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Accessibility to next-generation sequencing (NGS) technologies has enabled the profiling
of microbial communities living in distinct habitats. 16S ribosomal RNA (rRNA) gene
sequencing is widely used for microbiota profiling with NGS technologies. Since most
used NGS platforms generate short reads, sequencing the full-length 16S rRNA gene is
impractical. Therefore, choosing which 16S rRNA hypervariable region to sequence is
critical in microbiota profiling studies. All nine 16S rRNA hypervariable regions are
taxonomically informative, but due to variability in profiling performance for specific
clades, choosing the ideal 16S rRNA hypervariable region will depend on the bacterial
composition of the habitat under study. Recently, NGS allowed the identification of
microbes in the urinary tract, and urinary microbiota has become an active research area.
However, there is no current study evaluating the performance of different 16S rRNA
hypervariable regions for male urinary microbiota profiling. We collected urine samples
from male volunteers and profiled their urinary microbiota by sequencing a panel of six
amplicons encompassing all nine 16S rRNA hypervariable regions. Systematic
comparisons of their performance indicate V1V2 hypervariable regions better assess
the taxa commonly present in male urine samples, suggesting V1V2 amplicon sequencing
is more suitable for male urinary microbiota profiling. We believe our results will be helpful
to guide this crucial methodological choice in future male urinary microbiota studies.

Keywords: urobiome, urinary microbiota, bladder microbiota, 16S amplicon sequencing, 16S rRNA primers
INTRODUCTION

Urine is not sterile (Wolfe and Brubaker, 2015). Modified culture protocols, such as enhanced
quantitative urine culture (EQUC), and modern sequencing techniques have now enabled the
detection of microbes washed out from the whole urogenital tract (Perez-Carrasco et al., 2021).
Because EQUC is labor-intensive and time-consuming (Barnes et al., 2021), culture-independent
sequencing-based methods are the main tool to identify microbes inhabiting the urogenital tract.
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Microbial communities colonizing the urinary tract
(collectively referred to as the urobiome) are influenced by sex,
age, environmental factors and even host genetics (Adebayo
et al., 2020; Brubaker et al., 2021a; Brubaker et al., 2021b;
Perez-Carrasco et al., 2021). Most importantly, recent studies
have shown that urobiome dysbiosis is linked to several
urological conditions (Brubaker et al., 2021b; Perez-Carrasco
et al., 2021), ranging from urinary incontinence (Pearce et al.,
2014) to bladder cancer (Wu et al., 2018). Therefore, a
comprehensive and systematic characterization of the
urobiome in health and disease is fundamental, and may lead
to new prevention, diagnosis and treatment strategies for
urological pathologies.

Bacteria are the central component of the urobiome and a
major technical challenge in DNA-based microbiota studies is
the low bacterial biomass of urine samples (Brubaker et al.,
2021b). Bladder urine often contains <105 colony forming units
per milliliter, a number at least a million times lower than that
found in feces per gram (Karstens et al., 2018). As a consequence,
while gut microbiota DNA-based studies are shifting from 16S
ribosomal RNA (rRNA) amplicon sequencing towards shotgun
metagenomic sequencing - which is problematic with low
amounts of input bacterial DNA (Pereira-Marques et al.,
2019) -, urinary microbiota profiling still relies on 16S rRNA
amplicon sequencing (Cumpanas et al., 2020; Hoffman
et al., 2021).

A critical step in 16S rRNA amplicon sequencing studies is
the selection of which 16S rRNA hypervariable regions to
sequence. 16S rRNA contains nine hypervariable regions (V1-
V9) used to determine taxonomic identity and estimate
evolutionary relationships between bacteria. Although all nine
hypervariable regions are taxonomically informative, the amount
and quality of information retrieved varies per region according
to the studied environment. For instance, Fadeev et al. (2021)
showed that V4V5 is superior to V3V4 for microbiota profiling
of environmental arctic samples, and Kameoka et al. (2021)
found that V1V2 is more precise than V3V4 for gut microbiota
profiling of Japanese individuals. Furthermore, Hoffman et al.
(2021) concluded based on a computational analysis that V1V3
and V2V3 allow a more complete assessment of the female
urobiome, but validation by sequencing these regions was
not performed.

Despite evidence showing that the choice of 16S hypervariable
regions in microbiota profiling studies is critical (Cabral et al.,
2017; Fadeev et al., 2021; Hoffman et al., 2021; Kameoka et al.,
2021; Sirichoat et al., 2021), no study has systematically
compared the performance of sequencing different 16S rRNA
hypervariable regions for microbial characterization of urine
samples. In this work, we compared the performance of
different sets of 16S rRNA primers for male urinary microbiota
profiling. We collected urine samples from male volunteers by
transurethral catheterization and used a 16S rRNA sequencing
panel encompassing all nine hypervariable regions. We also
combined pairs of non-overlapping 16S rRNA amplicons using
bioinformatics reconstruction to evaluate their performance. To
identify which primer sets and combinations are best suited for
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male urinary microbiota profiling, we evaluated the effect of
using different primer sets and combinations on metrics such as
taxonomic resolution, taxonomic richness and ambiguity. Our
results suggest V1V2 amplicon sequencing is more suitable for
male urinary microbiota studies. We also observed marginal
gains in taxonomic richness when using pairs of amplicons,
which may not compensate for the higher costs of sequencing
multi-amplicon libraries.
MATERIALS AND METHODS

Sample Collection
Twenty-two urine samples were collected from 14 male
volunteers between March 2019 and November 2020. Samples
were collected by a trained nurse in sterile urine containers
during catheterization for BCG instillation in volunteers with
non-muscle invasive bladder cancer or for transurethral
resection in volunteers with benign prostatic hyperplasia
(Table S1). Since the benefit of using preservatives is limited
for samples stored at colder temperatures (Jung et al., 2019),
samples were stored without preservative at -80°C until
DNA extraction.

DNA Extraction
Urine samples were thawed at room temperature, and up to 40
ml of urine was used for DNA extraction. Urine samples were
centrifuged for 15 min at 10°C and 3000 g, and the supernatant
was discarded sparing 10 ml of urine (containing a pellet). This
content was transferred to 15 ml tubes, and centrifugation was
repeated (15 min; 10°C; 3000 g). Approximately 1 ml of urine
(containing the pellet) was resuspended in 3 ml phosphate-
buffered saline (PBS) and centrifugation was repeated (15 min;
10°C; 3000 g). The supernatant was discarded leaving 1 ml of
sample in the tube. Samples and the DNA extraction negative
control (1 ml PBS) were processed for DNA extraction using the
QIAamp DNA Microbiome kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol (Depletion of Host
DNA protocol).

Library Preparation and Sequencing
Twenty-four multi-amplicon libraries were prepared using the
QIAseq 16S/ITS Screening Panel kit (Qiagen, Hilden, Germany)
as outlined in Figure S1. These libraries were prepared using 22
urine DNA samples, the DNA extraction negative control and
the QIAseq 16S/ITS Smart Control (Qiagen, Hilden, Germany),
a synthetic DNA sample used both as positive control for library
preparation and sequencing, and as control for the identification
of contaminants. DNA concentration was determined using the
Qubit dsDNA HS Assay kit and Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA). Next, the fungal
taxonomic marker internal transcribed spacer (ITS) and six
16S rRNA amplicons, spanning all nine hypervariable regions
(V1V2, V2V3, V3V4, V4V5, V5V7 and V7V9), were amplified
by PCR. The ITS region was poorly amplified since we used a
DNA extraction protocol which depletes eukaryotic DNA.
April 2022 | Volume 12 | Article 862338
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Sequences originated from the ITS amplicon were therefore
discarded. PCR primers and their properties [estimated with
OligoCalc (Kibbe, 2007)] are provided in Table S2 .
Amplifications were carried out in three independent reactions
with primers multiplexed by the manufacturer. For samples in
which DNA concentration was ≥0.25 ng/ul, 1 ng of DNA was
used as template, and for samples with <0.25 ng/ul, 4 ul of DNA
was used. Cycling conditions were: 95°C for 2 min; 20 cycles of
95°C for 30 s, 50°C for 30 s and 72°C for 2 min; and 72°C for
7 min. PCR products from the same sample were pooled and
purified twice using QIAseq beads (Qiagen, Hilden, Germany).
Dual-index barcodes and adapters were added to amplified
products through a second-round of PCR using the QIAseq
16S/ITS 96-Index I array (Qiagen, Hilden, Germany). Cycling
conditions were: 95°C for 2 min; 19 cycles of 95°C for 30 s, 60°C
for 30 s and 72°C for 2 min; and 72°C for 7 min. After an
additional purification using QIAseq beads, the presence of
target sequences was evaluated with the Agilent Bioanalyzer
2100 System using the Agilent DNA 1000 kit (Santa Clara, CA,
USA). Finally, we quantified the libraries using the NEBNext®

Library Quant Kit for Illumina (New England Biolabs, Ipswich,
MA, USA), size-correcting for the average length reported in the
Bioanalyzer report considering a 400-700 bp quantification
window. Libraries were normalized to 2 nM and sequenced
using the MiSeq Reagent Kit v3 (600-cycle) (Illumina, San
Diego, CA, USA) following the 2 x 276 bp paired-end
read protocol.

Read Processing
Paired-end reads were library demultiplexed and adapters were
removed in the Illumina BaseSpace Sequence Hub. Each library
was amplicon demultiplexed using cutadapt (v3.4) (Martin,
2011), generating two FASTQ files (with forward or reverse
reads) for every library-amplicon combination. FASTQ files
from the same amplicon were grouped in QIIME 2 artifacts
and processed as independent datasets (hereinafter referred to as
amplicon-specific datasets) using QIIME 2 (Bolyen et al., 2019).

Using DADA2 (Callahan et al., 2016) (q2-dada2 QIIME 2
plugin), reads were filtered based on default quality criteria,
denoised and truncated (at the first instance of median quality
score <30) to remove low quality bases at 3’ ends. Next, paired-
end reads were merged using DADA2 to produce amplicon
sequence variants (ASVs). Finally, chimeric ASVs were filtered
using VSEARCH (Rognes et al., 2016) (q2-vsearch QIIME 2
plugin) and the SILVA database (v138) (Quast et al., 2013)
as reference.

Taxonomic Assignment, Nomenclature
Homogenization and
Contaminant Removal
Custom slices of the SILVA database (v138) for each amplicon
were generated using RESCRIPt (Robeson et al., 2021) (q2-
rescript QIIME 2 plugin). Low-quality reference sequences
were removed, identical reference sequences were dereplicated
and 16S rRNA hypervariable regions were selected using primer
sequences from the first-round of PCR as target sequences.
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Only selected regions within a reasonable length-range (100-
600 nt) were kept in the final amplicon-specific databases. To
achieve a more accurate taxonomic assignment for each
amplicon-specific dataset (Werner et al., 2012), amplicon-
specific Naive-Bayes-based taxonomic classifiers trained in
amplicon-specific databases were built using the q2-feature-
classifier QIIME 2 plugin (Bokulich et al., 2018). Finally,
taxonomic assignment of ASVs was performed using
amplicon-specific databases and classifiers.

Assigned taxonomies often contain incomplete information or
generic proxies, especially at species level. To homogenize
taxonomic nomenclature and to prevent inflation of taxonomic
richness at species level, we replaced missing data, generic proxies
(terms including “_sp.”, “uncultured”, “metagenome”, or
“human_gut”) and ambiguous taxonomic entries (e.g., “phylum:
Bacteroidota|Proteobacteria”) by the lowest taxonomic level with
complete nomenclature and the corresponding taxon [e.g. “(…)
genus: Streptococcus; species: uncultured_bacterium” is replaced
by “(…) genus: Streptococcus; species: Genus_Streptococcus”].

Next, we filtered non-bacterial and bacterial contaminants
using taxonomic and abundance information. Non-bacterial
contaminants were filtered by removing ASVs classified as not
being from bacterial origin (taxonomy assigned to mitochondria,
chloroplast or unassigned kingdom). Bacterial contaminants
were identified using the R package decontam (Davis et al.,
2018). Briefly, using the DNA extraction negative control and
QIAseq 16S/ITS Smart Control libraries as controls for
contaminants, we tested whether each ASV was a contaminant
by combining frequency and prevalence decontammethods. Due
to the limited number of DNA extraction negative control
libraries, there was limited statistical power to identify
contaminants exclusively from abundance data. Therefore, we
evaluated manually if potentially contaminant ASVs (P < 0.25)
had been previously described as belonging to human
microbiotas by searching the taxon associated with such ASVs
at PubMed (search in May 2021). Potentially contaminant ASVs
whose taxonomy had not been previously described in urine
[namely, Pelomonas, which is a known laboratory contaminant
(Salter et al., 2014), Mycoplasma wenyonii and Candidatus
Obscuribacter ASVs] were considered true bacterial
contaminants and were removed from all amplicon-
specific datasets.

ASVs from amplicon-specific datasets after contaminants
removal were also assigned (as described for SILVA) using the
Greengenes (v13.8) (McDonald et al., 2012) and the NCBI 16S
RefSeq (O’Leary et al., 2016) to evaluate the impact of using
alternative reference databases in taxonomic resolution.
Sidle-Reconstruction of Amplicons
Combinations
The Short MUltiple Reads Framework (SMURF) algorithm
(Fuks et al., 2018) as implemented in Sidle (SMURF
Implementation Done to acceLerate Efficiency) (Debelius et al.,
2021) was used to reconstruct datasets combining all six 16S
rRNA amplicons. The q2-sidle QIIME 2 plugin was used (as
April 2022 | Volume 12 | Article 862338
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described below) with amplicon-specific datasets after
contaminants removal.

For ASVs in each amplicon-specific dataset to have a
consistent length (as demanded by SMURF algorithm), ASVs
were truncated at 300 nt. Reference sequences in the amplicon-
specific databases generated previously were also truncated at
300 nt. For each truncated amplicon-specific database, regional
k-mers were aligned (with 5 nt maximum mismatch) and a
reconstructed database incorporating all amplicon-specific
databases was built. Next, we reconstructed the abundance
(0 minimum number of counts) and the taxonomic table
incorporating all amplicon-specific datasets. Finally, we
removed all libraries classified as defective and homogenized
taxonomic nomenclature as previously described. Sidle-
reconstructed datasets combining pairs of amplicons were built
through an analogous pipeline.

Microbiota Analyses
Amplicon-specific datasets were normalized prior to diversity
analyses by Scaling with Ranked Subsampling (Beule and
Karlovsky, 2020) using the R package SRS (Heidrich et al.,
2021). The number of reads of the library with the lowest
number of reads per dataset was used as normalization cutoffs.
The normalized amplicon-specific datasets were used to compute
taxonomic and ASV richness (where richness is defined as the
number of different observed features per dataset), and Faith’s
phylogenetic diversity index (Faith, 1992) using the R package
picante (Kembel et al., 2010). Compositional dissimilarity
between samples (beta-diversity) was estimated using either
Bray-Curtis (Bray and Curtis, 1957) or Jaccard (Jaccard, 1901)
indices using the R package phyloseq (McMurdie and
Holmes, 2013).

ASVs were aligned using the R package DECIPHER (Wright,
2016) to calculate the entropy per nucleotide for each dataset,
and the entropy score was calculated using the R package
Bios2cor (Taddese et al., 2021).

Genera intersections between datasets were determined using
the R package UpSetR (Conway et al., 2017). Taxonomic trees
were generated using the R package metacoder (Foster et al.,
2017) employing the Reingold-Tilford layout. Only the 32 most
abundant taxa were shown when plotting taxa relative
abundances (based on minimum relative abundance in at least
one sample, which is adjusted for each plot).

Ambiguity was estimated using the abundance output tables
generated using Sidle. In these tables, the number of potential
16S rRNA source sequences for each feature is provided. For
each dataset, ambiguity was calculated as the sum of the log of
the number of potential 16S rRNA source sequences for each
feature in the abundance table over the total number of features
in the abundance table. To calculate the ambiguity for amplicon-
specific datasets (not generated by Sidle), Sidle abundance tables
for each amplicon were built as described in the previous section.

The full bioinformatics pipeline and R scripts (R Core Team,
2021) used for plotting [mainly with the R package ggplot2
(Valero-Mora, 2010)] are available at https://github.com/
vitorheidrich/urine-16S-analyses.
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RESULTS

Sequencing Output and Taxonomic
Resolution
We were able to amplify target sequences from 18 out of the 22
(82%) urine samples. In total we generated 20 amplicon libraries
spanning all 16S rRNA hypervariable regions for urinary
microbiota profiling (18 libraries from urine samples and
libraries for the DNA extraction negative control and the
QIAseq 16S/ITS Smart Control). A total of 13,638,685 reads
were generated from urine sample libraries (median per library:
609,902; range: 383,982-1,489,196), out of which ~59% were
short unspecific reads not associated with any of the amplicons
of interest (the read length distribution of each amplicon-specific
dataset is shown in Figure S2). After amplicon demultiplexing,
each amplicon-specific dataset was analyzed in parallel. The total
number of reads generated for each amplicon-specific dataset
varied between 668,509 (V3V4) and 1,674,525 (V4V5)
(Figure 1A; Table S3). After read filtering and removal of
contaminants (see Methods), amplicon-specific datasets
showed on average a 28% decrease in the number of reads
(Figure 1A; Table S3). The number of reads removed at each
step in our bioinformatics pipeline is detailed in Table S3.

Despite an overall balanced relative abundance of reads for
each amplicon-specific dataset (Figure 1B), some libraries
presented a disproportionate number of reads for a particular
amplicon (Figure 1C). Specifically, libraries #2 and #3 showed a
high proportion (>⅓) of V1V2 and V2V3 reads, respectively. We
also noted that, despite the high median total number of reads
generated for each library (204,433), the extremes varied by
orders of magnitude (from 5,366 to 504,852 reads), so that the
library with the lowest number of reads (#1) had less than 1,000
reads in 4 out of 6 amplicon-specific datasets. These disparities
lead us to remove libraries #1, #2 and #3 from further analyses to
prevent the introduction of bias due to low-quality libraries.
Finally, we confirmed that the remaining libraries achieved
satisfactory sequencing depth by calculating the Good’s
coverage (Good, 1953) (~100% for all samples) and drawing
rarefaction curves (Figure S3) for each amplicon-specific dataset.

Within these refined datasets, virtually all sequences in V1V2,
V2V3 and V3V4 datasets received a taxonomic assignment up to
genus level (Figure 1D). On the other hand, V4V5 and V5V7
showed a marked decrease in the percentage of assigned
sequences at genus level, suggesting a lack of taxonomic
resolution for relatively abundant taxa. Taxonomic assignment
up to species level was more rarely achieved overall, but V1V2
and V2V3 datasets showed a noticeably higher percentage of
sequences assigned up to species level compared to other
amplicons (19.7% and 21.8%, respectively). Importantly, we
obtained similar results when analyzing taxonomic resolution
using NCBI 16S RefSeq or Greengenes as reference databases
(Figure S4), confirming that these results are not notably
influenced by the database used.

In summary, our results indicate that the protocol used herein
is suitable for male urinary microbiota characterization,
providing enough sequencing depth to assess several amplicons
April 2022 | Volume 12 | Article 862338
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simultaneously. We also confirmed that 16S rRNA hypervariable
regions sequencing of male urine samples can provide reliable
taxonomic information up to genus level. However, taxonomic
resolution varies along the 16S rRNA hypervariable regions, with
V1V2 and V2V3 achieving the highest taxonomic resolution
when considering genus and species levels together.

Richness Across 16S rRNA Amplicon-
Specific Datasets
Next, we evaluated ASV and taxonomic (phylum to species level)
richness for each amplicon-specific dataset (Figures 2A, B).
V1V2 and V3V4 datasets showed the highest ASV richness,
while V4V5 and V7V9 presented a markedly lower ASV richness
(Figure 2A). There was no correlation between ASV richness per
dataset and the median ASV length per dataset (Spearman r =
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
-0.37, P = 0.47). The ASV length distribution of each amplicon-
specific dataset is shown in Figure S5. At phylum and class level,
all amplicons showed a remarkably similar richness (Figure 2B),
with 6 phyla and 10 classes observed for all datasets, except for
the V3V4 dataset (7 phyla and 11 classes). At lower taxonomic
levels, differences between amplicons emerged, with the V1V2
dataset showing consistently the highest taxonomic richness
from order to species level (Figure 2B). There was no
correlation between taxonomic richness per dataset and the
median ASV length per dataset (Table S4).

As expected from its higher ASV richness, V1V2 showed the
highest taxonomic richness at genus level. However, we noticed
that ASV richness did not always translate into taxonomic
richness. For instance, V3V4 goes from the 2nd to the 4th
position when richness was assessed at genus level instead of
A

B

D

C

FIGURE 1 | Sequencing output and taxonomic resolution for each 16S rRNA amplicon-specific dataset. (A) Number of reads generated and retained after filtering
steps for each amplicon-specific dataset. (B) Relative frequency of reads retained after filtering steps averaged over all libraries for each amplicon-specific dataset.
(C) Relative frequency of reads retained after filtering steps per library for each amplicon-specific dataset. (D) Percentage of sequences with assigned taxonomy (per
taxonomic level) for each amplicon-specific dataset.
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ASV level, suggesting that part of its ASVs correspond to ASVs
phylogenetically close to other ASVs observed in the dataset,
which do not contribute to increase taxonomic richness. Indeed,
V3V4 ASVs showed a much lower phylogenetic diversity
compared to V1V2 ASVs (Figure 2C). In fact, there is a
decreasing trend in phylogenetic diversity along the 16S rRNA
hypervariable regions, which is in line with the sequence
variability (entropy) observed for each amplicon-specific
dataset (Figure 2D). There was no correlation between ASV
phylogenetic diversity and the median ASV length (Spearman
r = -0.09, P = 0.92).

Together, our results indicate that V1V2 is the most
informative 16S rRNA amplicon in terms of taxonomic
richness and phylogenetic diversity for male urinary
microbiota characterization.

Taxonomic Composition Across 16S rRNA
Amplicon-Specific Datasets
The phyla Actinobacteriota, Bacteroidota, Firmicutes,
Fusobacteriota and Proteobacteria were detected in all
amplicon-specific datasets. However, some phyla were detected
exclusively in a subset of them (Figure S6A). Therefore, we
analyzed how taxa detection varied across amplicon-specific
datasets at genus level. The full picture of the genera detected
in each amplicon-specific dataset is provided in Figure S6B.
Taxonomic trees depicting the contribution of each taxon (tree
nodes) to the genera detected in each dataset are provided in
Figure S7.

When evaluating the intersection of genera present in each
amplicon-specific dataset (Figure 3A), we see that 27 genera
were detected in all amplicon-specific datasets. The next larger
subgroup, composed of 15 genera, comprises genera detected
exclusively in the V1V2 dataset. Noteworthy, the V1V2 dataset is
the only amplicon-specific dataset without exclusively
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
undetected genera, meaning all undetected genera in the V1V2
dataset were also undetected in at least another amplicon-specific
dataset. All other datasets also presented “exclusive” genera,
which summed up to 31 genera detected in a single amplicon-
specific dataset.

Due to such substantial differences, we aimed to assess how
the choice of amplicon affects taxonomic profiles. To do so, we
used beta-diversity analysis to evaluate whether the taxonomic
composition of a given sample is similar to itself irrespectively of
the amplicon used for characterization (Figure 3B). For all
taxonomic levels, using either Bray-Curtis or Jaccard beta-
diversity indices, the compositional dissimilarities within
samples (same sample profiled with different amplicons) are
significantly lower than between samples, suggesting that the
choice of amplicons will marginally impact the overall
taxonomic compositions, especially at higher taxonomic levels.

The robustness of the taxonomic profile obtained irrespectively
of the amplicon of choice can be further contemplated by the
similar genera relative abundance profile (averaged over all
samples) obtained for each amplicon-specific dataset
(Figure 3C). In Figure 3C, there is an apparently disparate
average taxonomic composition for V4V5 and V5V7 datasets.
However, this is mainly due to loss of taxonomic resolution for
some taxa, with ASVs otherwise classified as genera Variovorax
and Klebsiella being only resolved up to family level
(Comamonadaceae and Enterobacteriaceae, respectively) in these
datasets. This loss of taxonomic resolution is also observed for
Halomonas ASVs, which were classified as so in V4V5, V5V7 and
V7V9 datasets, but as “Family_Halomonadaceae” in the
remaining ones. This phenomenon is even more evident when
evaluating taxa relative abundances per sample for each dataset at
different taxonomic levels (Figure S8), with examples of higher
taxonomic resolution at species level (e.g. for Staphylococcus sp. in
V1V2 and V2V3 datasets).
A B

D

C

FIGURE 2 | Richness and phylogenetic diversity across 16S rRNA amplicon-specific datasets. (A) Amplicon sequence variant (ASV) richness per amplicon-specific
dataset. (B) Taxonomic richness (phylum to species level) per amplicon-specific dataset. (C) Faith’s Phylogenetic Diversity (PD) across amplicon-specific datasets.
(D) Sequence variability (entropy) along ASVs nucleotide positions (20-nucleotides rolling average) for each amplicon-specific dataset. Only nucleotide positions up to
the median ASV size per amplicon-specific dataset are considered.
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A

B

C

FIGURE 3 | Taxonomic composition across 16S rRNA amplicon-specific datasets. (A) Barplot depicting intersections between the genera detected in each
amplicon-specific dataset. Total rIchness at genus level is shown in the lower-left subplot. (B) Boxplot comparing dissimilarities between different libraries and within
the same libraries as profiled with different amplicons. Dissimilarity metrics considered are Bray-Curtis (BC) and Jaccard (J). Statistical significance was evaluated by
the Mann-Whitney U test. The boxes highlight the median value and cover the 25th and 75th percentiles, with whiskers extending to the more extreme value within
1.5 times the length of the box. (C) Average genera relative abundance per amplicon-specific dataset. Only the 32 most abundant genera are shown (based on
minimum relative abundance in at least one sample, which is adjusted for each plot). ****P < 0.0001.
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We also see from Figure S8 that the substantial average
relative abundance of Variovorax and Klebsiella in Figure 3C is
caused by a significant presence of this genera in a small number
of low diversity samples (e.g., samples #13.1 and #8.1,
respectively) rather than by their presence in a large number of
samples. This points to the fact that these averaged profiles, while
useful as an analytical tool, do not represent the average male
urinary microbiota. Due to our limited sample size, averaged
profiles are highly impacted by extreme taxonomic compositions
in our cohort.

Despite small variations in taxonomic resolution across
amplicon-specific datasets for specific taxa, the overall
taxonomic composition of urinary samples is similar
independently of the amplicon of choice. Still, each amplicon is
able to capture a different subset of the taxa, with V1V2
providing the highest number of exclusively detected genera.
These results are in line with the higher genus richness observed
for the V1V2 dataset and indicate that V1V2 better captures the
actual microbiota composition of male urinary samples.

Comparison With Sidle-Reconstructed
Datasets
We next evaluated how the taxonomic richness and composition
differ when considering a single amplicon-specific dataset vs. the
Sidle-reconstructed taxa abundance table, which incorporates all
amplicon-specific datasets. This “full” dataset can then serve as a
compiled reference for male urinary microbiota analysis. We also
used Sidle to reconstruct taxa abundances for the following pairs
of non-overlapping amplicons: V1V2-V4V5, V1V2-V5V7,
V1V2-V7V9, V2V3-V5V7, V2V3-V7V9 and V4V5-V7V9.

As expected, there is a considerable gain in richness in the full
dataset, mainly at species level, with 3.9x more species observed
in the full dataset when compared to amplicon-specific datasets
(Figure 4A). The use of pairs of amplicons also increases
richness on average, but to a lower extent (Figure S9A), with
V2V3-V7V9 combination providing the greatest increase in
richness at species level (1.9x). This result can be explained by
a more complete taxonomic assignment being achieved for a
greater proportion of sequences in the full dataset (Figure S9B).
Indeed, better taxonomic resolution observed for the Sidle-
reconstructed datasets is due to the lower ambiguity (see
Methods) in taxonomic assignment (Figure 4B). Noteworthy,
the V1V2 dataset shows the lowest ambiguity when comparing
only single amplicon-specific datasets.

Once again, the overall taxonomic composition is similar
between datasets at genus level (Figure 4C). However, we see
cases in which identification at species level was only possible in
Sidle-reconstructed datasets (e.g., Klebsiella pneumoniae was
identified in the full dataset and in most of the pairs of non-
overlapping amplicons combinations) (Figure S9C). The taxa
relative abundance per sample for the Sidle-reconstructed
datasets at different taxonomic levels is provided in Figure S10.

Overall, the combination of amplicons through Sidle
increases the taxonomic resolution achievable from 16S rRNA
amplicon sequencing. However, the increase of combining pairs
of amplicons is modest compared to the full reconstruction using
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
all 16S hypervariable regions, which increases up to 4-fold the
number of species detected. Still, this has limited impact in
the taxonomic compositions, as evaluated by comparison with
the taxonomic profiles generated by single amplicons. Once
again, V1V2 stands out as the least ambiguous amplicon for
male urinary microbiota characterization.

V1V2 Taxonomic Composition
Due to the great number of taxa identified in the V1V2 dataset,
we next investigated whether these taxa are commonly associated
with the urogenital microbiota. In our cohort, six phyla were
detected using V1V2 amplicon sequencing: Proteobacteria
(72.4% of the sequences), Firmicutes (11.3%), Actinobacteriota
(9.6%), Fusobacteriota (4.5%), Bacteroidota (2.3%) and
Campilobacterota (<0.1%). All of these phyla have been
previously reported in studies using catheterized urine samples
(Mansour et al., 2020; Hussein et al., 2021; Oresta et al., 2021).
Only one of such studies reported the overall phyla abundance.
The top-three most abundant phyla in Mansour et al. (2020)
were Firmicutes, Proteobacteria and Actinobacteriota. However,
their cohort included females, which are known to have a
Firmicutes-enriched urogenital microbiota due to the high
abundance of lactobacilli (Pearce et al., 2015). In fact, a study
with voided urine specimens from male bladder cancer patients
found the same top-three most abundant phyla as described in
this study (Wu et al., 2018).

Next, we examined the 15 genera detected exclusively in the
V1V2 dataset. The average relative abundance of these genera
varied between <0.001% (Alkalibacterium and Jeotgalibaca) and
2.9% (Comamonas), summing up to ~4% of the bacterial
microbiota exclusively detected by V1V2 16S amplicon
sequencing (Table S5). Due to the overall low relative
abundance of these genera, we excluded the possibility of them
being contaminants by searching the literature for the presence
of these genera in urine samples. Briefly, 12 out of the 15 (80%)
genera exclusively detected in the V1V2 dataset have been
previously detected in human samples, and 10 out of 12 (83%)
have been associated with urinary infections or detected in
urogenital microbiota (Table S5). The three genera that were
not previously detected in human microbiotas (Alkalibacterium,
Chromohalobacter, Salipaludibacillus) sum up to only <0.01%
average relative abundance in the V1V2 dataset. They have been
described mainly as environmental high salt tolerant bacteria
(Ventosa et al., 1989; Yumoto et al., 2014; Sultanpuram and
Mothe, 2016), indicating they may represent undetected
contamination or taxonomic misclassifications.

Finally, we compared our results with 16S amplicon sequencing-
based microbiota studies using catheterized urine samples. In
Forster et al. (2020), the urinary microbiota from 34 children with
neuropathic bladder was characterized by V4 amplicon sequencing.
More than 75% of the samples were dominated (relative abundance
>30%) by family Enterobacteriaceae members, but the genera
involved in this phenomenon could not be determined due to
limited taxonomic resolution. We also observed dominance by
Enterobacteriaceae members in this cohort (samples #8.1 and
#8.2; Figure S8), but because all nine Enterobacteriaceae ASVs in
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the V1V2 dataset were classified up to genus level (either to
Klebsiella or Escherichia-Shigella), we were able to determine that
Klebsiella sp. were responsible for this phenomenon. Noteworthy, in
V4V5 and V5V7 datasets, family Enterobacteriaceae ASVs could
not be classified up to genus level (Figure S8), recapitulating the
limited taxonomic resolution for family Enterobacteriaceae
observed in the aforementioned study.

Together, these data corroborate that V1V2 amplicon
sequencing can provide reliable and richer taxonomic
information for microbiota profiling of catheterized urine
samples from males.
DISCUSSION

Many studies have compared the performance of different sets of
16S rRNA primers for microbiota profiling in different
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
environments (Cabral et al., 2017; Fadeev et al., 2021;
Kameoka et al., 2021; Sirichoat et al., 2021). These studies
consistently demonstrated that the choice of the 16S rRNA
primer set can significantly influence the analysis of microbiota
diversity and composition. Apart from a recent study evaluating
the female urobiome (Hoffman et al., 2021), similar studies for
urinary microbiota profiling are lacking. As reviewed by
Cumpanas et al. (2020), out of 38 urobiome studies, 17
evaluated the V4 and 4 evaluated the V3V4 16S rRNA
hypervariable regions. This is probably because these
amplicons are commonly used in 16S rRNA amplicon
sequencing commercial kits. It is also worth mentioning that
some of the early seminal studies were based on V1V3 amplicon
sequencing using the Roche 454 platform (Perez-Carrasco et al.,
2021), which allows longer reads. Therefore, up to now library
preparation kits and sequencing platforms have heavily
influenced the choice of 16S rRNA hypervariable regions used
A

B

C

FIGURE 4 | Richness and taxonomic composition of Sidle-reconstructed datasets. (A) Taxonomic richness (phylum to species level) per amplicon-specific or Sidle-
reconstructed dataset. (B) Ambiguity in taxonomic assignment per amplicon-specific or Sidle-reconstructed dataset. (C) Average genera relative abundance per
amplicon-specific or Sidle-reconstructed dataset. Only the 32 most abundant genera are shown (based on minimum relative abundance in at least one sample,
which is adjusted for each plot).
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in urinary microbiota profiling studies. Consequently, studies
that provide evidence for a more informed choice are urgent.

In this study, we tested the performance of six commonly
used 16S rRNA primer sets, spanning all nine hypervariable
regions, for microbiota profiling of 22 urine samples collected
from male volunteers by transurethral catheterization. We show
that V1V2 amplicon sequencing is more suitable for male
urinary microbiota profiling. We found that V1V2 provides
the greatest taxonomic and ASV richness, which translates into
a higher number of exclusively detected genera. This result is
likely attributed to V1V2 having a higher taxonomic resolution
for assessing the taxa commonly present in male urine samples.

We also evaluated combinations of pairs of non-overlapping
amplicons, from which we observed only marginal gains in
taxonomic richness in comparison with single amplicons.
Combining all six amplicons leads to a substantial increase in
taxonomic richness at species level, but with little impact on the
overall taxonomic compositions, indicating these gains are largely
due to low-abundant taxa. Therefore, they may not compensate for
the higher costs of sequencing multi-amplicon libraries. Moreover,
as amplicon combinations cannot be reconstructed as single
sequences, the eventual equivocal association between amplicons
may have caused inflation of taxonomic richness by false-positive
taxa in Sidle-reconstructed datasets.

We observed huge discrepancies between amplicon-specific
datasets when evaluating bacterial compositions by taxa relative
abundances. This is mainly because some amplicons presented
lower taxonomic resolution for profiling specific clades. Low
taxonomic resolution may impact community-wide metrics and
preclude the identification of associations between taxa and
covariates. Furthermore, low taxonomic resolution may also
drastically impact beta-diversity metrics that do not take
phylogenetic information into account (e.g., Bray-Curtis).

Amplicon-specific datasets also differed in the set of taxa
detected. V1V2 profiling minimized the number of undetected
genera, but because all other datasets possessed exclusively
detected genera, we conclude that missing a fraction of the
urine bacterial richness is inevitable with 16S rRNA amplicon
sequencing. Still, low relative abundance taxa drive these
observed differences so that analyses will not be harshly
influenced by this limitation, except when evaluating beta-
diversity with metrics that do not take bacterial evenness into
account (e.g., Jaccard).

Focusing on species cultured from the female urobiome and
using an in silico approach with 16S rRNA sequences retrieved
from the SILVA database, Hoffman et al. (2021) showed that
taxonomic assignment algorithms, 16S rRNA databases, and the
choice of 16S rRNA hypervariable regions influence the
taxonomic profiles of female urine. Although they used an in
silico approach and did not evaluate the same set of
hypervariable regions, in agreement with our results, they show
that the use of either V1V3 or V2V3 should be preferred for
urobiome profiling due to higher taxonomic resolution.
Noteworthy, they also showed that V1 and V2 hypervariable
regions present the highest sequence entropy for the bacteria
found in the female urinary microbiota.
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In this study, removal of contaminants was a key step, since
laboratory and reagent contaminants disproportionately affect
the microbiota profiling of low bacterial biomass samples
(Karstens et al., 2018). However, the method used for
contaminant removal has limitations. Since we had low
statistical power to detect contaminants exclusively using
sequencing data, we validated our findings using information
available in the literature. This is questionable because most
urobiome studies available did not use strategies to control for
contaminants (Cumpanas et al., 2020), therefore a previous
description of a taxon in human urobiomes does not imply it
is a true urinary tract-resident microbe. On the other hand, some
lists of known reagent and laboratory contaminants are available
in the literature [e.g., Salter et al. (2014)], but many of the taxa
included in such lists are known to be present in human
microbiotas. Obviously, these disputes are more frequent when
studying less characterized environments. For instance, the
genus Variovorax, which dominated a few samples in our
study, is described as a contaminant by Salter et al. (2014). At
the same time, in a contaminant-controlled study, a Variovorax
strain was identified in the urethra of a non-chlamydial non-
gonococcal urethritis patient (Riemersma et al., 2003).

Another important limitation of our study is the lack of
information on what is the true taxonomic composition of the
samples we analyzed. Because this is virtually impossible to infer
completely, some studies comparing 16S hypervariable regions
have determined the best region by comparing sequencing
results with PCR quantification of key taxa (Cabral et al., 2017;
Kameoka et al., 2021). Here, due to the lack of an internal
reference, we also compared amplicon-specific datasets to a
bioinformatic reconstruction of the microbial community
present in the urine samples using the full set of 16S
hypervariable regions. Further studies with experimentally
validated references will be needed to confirm our findings.

Because genitalia and the urinary tract contain distinct
bacterial communities (Gottschick et al., 2017), an important
variable in urobiome studies is the choice of the sampling
method (Brubaker et al., 2021a). Many urobiome studies
evaluate voided urine samples (Cumpanas et al., 2020), which
may contain bacteria from the urethra and genital skin, such that
voided urine samples represent the whole urogenital tract. In this
study, we evaluated urine samples collected via transurethral
catheterization, which reduces the presence of distal urinary tract
contaminants compared to voided urine urinary tract
contaminants compared to voided urine (Dong et al., 2011;
Southworth et al., 2019; Chen et al., 2020; Dornbier et al.,
2020). This sampling method, similarly to suprapubic
aspiration, allows the specific characterization of the urinary
bladder microbiota (Wolfe and Brubaker, 2019). Even though
this was a fundamental consideration to avoid cross-site
contamination, further studies will be necessary to evaluate
whether our results extend to voided urine specimens.
Likewise, since we included only male volunteers in this study,
further studies including urine samples from females are desired
to test whether our results can be extrapolated to the
female urobiome.
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In conclusion, similarly to other reports of primer bias in
microbiota studies, we provided evidence that V1V2 is the most
suitable 16S rRNA amplicon for the characterization of
catheterized urine samples microbiotas from males. To our
knowledge, this is the first study to address this question by
systematically analyzing all 16S hypervariable regions. This is
true not only for catheter-derived urine samples, but actually for
any kind of urine sample. Despite our limited sample size, which
may not fully represent male urinary microbiotas, we believe that
our results might help other researchers make an informed
decision about which 16S rRNA hypervariable regions to use
for male urobiome analysis.
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