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Vorticity random fields of turbulent flows (modelled
over the vorticity equation with random initial data
for example) are singled out as the main dynamic
variables for the description of turbulence, and the
evolution equation of the probability density function
(PDF) of the vorticity field has been obtained. This
PDF evolution equation is a mixed type partial
differential equation (PDE) of second order which
depends only on the conditional mean (which is a
first-order statistics) of the underlying turbulent flow.
This is in contrast with Reynolds mean flow equation
which relies on a quadratic statistics. The PDF PDE
may provide new closure schemes based on the first-
order conditional statistics, and some of them will be
described in the paper. We should mention that the
PDF equation is interesting by its own and is worthy
of study as a PDE of second order.

1. Introduction
In statistical fluid mechanics (cf. [1]), the velocity U(x, t)
of a turbulent flow is promoted to a random field, cf. [2],
indexed by space variable x ∈ R

3 and time parameter t.
From this point of view, the turbulence problem, if there
is one, seeks for a description of the distribution of
the velocity field. This distribution is rather complicated
and consists of all joint distributions of the velocity
across over finitely many locations and times, and
therefore it is challenging to describe the distributions
of turbulent flows in general. As early as the 1950s,
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Hopf [3] (cf. [1] too) made an ambitious attempt and derived differential equations for the
distribution of a turbulent flow. Hopf’s differential equations are however infinite-dimensional
and involve functional derivatives, which are therefore too difficult to extract useful information
about turbulence. The dominant approach in the statistical theory of turbulence, initiated in
Taylor’s seminal work [4,5], has been based on the analysis of moment structure functions and
relied on the spectral method (cf. [1,6] for example). In the past decades, attention has been paid
to the one-dimensional marginal distribution of the velocity field U(x, t), whose distribution is
finite-dimensional. It is reasonable to assume that the distribution of U(x, t), with (x, t) fixed,
has a probability density function (PDF) with respect to the Lebesgue measure on R

3. The PDF
methods based on formal PDF transport equations have been developed through a series of
works by Pope and other researchers (cf. [7,8]), which become powerful tools for modelling
turbulent flows. The PDF, by definition, has to satisfy ‘the adjoint equation’ of the fluid dynamic
equations. If the turbulent flow is an incompressible viscous fluid flow, then the PDF of the
velocity must satisfy the adjoint equation of the Navier–Stokes equation. The transport equation
for PDF known in the literature is still a formal adjoint equation of the Navier–Stokes equation,
and therefore only few features from the transport equation may be used in modelling turbulent
flows.

For incompressible fluid flows, the Navier–Stokes equation is equivalent to the vorticity
equation (see (2.1) below), and therefore it is natural to consider the vorticity W = ∇ ∧ U as the
main fluid dynamic variable for the study of turbulence [9]. There are good reasons why we
should concentrate on the vortex motion in turbulence. The velocity of a turbulent flow is unlikely
to be independent or possess conditional independence with respect to the spatial variable, while
vortex motions of many turbulent flows observed in nature (such as vortex lines, vortex rings)
acquire certain conditional independence, in the sense that by focusing on the motion near a
fixed region, the future vortex motions evolve more or less independent of what happens in other
positions. In fact there are good evidences which demonstrate that some sort of superposition
property of vorticity may be maintained, although not exactly due to highly nonlinear and non-
local nature of turbulence. These observations are valuable in modelling turbulent flows via the
vorticity, which are already applied in vortex methods (cf. [10,11]). In this sense, PDF methods
based on the vorticity are valuable.

The main contribution of the present work is the partial differential equation (PDE) for the
PDF of the vorticity (called PDF PDE or PDF equation for short), which will be derived in the
main body of the paper. The PDF PDE is highly nonlinear; however, the most striking aspect is
that the PDF PDE for the vorticity depends only on one single first-order statistical characteristic
of the turbulent flow. More precisely, we identify the main statistical characteristic needed for the
PDF PDE with the conditional mean function of the increment of the vorticity given the current
vorticity:

μi(x, y, w, t) = E[Wi(y, t) − Wi(x, t)|W(x, t) = w], (1.1)

for i = 1, 2, 3, where x, y, w ∈ R
3 and t ≥ 0. The PDF of the vorticity W is a solution to the PDF

PDE, which is a second-order PDE where coefficients appearing in the PDF PDE depend on μ
only. Besides its theoretical interest, this PDF PDE paves the way towards practical modelling the
statistics of turbulent flows based on the vorticity PDF.

The paper is organized as follows. In §2, several notions and notations together with several
standard assumptions about fluid dynamic random fields will be introduced, and the main result,
namely the PDF PDE for vorticity, will be derived. In §§3 and 4, the theoretical foundation, based
on our PDF PDE for vorticity, will be laid for the purpose of modelling various turbulent flows. In
§5, we propose the most direct way of modelling PDF of the vorticity by specifying the conditional
mean function μi. The PDF PDE considered purely as a PDE theory is over-determined, due to its
nonlinearlity in the sense that the coefficients appearing in the PDF PDE are not independent of
its solutions. Therefore, care is needed to ensure that the additional constraint is satisfied. In the
last section, we propose the heat flow method to model statistical quantities needed for closing
the PDF PDE and obtain concrete PDF examples.
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(a) Conventions on notations
The following conventions are used throughout the paper. Firstly Einstein’s convention on
summation on repeated indices through their ranges is assumed, unless otherwise specified. If
A is a vector or a vector field (in the space of dimension three) dependent on some parameters,
then its components are labelled with upper-script indices, i.e. A = (Ai) = (A1, A2, A3). The same
convention applies to coordinates too. Partial derivatives of functions may be labelled with
variables in sub-scripts. For example, if A(w; x, t) is a vector-valued function depending on w,
x ∈ R

3 and t, then ∇wA means the total derivatives (∂/∂wiAj),�xA means the vector (∂2/∂xk∂xkAi)
of the Laplacians of Ai. However, as a general rule, derivatives without subscripts mean the
derivatives with respect to the variable x = (xi), unless otherwise specified for avoiding possible
confusion.

The velocity vector field will be denoted by U. W = ∇ ∧ U is its vorticity so that
Wi = εijk∂/∂xjUk, where εijk are the Levi–Civita symbols.

2. Probability density function equation for the vorticity
In this paper, we regard the vorticity of an incompressible turbulent flow as the main dynamic
variable. The goal of this section is to derive the evolution equation for the PDF of the vorticity of
an incompressible turbulent flow.

(a) Prelims and assumptions
Let U(x, t) be the velocity of an incompressible turbulent flow in R

3 with viscosity ν. Suppose
there is no external force supplied to the turbulence. Being a random field though, U(x, t) satisfies
the Navier–Stokes equations

∂Ui

∂t
+ Uj ∂Ui

∂xj
= ν�Ui − ∂P

∂xi

and
∂Uj

∂xj
= 0,

where i = 1, 2, 3 and P is the pressure, subject to initial conditions which are random. The motion
equations of the vorticity W = ∇ ∧ U are the vorticity equations

∂Wi

∂t
+ Uj ∂Wi

∂xj
= ν�Wi + Wj ∂Ui

∂xj
, (2.1)

for i = 1, 2, 3.
We make the following technical assumptions.
First, we assume that both U(x, t) and W(x, t) have derivatives in x and t of any order, and these

derivatives decay to zero at infinity sufficiently fast, so that possible boundary terms arising in
applications of the Stokes’ formula have no contributions in computations below. Therefore, since
U is divergence-free, �U = −∇ ∧ W, according to Green’s formula

Ui(x, t) =
∫
R3

1
4π |x − y|ε

ijk ∂

∂yj
Wk(y, t) dy,

which yields the Biot–Savart law:

Ui(x, t) = −
∫
R3
εijk xj − yj

4π |x − y|3 Wk(y, t) dy. (2.2)

for i = 1, 2, 3.
Our second technical assumption is to impose certain regularity on the distribution of the

vorticity. At each point x and instance t ≥ 0, W(x, t) is a random variable defined on a probability
space (Ω ,F , P), taking values in R

3, and therefore its law (or called distribution) is a probability
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measure on (R3,B(R3)). We assume that W(x, t) has a positive and smooth PDF, denoted by
f (w; x, t), in the sense that

P(W(x, t) ∈ A) =
∫

A
f (w; x, t) dw

for every Borel measurable subset A. The joint distribution of W(x, t) and W(y, t) for any pair x �= y
has a positive and smooth PDF, denoted by f2(w1, w2; x, y, t).

To state our third assumption, we first notice that

f2|1(w; w1, x, y, t) = f2(w1, w; x, y, t)
f (w1; x, t)

is the PDF of the conditional law of W(y, t) given W(x, t) = w1. The conditional mean function
μi(x, y, w, t) is defined by

μi(x, y, w, t) = E[Wi(y, t) − Wi(x, t)|W(x, t) = w]

=
∫
R3

(wi
1 − wi)f2|1(w1; w, x, y, t) dw1, (2.3)

for i = 1, 2, 3, which will play a dominant role in the sequel.
The third technical assumption is about the regularity of the conditional average function

μ= (μ1,μ2,μ3). It is assumed that the derivatives of μ of any order exist and decay to zero
sufficiently fast at infinity. Moreover, it is assumed that μ has an asymptotic expansion

μi(x, y, w, t) = ai
k(x, w, t)(yk − xk) + bi

jk(x, w, t)(yk − xk)(yj − xj) + o(|y − x|2) (2.4)

as |y − x| → 0, where ai
k’s and bi

jk’s are assumed to be continuous with respect to all of their

arguments. We denote bi = bi
kk for i = 1, 2, 3. It is clear that

ai
k(x, w, t) = E

[
∂Wi

∂xk
(x, t)

∣∣∣∣∣W(x, t) = w

]
= ∂

∂yk
μi(x, y, w, t)

∣∣∣∣
y=x

, (2.5)

which represents the local rate of change in the vortex motion over the turbulent region, and

bi(x, w, t) = 1
2 E[�xWi(x, t)|W(x, t) = w] = 1

2�yμ
i(x, y, w, t)|y=x. (2.6)

In the remainder of the paper, we will work with a turbulent flow for which the three
assumptions listed above are satisfied.

(b) Probability density function equation and its derivation
In this section, we derive the main result of the paper, that is a PDE which the PDF of the vorticity
must satisfy.

Theorem 2.1. Under the assumptions and notations established in §2a, suppose the PDF f (w; x, t) of
the vorticity is smooth in (w, x, t) and has finite moments, that is

∫
R3

|w|nf (w; x, t) dw<∞,

for every n = 1, 2, . . . . Then f satisfies the following PDE:(
∂

∂t
+ ∂Bi

∂xi
+ Bi ∂

∂xi
− ν�x

)
f = ν

∂

∂wi

(
∂

∂xk
( fai

k) − 2bif
)

+ ∂

∂wi
( fDi), (2.7)

where �x is the Laplacian with respect to the space variable x, ak and b are given as in (2.5) and (2.6),

Bi(x, w, t) =
∫
R3

1
4π |y − x|ε

ijk ∂

∂yj
μk(x, y, w, t) dy, (2.8)
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and

Di(x, w, t) = wl
∫
R3

yl − xl

4π |y − x|3 ε
ijk ∂

∂yj
μk(x, y, w, t) dy. (2.9)

Proof. Let F be a smooth function on R
3 with a compact support. By the definition of PDF one

has ∫
R3

F(w)
∂

∂t
f (w; x, t) dw = E

[
∂

∂t
F(W(x, t))

]
.

We are going to calculate the right-hand side expectation in terms of the PDF f (w; x, t) and other
statistical characteristics of the turbulent flow. This will be done by using the following equation:

∂

∂t
F(W(x, t)) = ν�xF(W) − ∂(UiF(W))

∂xi
+ Fj(W)Wi ∂Uj

∂xi
− ν

∂Fj(W)

∂xk

∂Wj

∂xk
,

where, for simplicity, Fj denote the partial derivatives ∂F/∂xj of F, j = 1, 2, 3. This equation follows
directly from the vorticity equations. From the previous equation, we obtain that

E

[
∂

∂t
F(W(x, t))

]
= νE[�xF(W)] − E

[
∂(UiF(W))

∂xi

]

+ E

[
Fj(W)Wi ∂Uj

∂xi

]
− E

[
ν
∂Fj(W)

∂xk

∂Wj

∂xk

]

:= I1 + I2 + I3 + I4. (2.10)

Let us calculate Ii’s on the right-hand side of equation (2.10). First, it is easy to see that by
definition

I1 = ν�xE[F(W)] =
∫
R3

F(w)ν�xf (w; x, t) dw. (2.11)

For computing I2, we shall use equation (2.2) and obtain that

I2 = −E

[
∂(UiF(W))

∂xi

]
= − ∂

∂xi
E[F(W)Ui]

= − ∂

∂xi
E

[
F(W)εijk

∫
R3

1
4π |y − x|

∂

∂yj
Wk(y, t) dy

]
.

To work out the expectation on the right-hand side, we may rewrite the partial derivative as a
limit:

∂

∂yj
Wk(y, t) = lim

h→0

1
h

(Wk(y + he(j), t) − Wk(y, t)),

where e(j) represents the unit vector with jth component equal to 1, and the rest two components
0, so that we can rewrite I2 as the following limit

I2 = − ∂

∂xi
lim
h→0

1
h

E

[
F(W)εijk

∫
R3

1
4π |y − x| (Wk(y + he(j), t) − Wk(y, t)) dy

]
. (2.12)

The expectation in this expression may be written in terms of two-point joint distributions of W
as the following

∫
R3

F(w)

[∫
εijk

4π |y − x|
(∫

R3
wk

1( f2(w, w1; x, y + he(j), t) − f2(w, w1; x, y, t)) dw1

)
dy

]
dw.

The inner integral against the variable w1 equals

f (w; x, t)(μ(x, y + he(j), w, t) − μ(x, y, w, t)).

After substituting this in equation (2.12) and sending h → 0, we obtain that

I2 =
∫
R3

F(w)

[
− ∂

∂xi

(
f (w; x, t)

∫
R3

εijk

4π |y − x|
∂

∂yj
μk(x, y, w, t) dy

)]
dw. (2.13)
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Next we deal with I3. Again, using (2.2), we may write

∂

∂xj
Ui(x, t) =

∫
R3

yj − xj

4π |y − x|3 ε
ilk ∂

∂yl
Wk(y, t) dy,

so that

I3 = E

[
Fi(W)Wj ∂Ui

∂xj

]

= E

[
Fi(W)Wj

∫
R3

yj − xj

4π |y − x|3 ε
ilk ∂

∂yl
Wk(y, t) dy

]
,

which can be evaluated by using the two-point joint PDF. Indeed, we may repeat the same idea
as in the computation of I2, to obtain that

I3 =
∫
R3

F(w)
∂

∂wi

[
−f (w; x, t)εilkwj

∫
R3

yj − xj

4π |y − x|3
∂

∂yl
μk(x, y, w, t) dy

]
dw. (2.14)

Similarly, for the last term I4, we write

I4 = −ν
3∑

k=1

E

[
∂Fi(W)
∂xk

∂Wi

∂xk

]

= −ν
3∑

k=1

lim
h→0

1
h2 E[(Fi(W(x + he(k), t)) − Fi(W(x, t)))(Wi(x + he(k), t) − Wi(x, t))]

= −ν
3∑

k=1

lim
h→0

1
h2

∫∫
R3×R3

(Fi(w2) − Fi(w1))(wi
2 − wi

1)f2(w1, w2, x, x + he(k), t) dw1dw2

= ν

∫
R3

Fi(w) lim
h→0

1
h2

3∑
k=1

{
f (w; x + he(k), t)

∫
R3

(wi
1 − wi)f2|1(w1; w, x + he(k), x, t) dw1

+ f (w; x, t)
∫
R3

(wi
1 − wi)f2|1(w1; w, x, x + he(k), t) dw1

}
dw

= ν

∫
R3

Fi(w) lim
h→0

1
h2 Ih

4dw,

where for simplicity we have introduced the notation

Ih
4 :=

3∑
k=1

{( f (w; x + he(k), t) − f (w; x, t))μi(x + he(k), x, w, t)

+ f (w; x, t)(μi(x, x + he(k), w, t) + μi(x + he(k), x, w, t))}.
Ih
4 can be evaluated by using (2.4) when h is sufficiently small, by which we mean that

μi(x, x + he(k), w, t) = ai
k(x, w, t)h + bi

kk(x, w, t)h2 + o(h2)

and
μi(x + he(k), x, w, t) = −ai

k(x + he(k), w, t)h + bi
kk(x + he(k), w, t)h2 + o(h2).

Consequently, we have

μi(x, x + he(k), w, t) + μi(x + he(k), x, w, t) = −(ai
k(x + he(k), w, t) − ai

k(x, w, t))h

+ (bi
kk(x, w, t) + bi

kk(x + he(k), w, t))h2 + o(h2),

which yields that

lim
h→0

1
h2 Ih

4 = − ∂

∂xk
( fai

k) + 2f
∑

k

bi
kk.
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and we may conclude that

I4 = −ν
∫
R3

Fi(w)

[
∂

∂xk
( fai

k) − 2f
∑

k

bi
kk

]
dw

=
∫
R3

F(w)
∂

∂wi

[
ν
∂

∂xk
( fai

k) − 2νf
∑

k

bi
kk

]
dw. (2.15)

The PDF equation (2.7) now follows by substituting (2.11), (2.13)–(2.15) into (2.10). �

Remark 2.2. The PDE (2.7), although it appears linear, is in fact highly nonlinear, and more
importantly, the coefficients a, b, B and D that define the PDE cannot be in general determined
by the PDF f alone. We have seen that these functions are functionals of the conditional average
function μ, hence the PDF f cannot be obtained solely through the PDF equation. However, the
PDF PDE provides an appealing and new method for modelling the PDF f based on the modelling
of μ alone, we will provide in this work several results on modelling the PDF f based on the PDF
equation we just derived.

Remark 2.3. If all coefficients a, b, B and D are considered as given, then we can pose the initial
value problem for solving the PDF PDE (2.7). The good news is that then the PDF PDE is a scalar
linear PDE of second order, although in general it is a mixed type of PDEs of second order on
six-dimensional space. To the best knowledge of the authors of the present paper, this kind of
PDEs has not been studied systemically in the existing literature.

(c) The distribution of turbulence
As an application of the PDF PDE obtained in the previous subsection, we address a long-standing
question in turbulence about the distribution of turbulent flows. It has been conjectured and
verified by measurements over many years (cf. [6,12]) that the distribution of a genuine turbulent
flow cannot be Gaussian, while a mathematical proof for this statement, to the best knowledge of
the present authors, is not available yet. By using the PDF PDE, we are able to prove the following

Theorem 2.4. Consider an incompressible viscous (with viscosity ν > 0) turbulent flow with vorticity
W(x, t). Suppose

(1) the mean vorticity is constant at any instance,
(2) {W(x, t)} is weakly isotropic in the sense that

E[∇W(x, t)|W(x, t) = w] = 0,

for all x, w and t ≥ 0, and
(3) the distribution of {W(x, t)} is Gaussian.

Then the distribution of W(x, t) is independent of x.

Proof. Since {W(x, t) : x ∈ R
3 and t ≥ 0} is a Gaussian random field, for x �= y, the joint law of

W(x, t) and W(y, t) is a normal distribution on R
6 whose covariance matrix Σ(x, y) may be

decomposed into blocks

Σ(x, y) =
(
Σx Σx,y

Σy,x Σy

)
,

where the dependence on t is suppressed for simplicity. The PDF of W(x, t) is given by

f (w; x, t) = 1
(2π )3/2

√
detΣx

exp
(

−1
2

(w − m)TΣ−1
x (w − m)

)
,

where m denotes the mean vorticity, so that

ln f (w; x, t) = − 3
2 ln(2π ) − 1

2 ln detΣx − 1
2 (w − m)TΣ−1

x (w − m). (2.16)
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Since under the assumption ai
k = 0, ψ = ln f according to PDF PDE (2.7) must satisfy the following

equation:

∂ψ

∂t
= ν�xψ − Bi ∂ψ

∂xi
+ ν|∇xψ |2 + (Di − 2νbi)

∂ψ

∂wi
+ ∂(Di − 2νbi)

∂wi
− ∇x · B

(which is the PDF PDE for ψ = ln f in the case where ai
k vanish). Using (2.16) and by a lengthy but

completely elementary computation, we deduce that

−2
∂ψ

∂t
= ν�x ln detΣx − 1

2
ν|∇x ln detΣx|2 + 4ν

∂bi

∂wi

− Bi ∂ ln detΣx

∂xi
− 2

∂Di

∂wi
+ 2∇x · B + νuT�xΣ

−1
x u

− νuT

(∑
i

∂ ln detΣx

∂xi

∂Σ−1
x

∂xi

)
u − 4νbi(Σ−1

x )iβuβ

+ 2Di(Σ−1
x )iβuβ − BiuT ∂Σ

−1
x

∂xi
u − 1

2
ν|uT∇xΣ

−1
x u|2,

where u = w − m. The last equation looks complicated, but the important point in our argument
is the observation that, the left-hand side −2(∂ψ/∂t) is a quadratic function of u, while the right-
hand side is a polynomial in u of degree 4, and only the last term on the right-hand side has order
4 in u. Therefore

1
2ν|uT∇xΣ

−1
x u|2 = 0,

for every u, which yields that ∇xΣ
−1
x = 0, so that Σx is independent of x. This completes the

proof. �

3. Inviscid fluid flows
There is a significant simplification in PDF PDE for an inviscid ‘turbulent’ flow, although such
turbulence may not exist in nature. For inviscid fluid flows, the velocity U(x, t) satisfies the Euler
equations

∂

∂t
Ui + Uj ∂Ui

∂xj
= −∇P and

∂Ui

∂xi
= 0.

The PDF f (w; x, t) of W = ∇ ∧ U satisfies the (nonlinear) transport differential equation

∂f
∂t

+ ∂

∂xi
( fBi) = ∂

∂wi
( fDi), (3.1)

where B and D are given as in (2.8) and (2.9), respectively.
The following theorem provides a mathematical tool for modelling PDF of an inviscid

turbulent flow.

Theorem 3.1. Consider PDE (3.1) where the data B and D are assumed as given. Assume that B and
D are Lipschitz continuous in (x, w) uniformly in t> 0. Suppose f (w; x, t) is a solution to (3.1) with
continuous initial data f (w; x, 0), and suppose fD decays to zero sufficiently fast as |w| → ∞. Then we
have the following:

(1) f (w; x, 0) ≥ 0 for all x ∈ R
3, then f (w; x; t) ≥ 0 for all x ∈ R

3 and t> 0.

(2) Suppose
∫

R3 f (w; x, 0)dw = 1 for all x ∈ R
3, then

∫
R3 f (w; x, t)dw = 1 for all x ∈ R

3 and t> 0, if
and only if

∂

∂xi

∫
R3

Bi(x, w, t)f (w; x, t)dw = 0, (3.2)

for all x ∈ R
3 and t> 0.
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Proof. Let us define the integral curves X and Y by the following ordinary differential equation
system: ⎧⎪⎪⎨

⎪⎪⎩
d
ds

Xi(t, s) = −Bi(X(t, s), Y(t, s), t − s)), X(t, 0) = x,

d
ds

Yi(t, s) = Di(X(t, s), Y(t, s), t − s)), Y(t, 0) = w.

Define
h(s) = f (Y(t, s); X(t, s), t − s) eN(w;x,s),

for all s ∈ [0, t], where

N(w; x, s) :=
∫ s

0

(
∂Di

∂wi
− ∂Bi

∂xi

)
(X(t, r); Y(t, r), t − r) dr.

Then clearly h(0) = f (w; x, t) and

h(t) = f (Y(t, t); X(t, t), 0)eN(w;x,t).

It is clear that

d
ds

h(s) = eN ∂f
∂wi

d
ds

Yi(t, s) + eN ∂f
∂xi

d
ds

Xi(t, s) − eN ∂

∂t
f + eNf

∂Di

∂wi
− eNf

∂Bi

∂xi

= eN

{
∂( fDi)
∂wi

− ∂(Bif )
∂xi

− ∂

∂t
f

}

= 0.

Integrating with respect to the variable s over [0, t], we may conclude that

f (w; x, t) = f (Y(t, t); X(t, t), 0) exp

[∫ t

0

(
∂Di

∂wi
− ∂Bi

∂xi

)
(X(t, s); Y(t, s), t − s) ds

]
.

The conservation of positivity property (1) follows immediately from this representation. To show
(2) we consider the function u(x, t) = ∫

R3 f (w; x, t) dw for x ∈ R
3 and t ≥ 0. If u(x, t) = 1 for all x and

t> 0, then by integrating (3.1) over R
3 we obtain (3.2). Conversely, if (3.2) holds, by integrating

(3.1) over R
3 then ∂/∂tu(x, t) = 0, which yields that u(x, t) = 1. �

4. Weakly homogeneous and weakly isotropic flows
It has been pointed out in §§2 and 3, the coefficients appearing in the PDF PDE are determined
by the conditional mean function μ(x, y, w, t) defined in (1.1). The significance of this statistical
quantity of a turbulent flow has been demonstrated in the derivation of the PDF PDE. By
definition the conditional mean describes the deviation from the local isotropicity of the turbulent
flow, and therefore this statistical characteristic can be used in the classification of turbulent flows.
In this section, we define weak homogeneous and weak isotropic turbulent flows, then study the
PDF equation for these turbulent flows.

The homogeneity and the isotropicity can be defined in general for random fields indexed by
a space variable x ∈ R

d, which has been introduced into the study of turbulence by Taylor [5]. The
local homogeneous and local isotropic flows were introduced by Kolmogorov for formulating K41
theory (and its improved version K62 theory). According to Kolmogorov [2,13], a random field
{Z(x, t)} is locally homogeneous if the conditional distribution of Z(y, t) − Z(x, s) given Z(x, s) = z is
independent of (z, x, s) for any t ≥ s, and further it is locally isotropic if the conditional distribution
of Z(y, t) − Z(x, s) are invariant under reflections and rotations. The usage of conditional mean
function makes it possible to generalize these concepts to their weak versions.

We may simplify the PDF PDE for turbulent flows when the vorticity random field W(x, t)
is weakly homogeneous in the sense that for every pair (y, x) and t> 0, the conditional mean of
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Wi(y, t) − Wi(x, t) given W(x, t) = w depends only on y − x, w and t> 0 but independent of x, so
that we may write

μi(x, y, w, t) = β i(y − x, w, t),

where β i(0, w, t) = 0. Then

ai
k(x, w, t) = ∂β i

∂xk
(0, w, t),

and
bi(x, w, t) =�β i(0, w, t),

which are still denoted by ai
k(w, t) and bi(w, t), though they are independent of x. Similarly

Bi(w, t) =
∫
R3

1
4π |y|ε

ijk ∂β
k

∂yj
(y, w, t) dy,

and

Di(w, t) = wl
∫
R3

yl

4π |y|3 ε
ijk ∂β

k

∂yj
(y, w, t) dy,

which again are functions of (w, t) only. Therefore, the PDF PDE can be simplified to be the
following mixed type PDE(

∂

∂t
+ Bi ∂

∂xi
− ν�

)
f = ν

∂

∂wi

(
ai

k
∂f
∂xk

)
+ ∂

∂wi
( fAi),

where Ai = Di − 2νbi and i = 1, 2, 3.
We say that the vorticity W is weakly isotropic, if

E[∇W(x, t)|W(x, t) = w] = 0,

for all x, w and t. By definition, W is locally isotropic in Kolmogorov’s sense, then it is weakly
isotropic.

If W is weakly homogeneous and weakly isotropic, then a = 0, B and A depend on (w, t) only,
so for this case, the PDF PDE becomes a parabolic-transport equation(

∂

∂t
+ Bi ∂

∂xi
− ν�

)
f = ∂

∂wi
( fAi). (4.1)

After we have deduced the PDE (4.1), there is no need to assume that B and A are independent
of x. Therefore, we may consider the following PDE(

∂

∂t
+ Bi ∂

∂xi
+ ∂Bi

∂xi
− ν�

)
f = ∂

∂wi
( fAi). (4.2)

where both B and A are functions of three variables x, w and t.
The following theorem provides the foundation for modelling weakly isotropic turbulent flows

based on the vorticity PDF.

Theorem 4.1. Consider the parabolic-transport differential equation (4.2), where A and B are considered
as given. Assume that A(x, w, t) and B(x, w, t) are Lipschitz continuous in space variable (x, w) uniformly
in t. Suppose f (w; x, t) is a solution to (4.2) such that fA is continuous and decays to zero sufficiently fast
as |w| → ∞.

(1) If f (w; x, 0) ≥ 0 for all x and w, then f (w; x, t) ≥ 0 for all t ≥ 0, x and w.
(2) If f (w; x, 0) is a PDF for every x, i.e. it is non-negative and

∫
R3 f (w; x, 0) dw = 1 for every x, then

so are f (w; x, t) for all x and t> 0 if and only if

∂

∂xi

∫
R3

Bi(x, w, t)f (w; x, t) dw = 0, (4.3)

for all x and t> 0.
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(3) Suppose in addition B is independent of w and ∂Bi/∂xi = 0, then if f (w; x, 0) is a PDF for every x,
f (w; x, t) is also a PDF for every x and for every t> 0.

Proof. The proof is rather similar to that of theorem 3.1, so we only provide an outline. Let
(Mi

t)t≥0 (i = 1, 2, 3) be a three-dimensional standard Brownian motion on a probability space
(Ω ,F , P). For every fixed t> 0, we run the following stochastic differential equation (SDE) system:

dXi(t, s) =
√

2νdMi
s − Bi(X(t, s), Y(t, s), t − s) ds, X(t, 0) = x

and

dYi(t, s) = Ai(X(t, s), Y(t, s), t − s) ds, Y(t, 0) = w,

which has a unique solution running up to t. Apply Itô’s formula to

Hs = f (Y(t, s); X(t, s), t − s)eP(s),

where

P(s) =
∫ s

0

∂Ai

∂wi
(X(t, r), Y(t, r), t − r) dr.

Then

dHs = eP

(
∂f
∂wi

dYi
s + ∂f

∂xi
dXi

s + f
∂Ai

∂wi
− ∂f
∂s

ds + ν�f ds

)

=
√

2νeP ∂f
∂xi

dMi
s,

so that

H0 = Ht −
√

2νeP ∂f
∂xi

dMi
s.

By taking expectation, one may deduce that the solution can be expressed as

f (w; x, t) = E

[
f (Y(t, t); X(t, t), 0) exp

(∫ t

0

∂Ai

∂wi
(X(t, s), Y(t, s), t − s) ds

)]
.

Statements (1)–(3) can be easily shown using this expression and the argument in the proof of
theorem 3.1. If B is independent of w, then, by integrating (4.1),(

∂

∂t
+ Bi ∂

∂xi
− ν�

)
u(x, t) = 0,

where u(x, t) = ∫
R3 f (w; x, t) dw. Thus (3) follows from the uniqueness of the solution of the

previous parabolic equation. �

5. Modelling probability density function of weakly isotropic flows
In this and the next sections, several simple models based on our PDF equation for modelling
vorticity distributions in turbulence are discussed. Clearly, the most straightforward way for
modelling the distribution of vorticity is to assign the conditional mean function μ(x, y, w, t). The
other parameters in the PDF PDE may be determined accordingly.

For practical reasons which will be clarified in our computations below, the simplest yet
not trivial model for μ(x, y, w, t) should be a function of |y − x|2 only and μ decays sufficiently
fast at infinity. For such a model, the parameters Bi and Di appearing in the PDF PDE (2.7)
vanish identically. The other parameters ai

k and bi
jk are determined by the asymptotic condition as
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|y − x| → 0. For this reason, we assign

μi(x, y, w, t) =
⎧⎨
⎩− C

6ν
|y − x|2, if |x − y|< δ,

h(|y − x|2), if |x − y| ≥ δ,
(5.1)

for i = 1, 2, 3, where δ > 0 and h is a C1-function such that h and its derivative decay sufficiently
fast at infinity. C ≥ 0 is a model parameter which should be reflecting certain physical properties
of the underlying flows. The other parameters can be read out from this model easily: ai

k = 0,
bi

jk = −δjk(C/6ν) and therefore bi = −(C/2ν). With this model of μ, the PDF PDE is simplified to be
the following parabolic-transport equation:(

∂

∂t
− ν�

)
f = C

∑
i

∂f
∂wi

, (5.2)

The solution to (5.2) has a nice probabilistic representation which may be read out from the
proof of theorem 4.1. In fact

f (w; x, t) = E[f (Y(t, t); X(t, t), 0)], (5.3)

where f (w; x, 0) is the PDF of the initial vorticity, and X and Y are solutions to the SDE:{
dXi(t, s) = √

2νdMi
s, X(t, 0) = x,

dYi(t, s) = Cds, Y(t, 0) = w,

where M is a standard three-dimensional Brownian motion. The solutions when s = t are
given by

Yi(t, t) = wi + Ct

and

X(t, t) = x +
√

2νMt.

Substituting these into (5.3) we obtain

f (w; x, t) = E

[
f (w + Ct; x +

√
2νMt, 0)

]
= E

[
f (w + Ct; x +

√
2νtξ , 0)

]
, (5.4)

where ξ is a random vector with the standard three-dimensional normal distribution N(0, I3).
Clearly the representation (5.4) may also be written in terms of Gaussian density

f (w; x, t) = 1
(4πνt)3/2

∫
R3

f (w + Ct, z, 0)e−(|z−x|2/4νt) dz

= 1
(2π )3/2

∫
R3

f
(

w + Ct, x +
√

2νtz, 0
)

e−(|z|2/2) dz. (5.5)

Both representations (5.4) and (5.5) may be used to evaluate f (w; x, t) by using for example Monte-
Carlo scheme by sampling Gaussian random variables.

The initial PDF f (w; x, 0) is determined by the initial vorticity distribution. For a turbulent flow,
the initial vorticity may be written as a sum:

W(x, 0) =ω0(x) + ε(x),

where ω0(x) is the initial mean vorticity at the location x, and ε(x) represents a small random
perturbation. It is reasonable, therefore, to assume that ε(x) has a normal distribution N(0, σ (x)2I3),
where the variance σ (x) may or may not depend on the location x. However, if ε(x) is allowed to
depend on the location x, then the noise ε(x) has to satisfy the divergence-free condition as well, a
technical issue we will not address here in detail. It is reasonable to assume that the initial vorticity
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mean ω0 is distributed in a small region of the space. In particular ω0 decays to zero sufficiently
fast near infinity. Under this assumption,

f (w; x, 0) = 1
(2πσ (x)2)3/2 exp

[
−|w − ω0(x)|2

2σ (x)2

]
. (5.6)

By substituting this into the representation (5.4), we obtain

f (w; x, t) = E

⎡
⎢⎢⎢⎣ 1(

2πσ
(

x + √
2νtξ

)2
)3/2 e

−
(∣∣∣w+Ct−ω0(x+√

2νtξ )
∣∣∣2/2σ(x+√

2νtξ
)2
)⎤⎥⎥⎥⎦ . (5.7)

It is easy to see that f (w; x, t) is no longer Gaussian except for special cases which we would like
to discuss below.

If ω0 vanishes and if σ is a positive small constant, the initial distribution is homogeneous and
equation (5.7) leads to a simple expression

f (w; x, t) = 1
(2πσ 2)3/2 exp

(
−|w + Ct|2

2σ 2

)
,

which is independent of the location x and remains a Gaussian density. The interesting feature
about this model is that the variance stays as the constant σ 2 but new mean vorticity −Ct is
created evenly after duration t. This is the case of a turbulence with a small constant random
perturbation. For turbulent flows observed in nature, the initial vorticity mean ω0 does exist
and does not vanish, and the random noise ε(x), for simplicity, may be modelled by a Gaussian
random variable independent of x. Therefore when σ > 0 is a small constant, we have

f (w; x, t) = 1
(2πσ 2)3/2 E

[
e
−
(
|w+Ct−ω0

(
x+√

2νtξ
)
|2/2σ 2

)]
, (5.8)

where ξ ∼ N(0, I3).
For this case, the mean vorticity ω(x, t) at (x, t) can be evaluated. Indeed

ω(x, t) =
∫
R3

w
(2πσ 2)3/2 E

[
e
−
(
|w+Ct−ω0

(
x+√

2νtξ
)
|2/2σ 2

)]
dw

= E

[∫
R3

w
(2πσ 2)3/2 e

−(|w+Ct−ω0

(
x+√

2νtξ
)
|2/2σ 2)

dw
]

= E

[
ω0

(
x +

√
2νtξ

)]
− Ct,

and therefore

ωi(x, t) =
∫
R3

ωi
0(y)

(4πνt)3/2 e−(|y−x|2/4νt)dy − Ct. (5.9)

This equality shows that the vorticity mean ω(x, t) under this simple model is independent of the
noise parameter σ 2, and ω(x, t) evolves according to the heat type equation

∂

∂t
ω(x, t) − C = ν�ω(x, t) and ω(x, 0) =ω0(x),

which is a rather crude approximation to the mean vorticity equation.

6. Heat flowmethod
In this section, we propose another model for the PDF of the vorticity, based on the heat flow
method, in which the conditional mean function μ is generated by a random field R(x, τ ). The
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random field R(x, τ ) evolves according to the heat flow(
∂

∂τ
− ν�

)
Ri(x, τ ) = 0, (6.1)

where R(x, τ ) = (R1(x, τ ), R2(x, τ ), R3(x, τ )). The initial value R(x, 0) = ξ (x) = (ξ i(x)) is a centred
Gaussian noise white in space in the sense that the covariance of ξ i at two locations u and v

in R
3 is given by

E[ξ i(u)ξ i(v)] = δ(u − v). (6.2)

Also, we assume that ξ i’s are i.i.d. random variables. For simplicity, we assume that Ri is centred
here, but our argument can definitely be generalized to the case when it is non-centred.

The solution to equation (6.1) is given by

Ri(x, τ ) =
∫
R3

1
(4πντ )3/2 e−(|x−y|2/4ντ )ξ i(y) dy, (6.3)

so that R(x, τ ) is a centred Gaussian random field with its covariance

στ (x, y) =
∫
R3

∫
R3

1
(4πντ )3 e−(|x−u|2+|y−v|2/4ντ )

E[ξ i(u)ξ i(v)] dudv

=
∫
R3

∫
R3

1
(4πντ )3 e−(|x−u|2+|y−v|2/4ντ )δ(u − v) dudv,

= e−(|x−y|2/8ντ )
∫
R3

1
(4πντ )3 e−(|u−((x+y)/2)|2/2ντ ) du

= 1
8(2πντ )3/2 e−(|x−y|2/8ντ ).

It follows that the conditional distribution of R(y, τ ) given R(x, τ ) = w has a normal distribution
with mean e−(|x−y|2/8ντ )w and covariance matrix

1
8(2πντ )3/2 (1 − e−(|x−y|2/4ντ ))I3.

Therefore, the conditional mean of R(y, τ ) − R(x, τ ) given R(x, τ ) = w can be easily found to be

−(1 − e−(|x−y|2/8ντ ))w,

which will be our μ(x, y, w, t) with τ = ϕ(t) a reparametrization as part of the model. For simplicity
let us consider the power law model, that is

τ = λ1(t + λ2)α , (6.4)

where λ1 and λ2 are two positive numbers which then become our model parameters. Since

μ(x, y, w, t) = −|x − y|2
8ντ

w + o(|x − y|2)w,

therefore ai
k = 0 and bi

jk = −δjk(1/8ντ )wi. In particular,

bi(w, t) = − 3wi

8νλ1(t + λ2)α
, (6.5)

for i = 1, 2, 3. Since the conditional mean function μ depends only on |x − y|2 and decays
exponentially fast at infinity, Bi = 0 and Di = 0, which implies that

Ai(w, t) = 3wi

4λ1(t + λ2)α
. (6.6)

Thus the PDF PDE with these parameters is reduced to the simple parabolic-transport equation(
∂

∂t
− ν�x

)
f = ∂

∂wi
(Aif ).
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The divergence of A is given by

∂Ai

∂wi
(x, w, t) = 9

4λ1(t + λ2)α
.

If α �= 1 but α > 0, by using the Feynman–Kac formula we have

f (w; x, t) = θ (α, t)3
E[f (Y(t, t), X(t, t), 0)], (6.7)

where we have introduced

θ (α, t) = exp

[
3((t + λ2)1−α − λ1−α

2 )
4λ1(1 − α)

]
, (6.8)

for simplicity, and X and Y are solutions to SDE{
dXi(t, s) = √

2νdMi
s, X(t, 0) = x,

dYi(t, s) = 3Yi(t,s)
4λ1(t−s+λ2)α ds, Y(t, 0) = w.

If α= 1 then
f (w; x, t) = λ(t)3

E[f (Y(t, t), X(t, t), 0)], (6.9)

where

λ(t) =
(

t + λ2

λ2

)3/4λ1

. (6.10)

The previous SDEs have explicit solutions:

X(t, t) = x +
√

2νMt

and
Y(t, t) = wθ (α, t),

if α �= 1, and
Y(t, t) = λ(t)w,

if α= 1.
Therefore, if α > 0 and α �= 1, by plugging these explicit solutions X and Y into (6.7) we have

f (w; x, t) = θ (α, t)3
E

[
f
(

wθ (α, t), x +
√

2νMt, 0
)]

= θ (α, t)3
E

[
f
(

wθ (α, t), x +
√

2νtξ , 0
)]

(6.11)

where ξ ∼ N(0, I3).
As in the previous section, the initial vorticity is assumed to be of the form

W(x, 0) =ω(x) + ε(x),

where ε(x) has a normal distribution N(0, σ 2) and ω(x) is the mean vorticity at x, so that

f (w; x, 0) = 1
(2πσ 2)3/2 exp

[
−|w − ω(x)|2

2σ 2

]

and therefore, according to (6.11),

f (w; x, t) = θ (α, t)3
E

⎡
⎢⎣ 1(

2πσ (x + √
2νtξ )2

)3/2 e
−
(∣∣∣wθ(α,t)−ω(x+√

2νtξ )
∣∣∣2/2σ (x+√

2νtξ )2
)⎤⎥⎦ ,

where ξ ∼ N(0, I3). Hence f (w; x, t) is no longer Gaussian density unless σ (x) is independent of x
and ω= 0 identically.
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Let us discuss a special case where ω= 0 identically and σ > 0 is constant. Then

f (w; x, t) = θ (α, t)3

(2πσ 2)3/2 exp

[
−|wθ (α, t)|2

2σ 2

]
,

is a Gaussian density with mean 0 and variance ρ2I3, where

ρ2(x, t) = 1√
θ (α, t)

σ 2. (6.12)

If σ > 0 is a constant and ω does not vanish identically, then f (w; x, t) is not Gaussian, but has a
nice representation:

f (w; x, t) = θ (α, t)3

(2πσ 2)3/2 E

⎡
⎣e

−
(∣∣∣wθ(α,t)−ω(x+√

2νtξ )
∣∣∣2/2σ 2

)⎤
⎦ , (6.13)

where ξ ∼ N(0, I3), and θ (α, t) is defined by (6.8).
A similar discussion applies to the model where α = 1, which is certainly interesting too. For

this model, the PDF f (w; x, t) is given by

f (w; x, t) = λ(t)3
E

[
f
(

wλ(t), x +
√

2νtξ , 0
)]

, (6.14)

where ξ ∼ N(0, I3) and λ(t) is defined by (6.10).
Suppose again the initial vorticity

W(x, 0) =ω(x) + ε(x),

where ε(x) has a normal distribution N(0, σ 2(x)) and ω(x) is the mean. Then

f (w; x, t) = E

⎡
⎢⎣ λ(t)3(

2πσ (x + √
2νtξ )2

)3/2 e
−
(∣∣∣wλ(t)−ω

(
x+√

2νtξ
)∣∣∣2/2σ (x+√

2νtξ )2
)⎤⎥⎦ , (6.15)

which is not Gaussian except for the following special case.
If σ (x) = σ > 0 is a constant and ω(x) = 0, then

f (w; x, t) = λ(t)3

(2πσ 2)3/2 e−(|wλ(t)|2/2σ 2),

is Gaussian with mean zero and variance ρ2I3, where

ρ2(x, t) = σ 2
(

λ2

t + λ2

)3/2λ1

.

The most interesting case for the purpose of modelling turbulent flows is the model where σ > 0
is a small parameter and ω is not zero, so that

f (w; x, t) = λ(t)3

(2πσ 2)3/2 E

[
e
−(
∣∣∣wλ(t)−ω

(
x+√

2νtξ
)∣∣∣2/2σ 2)

]
,

where ξ ∼ N(0, I3). Although it is no longer Gaussian, some of its features can be extracted by
doing Monte–Carlo simulations.

We may conclude that this model provides some nice features of the propagation of the
vorticity which may be helpful for the understanding of the energy dissipation in turbulence,
and we will explore this in a separate work.
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