Results

Model Validation

We test the validity of our model by simulating 1,000 trans-
mission trees under 11 different parameter combinations
using a stochastic SIS model with various population sizes
N, recovery rates �, and sampling rates  until n samples
are taken. The infection rate � ¼ 1 in all cases, because
it is always possible to rescale time such that � ¼ 1 without
loss of generality. In the density-independent (BD) case,
sampling and death rates cannot be independently estimated
(Stadler et al. 2013). Because no closed-form solution for
the likelihood is available in the density-dependent case,
it remains unclear whether all four parameters of the
density-dependent model are independent and can be esti-
mated separately (see supplementary methods, section A.7,
Supplementary Material online). To account for potential
dependence among the parameters in the density-dependent
model, we estimate parameters for both an unconstrained
(DD) and fixed (DDfixed) value of the sampling probability,

r ¼  
 +�.

We then reestimate the parameters for each parameter
combination in two ways, illustrating two alternative
applications:

(A) We reestimate the parameters for each of the transmis-
sion trees using the ML estimator. This corresponds
to the case when only a single sampled phylogeny has
been reconstructed from the sequence data. The 1,000
parameter estimates can be interpreted as a parametric
bootstrap for the confidence interval around the true
parameter value.

(B) We estimate the posterior distribution of the parameters
for trees #500–590 of the 1,000 simulated transmission
trees jointly in a Bayesian framework (see Materials and
Methods). This corresponds to the case when multiple
independent trees are available with the same underlying
stochastic process, for example, independent samples
from the posterior distribution of trees estimated using
Bayesian Markov chain Monte-Carlo (MCMC) estima-
tion as in BEAST (Drummond and Rambaut 2007).

Method A
The bootstrapped confidence intervals for both the
DDfixed and DD model all contain the input parameters (sup-
plementary fig. S1, tables S1 and S2, Supplementary Material
online).

The confidence intervals of the DD model fully contain the
confidence intervals of the DDfixed model, as expected (except
for parameter sets 7 and 9, though the nonoverlap is very
small). This is in agreement with previously reported results
for the density-independent birth–death model, where� and
 only appear as the sum �+ in the expression for R0,

and the explicit choice of � given  does not change the
value of R0.

Method B
The bias of the posterior mean estimates of the parameters
for all 11 parameter sets is listed in table 1. The posterior
distribution could not be estimated for parameter sets 2
and 4 in the DD model and for 6 and 7 in both the DD
model and DDfixed models, because the Markov chains did
not reach a steady state. For these parameter sets, we report
ML estimates for the joint likelihood of the subset of trees. In
all cases, the density-dependent models provided a better fit
to the data on the basis of the deviance information criterion
(DIC). For the cases where posterior distributions could not
be estimated, we calculated the deviance at the ML estimate.
These cannot be directly compared with DIC values, as no
correction for complexity has been performed. However, for
those cases where DIC values could be computed, the effec-
tive number of parameters was generally around 2–4 for the
DDfixed model and 4–8 for the DD model. We therefore do
not expect the differences in deviance on the order of 103

between the BD and DD models for the parameter sets 6 and
7 to be predominantly due to added complexity.

In the DDfixed case, the absolute bias of the estimated
parameters is generally less than 5%, with the exception of
parameter set 3, where the bias on N was �ð3ÞN ¼ �0:05 and
�ð3Þ� ¼ 0:06 on �. For this parameter set, the true values
of N,�, and R0, as well as for R0 in parameter set 8, fall
marginally outside the 95% highest probability density
(HPD) interval (see supplementary tables S3 and S4,
Supplementary Material online). However, when inferring
parameters using different sets of simulated trees, the
95% HPD intervals contain the true parameter (data not
shown).

Estimation bias using the posterior mean was generally
larger in the DD model compared with the DDfixed model,
though the credible intervals were comparatively large and
all contained the true parameters, with the exception of  
and r in parameter set 1. For those parameter sets where
 < � (sets 3, 4, 6, 7, 10, and 11), the bias of the posterior
mean estimates was generally small.

In most cases, the density-independent model did not
return a posterior HPD interval that contained any of the
input parameters, and the posterior means were heavily
biased. In the remaining cases, this model was able to correctly
estimate � and  but strongly underestimated �. The bias
is strongest when N is small (i.e., large saturation effects),
because � is estimated as a time-averaged value of the
force of infection �ðIÞ ¼ �ð1� I=NÞ (see Materials and
Methods), and this time average is smaller than the actual
�. This is of particular importance when estimating
R0 ¼ �=ð�+ Þ, where strongly underestimating � will
result in a strongly underestimated R0.

We obtain a visual confirmation of the superior fit of the
DD and DDfixed models by plotting the lineages-through-time
(LTT) of the simulated trees together with the LTT predicted
by the estimated parameters (supplementary fig. S2,
Supplementary Material online). The density-dependent
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Table 1. The Relative Bias of the Estimated Parameters and DIC Values of the Fit.

NOTE.—The SIM entries are the input parameters to the simulation. DDfixed, density-dependent model with fixed sampling probability; DD, density-dependent model with inferred
sampling probability; BDfixed, density-independent model with fixed sampling probability. n is the number of tips in the tree. The entries at N,�,�, , and R0 show the relative
bias of the estimates. Smaller DIC values indicate a better fit of the model to the data. The model with the smallest DIC value is indicated by an asterisk for each of the
parameter sets.
aThe HPD interval does not contain the true parameter value (shaded cells).
bNumerical maximization of the likelihood failed.
cThe MCMC method did not converge under the Gelman–Rubin diagnostic. We therefore report ML point estimates and the deviance at the ML estimator. This is not
equivalent to a DIC, but must be corrected by 2pV , where pV is the effective number of parameters.
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models produce LTTs that more accurately reproduce
the LTTs of the input trees compared with the density-
independent model, especially when N is small. This is
most pronounced when the number of sampled individuals
is large compared with the total population size (n > N),
indicating that the epidemic has been in the endemic
equilibrium.

Comparison with Logistic Coalescent

In the parametric coalescent, the decrease in effective popu-
lation size backward in time from an initial value N0 is
described by an arbitrary function (Griffiths and Tavaré
1994). In the case of an SIS model, the solution to the
deterministic equations is a logistic function. We therefore
compare our method with a coalescent model with popula-
tion size governed by a logistic function (see supplementary
methods, section A.8, Supplementary Material online),

MðtÞ ¼
�M0

ð�� 1Þe�t + 1
:

The parameters of the logistic function are related to the
parameters of the SIS model by � ¼ �� ð�+ Þ and
� ¼ N=M0, where N is the carrying capacity of the model
(i.e., the total population size in the SIS model). The per lin-
eage coalescent rate in calendar time is #�1 ¼ ð�+ Þ=M0

(supplementary methods, section A.8, Supplementary
Material online). The three parameters of the logistic coales-
cent are therefore linked to four parameters of the SIS model
and M0. The input parameters of the trees simulated under
the SIS model in Model Validation section can therefore only
be converted to � and # of the logistic coalescent by an
appropriate choice of M0. The growth rate � can be converted
independent of the choice of M0. In order to compare the
parameter estimates from the logistic coalescent to our
model, we choose M0 as the total infected population size
in a deterministic SIS model that started with a single infected
individual after a time t̂2n has passed (supplementary meth-
ods, equation A.6.4, Supplementary Material online), where
t̂2n is equal to the mean height of the 1,000 simulated trees.
For all parameter sets, the ML estimator is either heavily
biased or the 95% confidence intervals contain the input
parameter but are extremely large (supplementary table S5,
Supplementary Material online). Bayesian MCMC was
generally not possible, as the Markov chains never reached
a steady state.

HIV

We applied both the DD and DDfixed methods to ten trans-
mission clusters of the Swiss HIV Cohort Study (SHCS)
(Kouyos et al. 2010; Schoeni-Affolter et al. 2010). For each
of the clusters, 90 trees were sampled from the posterior
distribution of trees previously determined using BEAST
(Drummond and Rambaut 2007; Stadler et al. 2012). The
90 trees were chosen from the MCMC chain, such that
they can be considered independent identically distributed
(iid) samples from the posterior distribution of trees. We then
estimated the posterior distribution of parameters using

method B (see Model Validation and Materials and
Methods). In our model, “death” corresponds to any process
resulting in an individual becoming noninfectious, and a
“dead” individual is assumed to be replaced by a susceptible
individual. In the case of the SHCS, individuals mainly become
noninfectious when they start antiretroviral treatment, upon
which their viral load is suppressed and consequently also
onward transmission.

Of all the patients who start treatment in Switzerland,
around 75% are included in the SHCS (Schoeni-Affolter
et al. 2010). This corresponds to the sampling probability,
r ¼  =ð +�Þ. To account for other reasons for becoming
noninfectious, we fix the sampling probability in the DDfixed

model at three different values of r = 0.25, 0.5, and 0.75.
To test for potential bias in the estimates, we simulated

transmission trees under the SIS model using the estimated
values for each of the clusters and subsequently reinferred the
model parameters for the simulated data. We did not find any
evidence of estimator bias for the DDfixed model. For the DD
model, however, we detected nonnegligible bias of the
estimators. We therefore only report the estimated parame-
ters for the DDfixed model with r ¼ 0:75 in table 2 and for
r ¼ 0:25 and r ¼ 0:5 in the supplementary materials,
Supplementary Material online.

For clusters 3 and 10, the posterior of N was bounded on
top by the upper limit of the uniform prior and the MCMC
chain did not converge. This indicates that these clusters have
a very large total population size and are more appropriately
estimated using the density-independent model (supplemen-
tary table S8, Supplementary Material online).

In the remaining eight clusters, the population size esti-
mates vary from small, that is, same order of magnitude as the
number of sampled individuals (e.g. Nð8Þ ¼ 14 ¼ n), to large,
that is, N >> n (e.g., Nð6Þ 2 ½61:9,1780�). This indicates that
there are some clusters where the epidemic has saturated
and only few new infections are occurring (N � n), but also
other clusters where new infections are still common
(N >> n). Similarly, estimates of R0 range from moderate
(e.g., Rð6Þ0 ¼ 2:80) to very large (e.g., Rð5Þ0 ¼ 13:7).

Using the estimated parameters, we plot the LTT as well
as the inferred prevalence within the transmission clusters.
Two example clusters are shown in figure 2 and all the clusters
in supplementary figures S3 and S4, Supplementary Material
online. Visual inspection of these LTT plots confirms that the
density-dependent model replicates the distribution of phy-
logenetic trees better than the density-independent model,
with the exception of clusters 3 and 10. Interestingly, for
cluster 3, neither model is able to adequately produce an
acceptable LTT plot, suggesting that an SIS model is not an
appropriate representation of this transmission or that the
inferred phylogenetic tree is questionable.

Discussion
This study proposes a method that extends previous work on
birth–death models for phylogenetic inference (Etienne et al.
2012; Stadler et al. 2012) and combines both density depen-
dence and longitudinal sampling into a single framework.
Previous methods based on the coalescent that can infer
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FIG. 2. Lineage through time plots and prevalence curves of two example HIV subepidemics in Switzerland. Left panels: The gray lines are the LTT of
the 90 samples from the posterior distribution of trees estimated using BEAST. The solid and dashed lines are the expected number of lineages for
the density-dependent and density-independent SIS models, respectively, using the parameter estimates from table 2. Predicted LTT plots are
almost identical when using parameter estimates for sampling probabilities r ¼ 0:25 and r ¼ 0:5. Right panels: Dashed lines correspond to the
density-independent (BD) model and solid lines to the density-dependent (DD) model. The vertical dotted line indicates the time of the last sample
in the tree. The gray steps are the actual cumulative number of sampled individuals over time and the red curves are the fitted functions. The black
lines show the predicted prevalence from the fitted model. The predicted number of infected individuals (black) and cumulative number of sampled
individuals (red) for the estimated parameter values. Although both model produce acceptable fits to the cumulative number of samples over time,
the BD model predicts both the prevalence and cumulative number of samples to increase exponentially in the future, whereas the DD model can
identify subepidemics that are already in the saturated phase.

Table 2. Epidemiological Parameter Estimates for the 10 Swiss HIV Transmission Clusters Under the DDfixed Model with r ¼ 0:75.

Cluster 1a 2a 3 4a 5a

n 34 29 27 26 25

N 188 [160,218] 36.1 [32.2,40.6] — 39.4 [35.5,43.9] 65.7 [58.7,73]

b 0.269 [0.258,0.282] 0.5 [0.458,0.543] — 1.02 [0.952,1.08] 0.622 [0.594,0.658]

l 0.00973 [0.009,0.011] 0.0341 [0.032,0.036] — 0.0808 [0.076,0.086] 0.0113 [0.01,0.012]

c 0.0292 [0.027,0.032] 0.102 [0.096,0.108] — 0.243 [0.227,0.258] 0.034 [0.031,0.037]

R0 6.93 [6.29,7.62] 3.67 [3.39,3.94] — 3.15 [2.88,3.4] 13.7 [12.4,15.3]

Cluster 6a 7a 8a 9a 10

n 18 17 14 14 12

N 134 [70.5,1780] 175 [128,256] 14 [14,14.4] 63.8 [53,76] —

b 0.442 [0.39,0.47] 0.396 [0.372,0.42] 0.916 [0.842,0.983] 0.672 [0.623,0.712] —

l 0.0394 [0.035,0.042] 0.0154 [0.014,0.017] 0.0427 [0.04,0.045] 0.0196 [0.017,0.023] —

c 0.118 [0.106,0.127] 0.0463 [0.041,0.051] 0.128 [0.119,0.135] 0.0587 [0.051,0.068] —

R0 2.8 [2.37,3.06] 6.42 [5.59,7.36] 5.37 [4.76,5.98] 8.59 [7.17,9.93] —

NOTE.—n is the number of sampled individuals in each subepidemic. R0 ¼ �=ð�+ Þ is the basic reproductive ratio. The reported values are the posterior mode and the 95%
credible intervals from the posterior distribution. For the uniform prior used, the posterior mode corresponds to the ML estimator and only differed negligibly for the estimate of
N in cluster 6. In cluster 6, the posterior distribution of N was heavy-tailed and bounded by the uniform prior N 2 ½18,2000�. Therefore, the upper limit of the credible interval is
likely an underestimate.
aThe fit of the density-dependent model is significantly better than the density-independent model. Model comparison is based on DIC values.
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density-dependent transmission rates rely on a deterministi-
cally changing population size and cross-sectionally sampled
data (Volz et al. 2009; Frost and Volz 2010; Volz 2012). Other
methods based on birth–death models account for longitu-
dinally sampled sequences and stochasticity but neglect
density-dependent transmission (Stadler et al. 2012).
Alternatively, semiparametric methods such as the various
skyline-plot models (Pybus et al. 2001; Ho and Shapiro
2011; Stadler et al. 2013) allow for transmission rates that
change over time. These methods, however, require a parti-
tioning of the past into periods of constant population size.
Each of these partitions then requires an explicit transmission
rate, resulting in a large number of parameters, though
simulated trajectories from SIR models can be used to
approximate the population sizes within the partitions
(Kühnert et al. 2013). Finally, sequential Monte-Carlo meth-
ods can be used to estimate parameters (Rasmussen et al.
2011) but are much more computationally intensive than
exact likelihood methods.

By using an SIS model, which is the standard epidemiolog-
ical model for sexually transmitted diseases without
immunity (Anderson and May 1991), we can account for
density-dependent transmission with only one additional
parameter compared with density-independent (constant
rate) birth–death models. This allowed us, for the first
time, to estimate not only the transmission and removal
rates but also the total susceptible population size of trans-
mission groups from viral sequences. The parametrized SIS
model can predict how the number of infected and suscep-
tible individuals will vary over time. Thus, if an SIS model
is a good representation of an ongoing epidemic, it is possible
to make predictions of how the epidemic will continue to
develop.

Furthermore, we have shown that in principle, our method
can estimate sampling and death rates independently in
some cases, but that this signal is generally weak and esti-
mates obtained without prior knowledge of the sampling
probability must be carefully examined for potential biases.
Generally, estimator bias for the DD model is small in those
simulated data sets where the epidemic reached an endemic
equilibrium well before all samples were taken, such that a
large part of the samples are from the saturated phase.

Our method is able to estimate parameters with higher
accuracy compared with parametric coalescent-based infer-
ence with deterministically changing population sizes. This is
especially true when the epidemic has already reached the
saturated phase. In the deterministic SIS model, the change in
the number of infected individuals is described by a logistic
function, which can be used to model the population size
decline backward in time in a parametric coalescent (Griffiths
and Tavaré 1994). The parameters of the parametric coales-
cent with logistic population decline depend on the effective
population size at present, that is, the total number of
infected individuals at present. In this context, an important
difference between the stochastic SIS model and the deter-
ministic SIS model becomes apparent. In the deterministic
model, the infected population size asymptotically
approaches the endemic equilibrium. In contrast, in the

stochastic model, the process reaches a quasi steady-state,
in which the infected population size fluctuates stochastically
around an equilibrium value. This means that although the
stochastic SIS model can account for processes that have
reached a quasi steady-state, the deterministic model inter-
prets small deviations from the asymptotic equilibrium as
a signal of how long the epidemic has been in a state close
to this equilibrium. This can lead to incorrect parameter
estimates.

We have demonstrated that using an epidemiological
model together with phylogenetic inference can indeed
lead to new insights into ongoing epidemics. Susceptible pop-
ulation sizes in 8 out of 10 transmission clusters of the SHCS
were estimated to be small. This is an indication that the
subepidemics in these transmission clusters are characterized
by an initial rapid spread that subsequently slows down
after only a relatively small number of infections. Such a
scenario is conceivable when the population is composed
of many small susceptible subgroups, and transmission
event between subgroups are much rarer than within
subgroups. This is compatible with previous findings
which showed that HIV epidemics are driven by heteroge-
neous populations, such as heterogeneity in infection rates or
heterogeneity in number of contacts (Liljeros et al. 2001;
Kouyos et al. 2010; Leventhal et al. 2012; Stadler and
Bonhoeffer 2013).

Differences between transmission clusters are further
reflected in estimates of the basic reproductive number, R0

(Anderson and May 1979). Because the estimate of the
susceptible population size is small, the estimated R0 is
larger than previously reported for the density-independent
case (Stadler et al. 2012). The reason for the previous under-
estimation of R0 is the following: The basic reproductive
number is defined as the number of secondary infections
caused by an infectious individual in a completely susceptible
population. If the pool of susceptible individuals is very
large, then R0 is roughly equal to the number of secondary
infections caused by any infectious individual, R1ðtÞ. The
density-independent model assumes that R1ðtÞ is constant
throughout the whole epidemic, and it is the time-averaged
value of R1ðtÞ which is estimated by the method. In the early
stages of the epidemic, the number of infected individuals
grows exponentially, such that R1ðtÞ is roughly constant
and approximately equal to R0. Thus, when the sampled
sequences are confined to the early stages of the epidemic,
then the estimate of R1 using a density-independent
model is an acceptable approximation for R0. As the
number of susceptible individuals decreases later on in the
epidemic, so does R1ðtÞ and consequently the time average
of R1ðtÞ is an underestimation of R0. The new density-
dependent model takes the decrease in R1ðtÞ over time
into account, such that more accurate estimates of R0 can
be obtained when sequences are available from all periods
of the epidemic.

The underestimation of R0 is most extreme when the
cluster was saturated while most of the individuals were
sampled (e.g., SHCS cluster 5: RDD

0 ¼ 13:7,R10 ¼ 2:67). In
this cluster, the initial spread proceeded rapidly, after which
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only few infections happened (see fig. 2). LTT plots can be
used to get a visual confirmation that the density-dependent
model does indeed provide a better fit to the data.
Alternatively, when most of the individuals are sampled
from the initial phases of the epidemic, both the density-de-
pendent and -independent models give similar estimates of
R0 and the number of lineages in the past (see fig. 2). The
estimated total number of infected individuals at the present,
however, will then be larger in the density-independent
model than in the density-dependent model.

The parameterized SIS model can be used to make predic-
tions on how the epidemic is expected to progress within
these clusters. This is in contrast to skyline-plot methods,
which can only recreate the history of transmission rate
changes in the past unless a time-dependent transmission
model is fit to these skyline-plots.

The accuracy of our model predictions will strongly
depend on the validity of the assumptions. Here, we
assume an SIS model where the rate of becoming noninfec-
tious is equal to the recruitment rate of new susceptibles. This
approximation is mainly performed for computational trac-
tability, because the total population size, that is, I + S,
remains constant over time. Although this assumption is
clearly violated for diseases where the expected time to
becoming noninfectious is much shorter than the recruit-
ment time of new susceptibles (e.g., influenza), it is plausible
when the two processes happen on a similar timescale.

It is possible to extend our method to account for
any kind of compartmental epidemiological models, such
as a susceptible-infected-recovered (SIR) model. In its pre-
sent form, however, this extension would come with a
significant computational cost, because the number of
recovered individuals would need to be tracked in addi-
tion to the number of infected individuals. The number
of differential equations that would then need to be
solved increases from N to N2. In its present form, this
would only be conceivable when the population size is
moderate.

The sampling probability, that is, the ratio of sampling rate
to total death rate, r ¼  =ð +�Þ, cannot be estimated
using the density-independent model. In fact, it can be
shown that for the density-independent model the likelihood
function only depends on two out of the three parameters
�,�, and  , namely on the net growth rate �� ��  and
the product of transmission and sampling rate, � . For the
density-dependent model, we could not show or disprove
such a decrease in degrees of freedom of parameter space.
However, we observed from our simulation study that it is
possible to estimate the sampling probability for certain
parameter combinations, though care must be taken to con-
trol for potential biases as the signal for r is weak. In particular,
the choice of r only has little effect on LTT plots predicted
using the estimated parameters, meaning that different r
explain the data equally well (recall that our data are
essentially a LTT plot). Furthermore, the inferred cumulative
number of sampled individuals is not significantly influenced
by r, another indication that different r explain the data
equally well. Thus, knowledge obtained from other data

should be used to supply a prior probability on r. It is
important to note that the choice of r does influence the
quantitative value of R0 as well as the estimated current
number of infected individuals.

Overall, we have presented a method that is readily
available both as an R package and C++ stand-alone
programs (Leventhal 2013). The method can be applied
to transmission trees inferred from pathogen sequence
data in order to obtain better estimates of epidemiological
parameters such as R0, thus providing better insight into
the transmission dynamics of SIS-type epidemics.
Additionally, when information on the sampling probabil-
ity is available from other data sources, reliable estimates
of the size of the current infected population can be
obtained. In summary, by applying our method to path-
ogen sequence data, we can obtain a better understanding
of the intensity of transmission within different transmis-
sion clusters, which can help guide and assess public
health intervention measures.

Materials and Methods

SIS Model

A common way of modeling the spread of a disease through
a population is with the SIS model (Kermack and McKendrick
1927; Anderson and May 1991). Individuals can either be in
a susceptible state S or an infected state I. In this article,
we use a stochastic SIS model but motivate the choice of
the model using a deterministic SIS model.

Deterministic SI/SIS Model
The change in number of susceptible and infected individuals
over time can be written as a set of ODEs,

dS

dt
¼ ��SI=N + �ðS,IÞ, ð6Þ

dI

dt
¼ �SI=N� 	I: ð7Þ

Here, �=N is the infection rate per infectious contact and �
is the death/removal rate of infected individuals. The recruit-
ment of new susceptible individuals is given by the arbitrary
function �ðS,IÞ. We assume that the total number of
individuals in the population, N, is constant. In this case,
dI
dt + dS

dt ¼ 0, such that �ðS,IÞ ¼ 	I and the SI model is
equivalent to a SIS model (Anderson and May 1991). The
force of infectionL is the rate at which susceptible individuals
become infected and is proportional to the number infected
individuals in the population,

LðIÞ � �I=N: ð8Þ

Using S ¼ N� I, we can rewrite equation (7),

dI

dt
¼ �ð1� I=NÞ � 	ð ÞI: ð9Þ

Stochastic SIS Model
We use a continuous-time Markov chain (CTMC) to model
the epidemic process and the induced sampled phylogenetic
trees. We define qIðtÞ as the probability that I individuals
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are infected at time t. The transition probabilities for the
CTMC process are,

ProbfI! I + 1g ¼ ð�=NÞðN� IÞIdt, ð10aÞ

ProbfI! I� 1g ¼ 	Idt, ð10bÞ

ProbfI! Ig ¼ 1� �ðN� IÞI=N + 	Ið Þdt: ð10cÞ

We can write down the Kolmogorov forward differential
equation for qIðtÞ,

dqI

dt
¼ qI�1ðtÞ�ðN� ðI� 1ÞÞðI� 1Þ=N

+ qI + 1ðtÞ	ðI + 1Þ � ð�ðN� IÞI=N + 	ÞqIðtÞ:
ð11Þ

The solution to equation (11) gives us the probability
of having I infected individuals at time t. The deterministic
SIS model can be used as an upper bound for the expected
value of the number of infected individuals at time t
(Allen 2008),

dE½IðtÞ�

dt
� �ð1� E½IðtÞ�=NÞ � 	ð ÞE½IðtÞ�: ð12Þ

Sampled Phylogenies of an Epidemic Outbreak

In surveillance data, information about the infectious state
is only available for a subset of individuals. We assume
that throughout the course of the epidemic, the infected
individuals are sampled at a constant rate  . Once they
are sampled, we assume that these individuals can no
longer infect anyone else and are removed. This is an appro-
priate assumption for many diseases where sampling is
usually linked to drug treatment, isolation, or behavior
change, after which transmission becomes unlikely (e.g.,
HIV) or recovery is rapid. The sampled transmission tree
(sampled phylogeny) results from disregarding all non-
sampled individuals from the complete transmission tree
(fig. 1). As we assume that sampled individuals are no
longer infectious, the removal rate 	 in equations (9) and
(10b) becomes 	 ¼ �+ , where� is the removal rate with-
out sampling and  is the removal rate with sampling.
We define r as the probability of being sampled upon
removal, r ¼  =ð�+ Þ.

Inferring Epidemiological Parameters from Sampled
Phylogenies

Our aim is to infer the parameters of the stochastic SIS model,
�,�, ,N, defined by equation (11), based on a sampled phy-
logeny, T . In the supplementary information, Supplementary
Material online, we derive the likelihood LðT ; �Þ that an SIS
model with parameters � ¼ ð�,�, ,NÞ gave rise to the
sampled phylogeny.

Parameter inference

We use the likelihood function to obtain parameter
estimates in two ways: (A) a ML framework; (B) by estimating
the posterior distribution of parameters in a Bayesian
framework. In the Bayesian framework, we perform a

Metropolis–Hastings (MH) MCMC estimation of the joint
likelihood of all the sampled phylogenies to obtain a posterior
distribution of the parameters (Metropolis et al. 1953;
Hastings 1970). Let T ¼ fT 1,T 2, . . . ,T mg be a set of iid
samples chosen from the distribution PðT j �Þ of sampled
phylogenies. The probability density of a tree is the likelihood
of the tree from the New Approaches section. Because all the
trees are assumed to be iid, the likelihood of T is the product
of the likelihoods of the individual trees,

LðT; �Þ ¼
Ym
i¼1

LðT i; �Þ: ð13Þ

The full conditionals are not known, and we need to
resort to a MH approach to sample from the posterior
distribution of L. Furthermore, the parameters N,�,�, and
 are highly correlated, which greatly increases the time
to convergence of the MCMC chain when using
traditional MH or sequential Gibbs sampling. We thus
use Differential Evolution Adaptive Metropolis (DREAM)
to estimate the posterior density (Vrugt et al. 2009).
Convergence in the DREAM scheme is determined via the
Gelman–Rubin convergence diagnostic and is reached when
the scale reduction factor Rc < 1:05 for all parameters
(Brooks and Gelman 1998).

Relative Bias

To determine how well our method estimates the epidemic
parameters, we look at the relative bias,

�ð�̂iÞ ¼
�̂i � �i

�i
, ð14Þ

where �i is the true value of the i-th parameter � ¼ ðN,�,
�, Þ and �̂i is the mean of the estimated posterior.

Supplementary Material
Supplementary methods, figures S1–S4, and tables S1–S8 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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