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By using prior information of planning CT images and feature-based nonuniformmeshes, this paper demonstrates that volumetric
images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography
(CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform
tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that
is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the
deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and
compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences
between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good
initial deformations by deforming the volume surface tomatch 2Dbody boundary onprojections has been developed.This complete
method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-
based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

1. Introduction

Cone-Beam Computed Tomography (CBCT) has been
widely used for accurate patient setup (initial positioning)
and adaptive radiation therapy. Attentions are still needed to
reduce imaging radiation doses and improve image qualities.
Traditionally, Conventional Cone-Beam Computed Tomog-
raphy (CBCT) image reconstruction in radiation therapy
needs hundreds of projections, which deliver high imaging
dose to patients. In order to reduce the number of CBCT
projections, recently, some researchers have proposed meth-
ods to reconstruct images by using the information of prior
images, such as a planning CT [1–3] or a previous CBCT [4],
and a deformation model, which is essentially a 3D-2D
deformable image registration (DIR) procedure. A lot of
researches have been done related to 3D-2D image registra-
tion. Previously, only rigid registrations between 3D images

and 2D fluoroscopic images have been addressed [5–7]. For
3D-2D nonrigid registration [1, 2, 4, 8, 9], the multiscale
technique was applied, instead of using the finite element
method- (FEM-) based methods to speed up the recon-
struction process and increase the accuracy. For nonrigid
modeling of respiratory motion, Zeng et al. [10] introduced a
method to estimate the 3D motion parameters of a nonrigid,
free breathing motion model from a set of projection views.
In order to improve the computational efficiency, Jia et
al. [11] developed a GPU-based algorithm to reconstruct
high-quality CBCT images from undersampled and noisy
projection data so as to lower the imaging dose, but it does not
make use of the planning CT. However, in all these methods,
voxel-based deformation fields were employed to estimate
a large number of unknowns, which required extremely
long computational time. Additionally, in their deformation
models, the image features and organ boundaries were not
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specifically considered, which may cause inaccurate defor-
mation estimation. In this work, we proposed a new FEM-
based approach, that is, a feature-based nonuniformmeshing
method, to overcome these limitations.

FEM can be best understood from its practical applica-
tion, for instance,mesh discretization of a continuous domain
into a set of discrete subdomains. It has already been used
in image registration [12, 13]. Usually, FEM is exploited to
achieve two important advantageous aspects. On one hand, it
endows the efficiency of the registration process due to a small
number of sampling points compared with voxel-based sam-
plingmethods.On the other hand, it provides the smoothness
of the displacement vector field (DVF) due to the smoothness
constraint between elements and the interpolationwithin one
element. The quality of geometric discretization is crucial for
the effectiveness of the image registration applications. Sur-
face meshing methods in 3D-3D image registration [13–15]
and volume meshing methods in 3D-3D image registration
[16–19] and in 3D image reconstruction [20, 21] have been
applied, but none of them were employed in 3D-2D DIR.

When 3D-2D DIR algorithm is used iteratively to recon-
struct 3D volumetric images, the number of sampling points
is crucial for the computation. A large number of sampling
points could lead to a very slow computational speed,
while a limited number of points with uniform distribution
could miss some important image features and make the
registration less accurate. In our proposed method, a special
FEM system is developed to automatically generate high-
quality adaptive meshes conforming to the image features
for the whole volume without user’s manual segmenta-
tion. This system allows for more sampling points placed
in important regions (at organ/tissue/body boundaries or
regions with highly nonlinearly varying image intensity);
while fewer sampling points are placed within homogeneous
or in regions with linearly varying intensity. In this way,
deformations of boundaries and other important features
can be directly characterized by the displacements of the
sampling points that are lying on boundaries or features,
rather than interpolating from a uniform grid or a larger-
sized tetrahedron in the volume mesh. As a result, the defor-
mation can be controlledmore precisely.With approximately
the same numbers of sampling points, the feature-based
nonuniform meshing method produces better deformed
volumetric images comparing with methods using uniform
meshes.The high-quality digitally reconstructed radiographs
(DRRs) of the deformed anatomy are generated by using ray
tracingmethod. Subsequently, theseDRRs are comparedwith
corresponding 2D projections from CBCT scans, and the
DVF is optimized iteratively to obtain the final reconstructed
volumetric images.

In order to provide a good initial DVF and accelerate
the calculation, we proposed a boundary-based 3D-2D DIR
method before the aforementioned 3D-2D DIR. Although
researches on boundary-guided (or contour-guided) image
registrations [22–24] have been carried out for many years,
their methods were applied on either 2D-2D or 3D-3D DIR
cases. Our proposed algorithm is suitable to employ on 3D-
2D DIR, while dealing with large deformations for adaptive
radiation therapy.

This paper makes the following contributions for effec-
tively computing 3D-2D DIR:

(i) Compared with the traditional voxel-based method,
the mesh-based methods have faster computational
speed and better DVFs, since the voxel-based defor-
mations were employed to estimate a large number of
unknowns, which required extremely long computa-
tional time and were easy to be trapped in localized
deformations.

(ii) When equal numbers of sampling points are used,
the nonuniform meshing method leads to obtaining
higher quality reconstructed images and better DVF
compared with that of uniform meshes under the
same number of optimization iterations.

(iii) Due to the large data sizes of the volume and pro-
jection images, the boundary-based DIR technique
and GPU-based parallel implementation have been
applied and achieved high computational efficiency
and the reconstruction of 512 × 512 × 140 CBCT
image can be done within 3 minutes, which is close
to clinical applications.

The rest of the paper is organized as follows. Section 2
describes the proposed methods and materials in detail,
including nonuniform mesh generation, the framework of
the nonuniform meshing to reconstruct volumetric images
by using 3D-2D DIR, and the boundary-based 3D-2D DIR.
In Section 3, the experimental results are discussed to eval-
uate the proposed methods qualitatively and quantitatively.
Several digital phantoms and patient data sets are measured.
Finally, the conclusion and future work are given in Section 4.

2. Methods and Materials

Figure 1 illustrates a flow chart of the entire proposed tech-
nique. The dash-line box is used to provide initial DVFs and
accelerate the calculation by proposed boundary-based 3D-
2D DIR method, which will be described in Section 2.3. All
other parts illustrate how the proposed novel nonuniform-
mesh-guided 3D-2D image registration method is used to
deform the original planning CT images. This requires much
smaller degrees of freedom to generate the DVF than that of
voxel-based methods. Each step is described in the following
subsections and we will firstly introduce the nonuniform-
mesh-guided 3D-2D image registration method and then
discuss the boundary-based 3D-2D DIR method.

2.1. Creation of Nonuniform Meshes. After the user specifies
the total number of mesh vertices, a feature-based nonuni-
form tetrahedral mesh is generated automatically. Nonuni-
form meshes are important for improving the accuracy of
the numerical simulations as well as better approximating the
shapes. Zhong et al. [25] developed a novel particle-based
nonuniform surface meshing approach by formulating the
interparticle energy optimization in a fast convergence tech-
nique. In this method, users will design a density field, which
is used to control the distribution of the particles (sampling
points). This particle-based surface meshing framework is
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Figure 1: Flow chart of the proposed 3D-2D image registration method.The dash-line box is used to provide initial DVFs and accelerate the
calculation by proposed boundary-based 3D-2D DIR method. It may be skipped according to different scenarios. More details are given in
Section 2.3.

extended to 3D volume case in this paper so as to generate
tetrahedral meshes based on 3D volume images.

2.1.1. Basic Meshing Framework. The basic idea of the mesh
generation is similar to Zhong et al.’s work [25], and the main
difference is that we extend their work to 3D nonuniform
volumemeshing.There are two steps inmesh generation: par-
ticle optimization and Delaunay triangulation computation.

Regarding each mesh vertex as a particle, the potential
energy between the particles decides the interparticle forces.
When the forces on each particle reach equilibrium, particles
arrive at an optimal balanced state, resulting in a uniform
distribution. In this case, an isotropic meshing can be
generated. To handle the adaptive meshing, the concept of
“embedding space” [26, 27] is applied. In theNash embedding
theorem, it is stated that every Riemannian manifold [28]
can be isometrically embedded into some high-dimensional
Euclidean space. In such high-dimensional embedding space,
the metric is uniform and isotropic. When the forces applied
on each particle become equilibrial in this embedding
space, the particle distribution in the original domain will
exhibit the desired adaptive property, that is, conforming to

the user-defined density field. This property is used to for-
mulate the particle-based adaptive meshing framework. The
following concepts of density field, interparticle energy, and
force are defined based on [25].

The density field is defined by using the following metric
tensor as

M (v) = 𝜌 (v)2/𝑚 ⋅ I, (1)

where v is the particle position. I is the 3 × 3 identity matrix.
M(v) defines an isotropic adaptive metric with the user-
defined density function 𝜌(v). 𝑚 is the dimension of the
original volume space, so 𝑚 = 3.

Given 𝑁V particles with their positions V = {k
𝑖

| 𝑖 =

1 ⋅ ⋅ ⋅ 𝑁V} in the volume Ω (Ω ∈ R𝑚) which is embedded
in R𝑚 space, denoted as V = {k

𝑖
| 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁V}, where

𝑚 ≤ 𝑚, the interparticle energy between particles 𝑖 and 𝑗 in
such embedding space is defined as

𝐸

𝑖𝑗

= 𝑒
−‖k𝑖−k𝑗‖

2
/4𝜎
2

= 𝑒
−(k𝑖−k𝑗)

𝑇M𝑖𝑗(k𝑖−k𝑗)/4𝜎2
, (2)

where M
𝑖𝑗
is the metric tensor between particles 𝑖 and 𝑗,

and, for simplicity, it is approximated by the average of
metric tensors at two positions: M

𝑖𝑗
≈ (M(k

𝑖
) + M(k

𝑗
))/2.
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Data: a 3D volume Ω with density field 𝜌(v), and the desired number of vertices 𝑁V
Result: an adaptive sampling V of Ω
Initialize particle locations V;
While stopping condition not satisfieddo

Update the 𝑘-𝑑 tree [22] data structure for the current sampling locations V;
for each particle 𝑖 do

Obtain particle 𝑖’s 𝑘-nearest neighbors 𝑁(𝑖) within five standard deviations (5𝜎) from 𝑘-𝑑 tree;
for each particle 𝑗 ∈ 𝑁(𝑖) do

Compute 𝐸

𝑖𝑗 by (2);
Compute F𝑖𝑗 by (4);

end
Compute the total force F𝑖 by (5);

end
Compute the total energy 𝐸 by (3);
Run L-BFGS algorithm with 𝐸 and {F𝑖}, to update the particle locations V;
Project V onto the 3D volume surface, if V jumps out of the volume boundary;

end

Algorithm 1: Particle optimization with density field 𝜌(v).

The exponent in the term 𝐸

𝑖𝑗 can be approximated by ‖k
𝑖
−

k
𝑗
‖
2

≈ (k
𝑖
− k
𝑗
)
𝑇M
𝑖𝑗
(k
𝑖
− k
𝑗
). The interparticle energy as

defined in (2) depends on how to choose the fixed kernel
width 𝜎. If 𝜎 is chosen too small, then particles will nearly
stop spreading because there are almost no forces between
particles. If 𝜎 is chosen too large, then nearby particles cannot
repel each other and the resulting sampling distribution will
be poor. From our extensive experiments, we find out that the
best adaptive mesh quality can be achieved when Gaussian
kernel width is set as 𝜎 = 0.3√|Ω|/𝑁V. |Ω| is the image
volume in the embedding space.

The total energy can be computed by summingup all pairs
of interparticle energies:

𝐸 =

𝑁V

∑

𝑖=1

𝑁V

∑

𝑗=1,𝑗 ̸=𝑖

𝐸

𝑖𝑗

. (3)

The gradient of 𝐸𝑖𝑗 can be considered as the force F𝑖𝑗 in
the embedding space:

F𝑖𝑗 = 𝜕𝐸

𝑖𝑗

𝜕k
𝑗

=
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− k
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2𝜎
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𝑒
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𝑇M𝑖𝑗(k𝑖−k𝑗)/4𝜎2
,

(4)

where Q
𝑖𝑗

= √M
𝑖𝑗
. The details of the mathematical deriva-

tions are given in Sec. 3.2.2 of [25].
Then the total force applied on particle 𝑖 is

F𝑖 = ∑

𝑗 ̸=𝑖

F𝑗𝑖. (5)

In the particle optimization algorithm, user can specify
a density field 𝜌(v) and desired number of vertices 𝑁V. In

our implementation, for each particle, we only compute the
mutual effects (i.e., energy and forces) from the particles
within a neighborhood of five standard deviations (5𝜎);
otherwise, the particles have no mutual effects due to the
large distance between each other. The 𝑘-𝑑 tree [29] is a
space-partitioning data structure for organizing points in a
𝑘-dimensional space and can quickly search such neighbor-
hoods.With the total interparticle energy (3) and force (5), L-
BFGS [30] (a quasi-Newton algorithm) optimizationmethod
is used to obtain the optimized adaptive particle positions.
This optimization proceeds iteratively until convergence by
satisfying a specified stopping condition; for example, the
magnitude of the gradient or the maximal displacement of
particles is smaller than a threshold, or the total number
of iterations. Algorithm 1 shows the details of the adaptive
particle optimization on 3D volume.

After optimizing the particle positions, the final desired
nonuniform tetrahedral mesh can be generated by using the
Delaunay triangulation [29]. If the density field is uniform
in the entire volume, we can generate the isotropic tetra-
hedron mesh, which is used in Section 3 for comparison
experiments.

2.1.2. Feature-Based Nonuniform Meshing on Medical Image.
Figure 2 illustrates the feature-based nonuniform mesh gen-
eration on a set of torso images acquired from a digital
phantom XCAT [31]. The 4D XCAT provides an accurate
representation of complex human anatomy and has the
advantage that its organ shapes can be changed to realistically
model anatomical variations and patient motions; more
importantly, it also provides voxel-based DVFs, which are
used as the ground truths to evaluate the accuracy of the
deformation.

It is necessary to design a density field to match the vol-
ume image features. Original images are preanalyzed using a
Laplacian operator (searching for zero crossings in the second
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Figure 2: Demonstration of the feature-based nonuniformmesh generation on a digital XCAT phantom. (a)The original image; (b) extracted
feature edges; (c) density field; (d) a 2D view of the interior meshes with color-mapping.

derivative of the image to find edges) to extract features
including contour edges and boundaries between organs and
tissues, which are regions with highly nonlinearly varying
image intensities. Since the Laplacian operator as high-pass
operator highlights edges as well as noise, it is desirable to
smooth the image in order to suppress noises at first. When
the feature edges of the volume image are obtained as shown
in Figure 2(b), a density field could be calculated auto-
matically without manual segmentation (Figure 2(c)). The
density function 𝜌(k)1/3 depends on the distance between
the feature edges and the voxels in the volume domain. In
our experiments, the smooth density field is defined as a
piecewise linear function:

𝜌 (k)1/3 =

{
{
{
{

{
{
{
{

{

5, 0 ≤ 𝜑 ≤ 2,

49

9

−

2

9

𝜑, 2 < 𝜑 ≤ 20,

1, otherwise,

(6)

where 𝜑 is the distance between the feature edges and the
voxels measured by the voxel grid unit. The red color means
the higher density field area, while the blue color means the
lower density field area.Theuser can choose any other density
functions according to their requirement. The motivation of
designing the density field as a piecewise linear function is
to make the density field as smooth as possible, so that the
volume sizes of the tetrahedrons in the computedmesh can be
controlled to vary smoothly. Finally, we can generate adaptive

meshes with high-quality tetrahedral elements. Equation (6)
is given under our extensive DIR experiments, which is
based on the volume image resolutions and voxel scales: if
the sampling point is located within 2-voxel distance with
respect to its nearest feature edge point, the density value is
5; if the sampling point is located between 2-voxel and 20-
voxel distance with respect to its nearest feature edge point,
the density value is computed based on the designed linear
function in (6); if the sampling point is located beyond 20-
voxel distance with respect to its nearest feature edge point,
the density value is 1. From Figure 2, we can see that the
designed density field can generate good tetrahedral meshes,
which canwell conform to the image features as well as obtain
high-quality tetrahedral meshes.

After designing the density field, a binary mask needs
to be computed from the original image by setting “one”
inside of the human anatomy and “zero” outside to constrain
the vertex positions inside or on the body during mesh
vertices optimization. The mesh vertices are automatically
computed by Algorithm 1. Vertices are densely positioned in
the regions with highly nonlinearly varying image intensities,
while regions of constant or linearly varying image intensities
are assigned fewer vertices. Following this process, vertex
locations are optimized conforming to the density field as
illustrated in Figure 2(c). In order to control the entire volume
imagemore effectively, 8 bounding box vertices of the human
anatomy are added (as shown in Figure 3). Then volume
meshes (tetrahedrons) are created based on the Delaunay
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Figure 3: In order to control the entire volume image more effectively, 8 bounding box vertices of the human anatomy are added.

triangulation of the vertices. As a result, meshes correspond-
ing to boundaries between organs and tissues are denser.
The color-coded tetrahedrons of the generated feature-based
mesh in Figure 2(d) illustrate that the tetrahedral volumes
are well conforming to the desired density defined by the
features of the given image. Due to the importance of
deformations occurring around boundaries between organs
and tissues, it is necessary to placemore vertices (or sampling
points) at features, while placing fewer vertices in nonfeature
regions. In this way, if DVF is specified to each mesh vertex
(or sampling point), the boundaries and other important
features can be directly represented by the displacements
of sampling points or represented by smaller tetrahedrons,
rather than interpolating through four vertices of one larger-
sized tetrahedron; then the deformation can be diffused from
themesh vertices to each voxel of the volumemore accurately.
This is the most significant advantage of the feature-based
nonuniform meshing method.

2.2. Volumetric Image Reconstruction by 3D-2D DIR. This
section introduces how to use our generated feature-based
nonuniform meshing to reconstruct high-quality volumetric
images by using 3D-2D DIR.

2.2.1. Computation of Deformed Volume. The displacement
vector of each voxel (DV) is obtained through interpolating
the DVF on mesh vertices (D) by using the barycentric coor-
dinates [32] of each voxel in its corresponding tetrahedron,
and the deformed volume is resampled onto a uniform grid
volume. The intensity of each voxel in the new deformed
image 𝑈new is calculated from the original CT image 𝑈original
according toDV as follows:

𝑈new (𝑎, 𝑏, 𝑐) = 𝑈original (𝑎 + 𝐷
V
1
(𝑎, 𝑏, 𝑐) , 𝑏

+ 𝐷
V
2
(𝑎, 𝑏, 𝑐) , 𝑐 + 𝐷

V
3
(𝑎, 𝑏, 𝑐)) ,

(7)

where 𝐷
V
1
, 𝐷

V
2
, and 𝐷

V
3
are three floating point spatial

components of the displacement vector (DV) along 𝑥, 𝑦,
and 𝑧 directions. The displacement vector points from the
center of voxel (𝑎, 𝑏, 𝑐) in the new deformed image to a
point at (𝑎 + 𝐷

V
1
(𝑎, 𝑏, 𝑐), 𝑏 + 𝐷

V
2
(𝑎, 𝑏, 𝑐), 𝑐 + 𝐷

V
3
(𝑎, 𝑏, 𝑐)) in the

original source image that will unlikely be at a voxel center.
Then the original source intensity at that point is obtained
via trilinear interpolation from its eight neighboring voxels.

This technique not only gives an accurate CT intensity tomap
to the new deformed image, but also acts as an antialiasing
technique to avoid artifacts in the projected DRRs, since it
is easy and efficient to compute DRRs from a uniform grid
sampled volume by using ray tracing algorithm.

2.2.2. Computation of DRRUsing Ray Tracing Algorithm. Ray
tracing is a technique for generating an image by tracing
the path of light through pixels in an image plane and
simulating the effects of its encounters with objects. In the
DRR generation, the Siddon ray tracing algorithm is applied
[33].

To better simulate the realistic raw target CBCT projec-
tions fromXCAT phantom data and test the sensitivity of our
method to the realistic complications, after the noise-free ray
line integrals 𝑝

𝑖
are computed, the noisy signal 𝐼

𝑖
at each pixel

𝑖 is generated based on the following noise model:

𝐼
𝑖
= Poisson (𝐼

0
𝑒
−𝑝𝑖

) + Normal (0, 𝜎2
𝑒
) , (8)

where Poisson is Poisson distribution and Normal is normal
distribution. 𝐼

0
is the incident X-ray intensity and 𝜎

2

𝑒
is the

background electronic noise variance. In this study, 𝐼
0
is set

to 1 × 105 and 𝜎
2

𝑒
is set to 10 [34, 35].

2.2.3. Optimization of 3D-2DDIR Energy. Thedeformation is
optimized by minimizing the total energy 𝐸, which includes
two terms, the regularization (𝐸reg(D)) used to achieve
smoothness of the DVF and the similarity (𝐸sim(D)) between
the two images:

𝐸 (D) = 𝐸reg (D) + 𝐸sim (D)

= 𝜇𝐿 (D) +

𝑁𝑝

∑

𝑚=1

󵄩
󵄩
󵄩
󵄩
𝑅 (D, 𝜃

𝑚
) − 𝐼 (𝜃

𝑚
)
󵄩
󵄩
󵄩
󵄩

2

,

(9)

where 𝜇 is a weighting factor to control the tradeoff between
the similarity and regularization. It is empirically set at 10.0
for all of the experiments in this paper. D is the DVF
defined on the mesh vertices. 𝐿(D) is regularization term
defined as

𝐿 (D) =

𝑁V

∑

𝑖=1

3

∑

𝑑=1

[

[

(

∑
𝑗∈𝑁(𝑖)

(D
𝑑
(𝑗) − D

𝑑
(𝑖))

|𝑁 (𝑖)|

)

2

]

]

, (10)
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where 𝐿(D) is a summation of the square of Graph Laplacian
operations [36] on the DVF over every vertex except those on
the external borders.D

𝑑
(𝑑 = 1, 2, 3) are three components of

DVFs.𝑁V is the total number of the mesh vertices.𝑁(𝑖) is the
set of one-ring neighboring vertices (𝑗) of vertex 𝑖. |𝑁(𝑖)| is
the size of set 𝑁(𝑖).

The second term of the energy function in (9) repre-
sents the similarity between the CBCT projections (𝐼(𝜃

𝑚
))

acquired at gantry angle (𝜃
𝑚
) beforehand and the DRRs

(𝑅(D, 𝜃
𝑚
)) created after the deformation of D applied on

planning CT at the same gantry angle. 𝑁
𝑝
is the number of

projections involved. This term is a summation of the square
of intensity difference over every pixel of all projections.
Although 𝑅 and 𝐼 are two-dimensional in reality, we can
easily use one-dimensional arrays to represent them for
computational simplification.

L-BFGS algorithm [30] is used to optimize the DVF (D).
The gradient of the energy function 𝐸 with respect to D can
be calculated as follows:

∇𝐸 (D) = 𝜇∇𝐿 (D)

+ 2

𝑁𝑝

∑

𝑚=1

(𝑅 (D, 𝜃
𝑚
) − 𝐼 (𝜃

𝑚
)) ∇𝑅 (D, 𝜃

𝑚
) .

(11)

For each iteration of L-BFGS optimization, the energy 𝐸

and its gradient ∇𝐸 are updated.
The DRRs (𝑅(D, 𝜃

𝑚
)) are generated from the resampled

deformed planning CT (𝑈new) by the ray tracing method for
each gantry angle as

𝑅 (D, 𝜃
𝑚
) = P (𝜃

𝑚
) 𝑈new (D) , (12)

where P(𝜃
𝑚
) is the cone-beam projection matrix that

describes the X-ray projection operations. The element 𝜔𝛼,𝛽
of matrix P is the weight of voxel 𝛽 in𝑈new contributed to the
pixel 𝛼 in DRR during the projection simulation calculated
by the ray tracing method.

Using (12), the gradient of the energy function 𝐸 of (11)
becomes

∇𝐸 (D) = 𝜇∇𝐿 (D) + 2

𝑁𝑝

∑

𝑚=1

P (𝜃
𝑚
)

⋅ (P (𝜃
𝑚
) 𝑈new (D) − 𝐼 (𝜃

𝑚
)) ∇𝑈new (D) .

(13)

2.2.4. GPU-Based Acceleration. The entire process of this vol-
umetric image reconstruction method was implemented on
GPU. The GPU card used in our experiments is an NVIDIA
GeForce GTX 780 Ti with 3GBGDDR5 videomemory. It has
2,880 CUDA cores with a clock speed of 1,006MHz. Utilizing
such a GPU card with tremendous parallel computing ability
can significantly increase the computation efficiency. There
are two time-consuming processes during the reconstruction.
One is the DRR generation, and the other is the gradient
computation of the similarity term in the total energy 𝐸.

(1) DRR Generation on GPU. For the DRR generation part,
it is straightforward to accomplish the ray tracing algorithm
in parallel computation. For example, each pixel intensity of

the DRR is determined by accumulating all of the weighted
voxel intensities through which one X-ray goes. This compu-
tation process is highly independent between each ray line.
In this case, different GPU threads can compute each ray line
simultaneously without conflict.

(2) Computation of Energy Gradient on GPU. From (13), it can
be seen that there are two terms in the gradient of the energy.
One is the gradient of regularization 𝜇∇𝐿(D) with respect to
DVFD: this can be easily computed in parallel based on each
mesh vertex. The other is the gradient of the similarity term.
In order to demonstrate clearly how to compute this term in
parallel, the second part of (13) is rewritten in more detail
based on pixel 𝛼 in DRR and voxel 𝛽 in𝑈new at one projection
in angle (𝜃

𝑚
).The gradient of the similarity termwith respect

to displacement vector of vertex 𝑖 (i.e., D
𝑖
) can be denoted as

follows:

𝜕𝐸sim (D, 𝜃
𝑚
)

𝜕D
𝑖

= 2

|𝑈new(D,𝑖)|
∑

𝛽=1

|𝑅(𝛽)|

∑

𝛼=1

𝜔
𝛼,𝛽

(𝑅
𝛼
− 𝐼
𝛼
) ∇𝑈
𝛽

new (D, 𝑖) ,

(14)

where 𝑈new(D, 𝑖) is the set of voxels controlled by vertex
𝑖. 𝑅(𝛽) is the set of pixels on DRR affected by voxel 𝛽.
|𝑈new(D, 𝑖)| and |𝑅(𝛽)| are the sizes of the corresponding sets.
𝑅
𝛼 is the intensity of pixel𝛼 onDRR. 𝐼𝛼 is the intensity of pixel

𝛼 on CBCT projection. 𝜔𝛼,𝛽 is one element in the projection
matrix P(𝜃

𝑚
), that is, the weight of voxel 𝛽(𝑈

𝛽

new(D, 𝑖))

contributed to the pixel 𝛼 in DRR generation. ∇𝑈
𝛽

new(D, 𝑖) is
the gradient of voxel 𝛽(𝑈

𝛽

new(D, 𝑖)) with respect toD
𝑖
.

Then the gradient of the similarity term, that is, (14), can
be rewritten by simplification as

𝜕𝐸sim (D, 𝜃
𝑚
)

𝜕D
𝑖

=

|𝑈new(D,𝑖)|
∑

𝛽=1

𝜕𝐸sim (D, 𝜃
𝑚
)

𝜕𝑈
𝛽

new (D, 𝑖)

𝜕𝑈
𝛽

new (D, 𝑖)

𝜕D
𝑖

. (15)

Finally the total gradient for all projections with respect
to displacement vectorD

𝑖
is

𝜕𝐸sim (D)

𝜕D
𝑖

=

𝑁𝑝

∑

𝑚=1

|𝑈new(D,𝑖)|
∑

𝛽=1

𝜕𝐸sim (D, 𝜃
𝑚
, 𝛽)

𝜕D
𝑖

, (16)

where 𝑁
𝑝
is the number of projections.

Now it is clearly shown that there are two components in
the gradient of the similarity term in (15).

(a) Gradient computation of the similarity energy with
respect to voxel intensity (𝜕𝐸sim(D, 𝜃

𝑚
)/𝜕𝑈
𝛽

new(D, 𝑖)): this can
be computed when the DRRs are generated and then stored
in a volume-sized matrix. However, this computation is a
little bit complicated for GPU computation. One voxel of the
CT image may probably affect a number of pixels on the
DRR image during the projection simulation, so that in the
gradient computation, it is inevitable to consider it; that is,
when mapping back the DRRs to the volume image, there
is probably more than one ray line going through one voxel.
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Volume DRR

Source

Figure 4: Subdividing the DRR image into small subgroups for GPU parallel computation.

If the original ray tracing implementation is directly used to
parallelize all ray lines in the gradient computation, there will
be a memory conflict within the GPU; that is, the gradient
of the similarity energy 𝐸sim with respect to one voxel
intensity is updated by different ray lines simultaneously. To
overcome this problem, the DRR image is subdivided into
small subgroups so that the ray lines in different groups
cannot go through the same voxel concurrently as shown
in Figure 4. Currently, the computation can be computed on
each voxel simultaneously by assigning it to eachGPU thread.
After that the total gradient of the similarity term as (16) is
obtained by summing up all the gradient values fromdifferent
subgroups and projections.

Tomaximally utilize theGPU’s parallel computing power,
the best subgroup size for the XCAT data is 8 × 8 pixels, and
the head and neck (H&N) patient data is 16 × 24 pixels, which
is determined during the preprocessing step.The general idea
is computed based on similar triangle property according
to the voxel scale, the pixel scale, the distance from source
to volume position, and the distance from source to DRR
position.

(b) Gradient of voxel intensity with respect to displace-
ment vector of vertex 𝑖, (𝜕𝑈𝛽new(D, 𝑖)/𝜕D

𝑖
): this can be done

in parallel based on each mesh vertex when the deformed
volume is computed, which is independent of the projection
computation.

The CPU-based serial implementation of mesh-based
3D-2D registration method on XCAT data (256 × 256 × 132)
with 60 projections (256 × 256) takes about 2.5 hours; after
using the GPU-based parallel implementation, it takes about
3 minutes, which is about 50 times faster.

2.2.5. A Multiresolution Scheme. The size of H&N patient
data used in this study is relatively large. CT volume data size
is 512 × 512 × 140 and CBCT projection size is 1024 × 768.The
reconstruction running time of CPU-based implementation
on mesh-based 3D-2D registration method with 30 projec-
tions is about 12 hours, while the running time of GPU-based
implementation is about 20 minutes, which is about 36 times
faster than the CPU-based one. The multiresolution scheme
is used to further improve the speed. In the experiment, both
the CT volume image and CBCT images are downsampled
into different resolution levels (three levels for experiments
on H&N patient data), from the coarsest level (CT volume:
256 × 256 × 70, CBCT projection: 256 × 192, and time per
iteration: 2.08 seconds) to the higher level (CT volume: 512 ×

512 × 140, CBCT projection: 512 × 384, and time per iteration:

9.91 seconds) and finally to the full resolution level (CT
volume: 512 × 512 × 140, CBCT projection: 1024 × 768, and
time per iteration: 40.44 seconds). By using this strategy, the
volumetric image reconstruction can be accomplished in 6.9
minutes, including 30 iterations of coarsest level, 15 iterations
of higher level, and 5 iterations of full resolution level (about
60 times faster than CPU-based serial implementation). It is
comparable to the fastest iterative CBCT techniques.

2.3. A Boundary-Based 3D-2D DIR. In order to further
improve the computational speed of the proposed 3D-2D
DIR method, in this section, we introduce a boundary-based
3D-2D DIR to obtain a good initial deformation; then the
feature-based nonuniform meshing for 3D-2D DIR method,
as mentioned in Section 2.2, is used to generate the final
volumetric images.

2.3.1. Extraction of 3D and 2D Boundaries. After generating
the feature-based nonuniform meshes (Section 2.1), both
planning CT images and CBCT projections are preprocessed
to create binary masks by setting “one” inside of the studied
tissue and “zero” outside as shown in Figure 5(b). Then,
the 3D tissue surface and CBCT projection boundaries are
extracted by Canny edge detector [37] (Figure 5(c)).

2.3.2. Computation of Projections by Splatting Method. In
order to directly and conveniently control the updated
positions of the deformed anatomy surface voxels, we prefer
to use the splatting method [38] to generate projections of
3D surface, instead of using the ray tracing method. This
is one main advantage of splatting method. Every voxel’s
contribution to a projection is mapped directly onto the
image plane by a kernel centered on the voxel as shown
in Figure 6. This reconstruction kernel is called a “splat” or
“footprint”:

𝑓 (𝑥, 𝑦) = ∑

𝑖,𝑗,𝑘

voxel (𝑖, 𝑗, 𝑘) kernel (𝑥, 𝑦)

= ∑

𝑖,𝑗,𝑘

voxel (𝑖, 𝑗, 𝑘) 1

√2𝜋𝜎
2

𝑒
−((𝑥−𝑠)

2
/2𝜎
2
+(𝑦−𝑡)

2
/2𝜎
2
)
,

(17)

where 𝑓(𝑥, 𝑦) is the final pixel intensity of the projection
image and voxel(𝑖, 𝑗, 𝑘) is the intensity of voxel at (𝑖, 𝑗, 𝑘)

position. kernel(𝑥, 𝑦) is the “footprint function” centered at
(𝑠, 𝑡). 𝑥 and 𝑦 are the Gaussian kernel area within radius 3𝜎

on the projection image. 𝜎 is the Gaussian kernel width.
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Figure 5: (a) Original images; (b) the 0-1 binary images; (c) boundaries of an H&N patient data.
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Image plane Volume
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Voxel

Figure 6: Splatting projection.

For perspective projection with antialiasing considera-
tion, the Gaussian kernel radius should have dynamic sizes,
which can be calculated from similar triangles shown in
Figure 7 and

𝑑1

𝑑2

=

voxel scale
𝑟

,

𝜎 = 0.57𝑟,

(18)

where 𝑑1 is the distance from the X-ray source to the voxel
center and 𝑑2 is the distance from the source to kernel center
on the image plane going through a specific voxel point. 𝑟 is
the size of splat, and voxel scale is the size of the voxel. The
best coefficient value between 𝜎 and 𝑟 is 0.57 based on our
extensive experimental results. If the volume is a regular grid,
voxel scale is fixed for all the voxels.

Another main advantage of splatting method over ray
tracing is that splatting has a faster calculation speed; that is, it
is very easy to ignore empty voxels (nonsurface voxels), which

do not contribute to the final projection image. However, this
is difficult to realize in ray tracing method.

It is noted that if we directly project the volume surface
voxels (without considering kernels) onto the image plane,
some pixels may be included there not belonging to the final
2D boundaries of the projection as shown at the top left of
Figure 8. At the same time, in order to efficiently control the
projection of the surface voxels, we do not use the projection
with kernels to compute the boundaries. Instead, there are
two projections computed at each gantry angle to extract the
final 2D boundaries of the surface voxel projection. One is
the projection with voxel kernels (similar to ordinary DRR
computation) shown at the top right of Figure 8 and the
other is without kernels (directly project each surface voxel
onto the image plane) shown at the top left of Figure 8.
We have to use the projections with kernels to compute
rough DRRs (possibly aliasing exists, but we only care the
image boundaries) and then employ it to filter out the exact
2D projection boundaries of the deformed anatomy surface
shown at the bottom of Figure 9.
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VoxelSource Splat

d1

d2

Figure 7: Geometry of the perspective projection with antialiasing for splatting method.

Projection with kernels Projection without kernels

Projection boundaries

Filter out

Figure 8: Computation of 2D projection boundaries of the deformed anatomy surface from an H&N patient data.

2.3.3. Optimization of Boundary-Based 3D-2D DIR Energy.
The computed projections of 3D surface are compared
with corresponding 2D projection boundaries from CBCT
scans, and the primary DVF is iteratively optimized to obtain
a good initial deformation for final volumetric image. The
surface deformation is optimized by minimizing the total
energy 𝐸bound, which includes two terms, the regularization
used to achieve smoothness of the DVF and the similarity
between the two images that is different from the previ-
ous intensity-based formulation. Here, the projections of

the anatomy surface voxel are compared with corresponding
2D projection boundaries from CBCT scans:

𝐸bound

= 𝜇𝐿 (D)

+

𝑁𝑝

∑

𝑚=1

󵄩
󵄩
󵄩
󵄩
distmin (𝑅bound (D, 𝜃

𝑚
) , 𝐼bound (𝜃

𝑚
))

󵄩
󵄩
󵄩
󵄩

2

,

(19)
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Figure 9: Demonstration of XCATmale phantom results. (a) Original image (Phase 1); (b) target image (Phase 4); (c) deformed image from
Phase 1; (d) differences between deformed and target images.

where 𝜇 is a weighting factor and empirically set at 10.0
for the experiments. D is the DVF defined on the mesh
vertices. 𝐿(D) is regularization term defined as in (10). The
second term of the energy function indicates the similar-
ity between the CBCT projections boundaries 𝐼bound(𝜃𝑚)
acquired at gantry angle 𝜃

𝑚
beforehand and the projections

𝑅bound(D, 𝜃
𝑚
) created after the deformation of D applied on

planning CT body surface at the same gantry angle.𝑁
𝑝
is the

number of projections involved. This term is a summation of
the square of the shortest Euclidean distance between every
pixel on projections of the deformed CT surface and the
corresponding CBCT projection boundaries. 𝑘-𝑑 tree data
structure is applied to efficiently search such nearest pixels
for boundaries [38].

L-BFGS algorithm is used to optimize the DVF (D). The
gradient of the energy function 𝐸bound with respect to D can
be calculated as follows:

∇𝐸bound = 𝜇∇𝐿 (D)

+ 2

𝑁𝑝

∑

𝑚=1

distmin (𝑅bound (D, 𝜃
𝑚
) , 𝐼bound (𝜃

𝑚
))

∇distmin (𝑅bound (D, 𝜃
𝑚
) , 𝐼bound (𝜃

𝑚
)) .

(20)

∇distmin(𝑅bound(D, 𝜃
𝑚
), 𝐼bound(𝜃𝑚)) can be computed numer-

ically by finite difference with a small ΔD.
Because we do not need the exact DRRs of the deformed

3D anatomy image, the resampling is not required. What we
focus on is the updated voxel positions of the deformed 3D
anatomy surface. Then we can use the splatting method to
compute the projections of the deformed volume surface.

After the above boundary-based registration, the primary
DVF is obtained and then applied in further complete
intensity-based DIR as the initial deformation. As a result,
the final volumetric images are obtained by applying the
optimized DVF to planning CT images.

3. Results

The algorithms are implemented by using Microsoft Visual
C++ 2010, MATLAB R2013a, and NVIDIA CUDA 5.5. For
the hardware platform, the experiments are run on a desktop
computer with Intel�Xeon E5645 CPUwith 2.40GHz, 34GB
DDR3 RAM, and NVIDIA GeForce GTX 780 Ti GPU with
3GB GDDR5 video memory.

We evaluate and compare our proposed nonuniform
tetrahedral meshing for 3D-2D DIR with other 3D-2D
DIR methods, that is, voxel-based method [1–3], uniform
orthogonal grid mesh [16], and uniform tetrahedral mesh
on image visualization and quantitative evaluations on two
XCAT phantoms and five H&N cancer patients.

3.1. Evaluation. This method is evaluated thoroughly by
using two sets of digital XCAT phantoms and H&N patient
data. Taking the XCAT male phantom data for example, two
sets of 3D images, representing the same patient (phantom) at
two different respiratory phases, are created. Both the beating
heart and respiratory motions are considered, and in order to
simulate the large deformation, the max diaphragm motion
is set to 10 cm. Phase 1 and Phase 4 are shown in Figures
9(a) and 9(b). Phase 1 data is used as the original planning
CT image, while Phase 4 data represents daily CBCT images.
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(a) (b) (c)

Figure 10: Three types of meshing for XCAT male phantom data. (a) A uniform orthogonal grid; (b) a uniform tetrahedron mesh; (c) a
feature-based nonuniform tetrahedron mesh.

The deformation vector of every voxel between these two
phases is provided by the XCAT software and it is used as
the ground truth of DVF for evaluation. A set of DRRs from
Phase 4 data is created using a ray tracing method with noise
simulation as mentioned in Section 2.2.2 and subsequently
used as the raw projections from the daily CBCT.The original
CT (Phase 1 data) is deformed to fit the raw projections of
daily CBCT and finally a new set of volumetric images is
created and compared with the ground truth, Phase 4 data.
Simultaneously, the final DVF is compared with the DVF
obtained from the XCAT software.

A conventional normalized cross correlation (NCC) is
used to evaluate the similarity (i.e., the linear correlation) of
3D images and DVFs:

NCC =

∑
𝑁

𝑖=1
[𝐹intp (𝑖) − 𝐹intp] [𝐹 (𝑖) − 𝐹]

√∑
𝑁

𝑖=1
[𝐹intp (𝑖) − 𝐹intp]

2
√∑
𝑁

𝑖=1
[𝐹 (𝑖) − 𝐹]

2

, (21)

where 𝐹intp(𝑖) and 𝐹(𝑖) are the interpolated and target values,
respectively, over𝑁 voxels. 𝐹intp and 𝐹 are the average values
of the interpolated and target values.The range of the NCC is
[−1, 1]. If NCC is 1, it means two values are exactly the same.
The larger the NCC is, the more similar the values are.

The normalized root mean square error (NRMSE)
between the interpolated values 𝐹intp(𝑖) and the target values
𝐹(𝑖) is also used for comparison of 3D images and DVFs and
it denotes the related error:

NRMSE =
√

∑
𝑁

𝑖=1
[𝐹intp (𝑖) − 𝐹 (𝑖)]

2

∑
𝑁

𝑖=1
[𝐹 (𝑖)]

2
.

(22)

The range of the NRMSE is [0, +∞). If NRMSE is 0,
it means two values are exactly the same. The smaller the
NRMSE is, the more similar the values are.

To demonstrate the advantage of using feature-based
nonuniform mesh, results of three types of meshing meth-
ods are compared. These are (1) a bounding box uniform
orthogonal grid in Figure 10(a), asmentioned in [9]; (2) a uni-
form tetrahedron mesh in Figure 10(b); (3) a feature-based
nonuniform tetrahedronmesh in Figure 10(c). A voxel-based
deformation method is also evaluated.

3.2. Meshing Computation. In order to apply the meshing-
based method in the 3D-2D image registration framework,
we have to compute the meshes at first. The number of
vertices of the tetrahedron meshes in XCAT phantom data
and H&N patient data are all around 1,000; hence the
execution time of the particle-based meshing method is the
same. H&N patient data (512 × 512 × 140) is larger than
XCAT data (256 × 256 × 132), so it takes more time in the
preprocessing steps of image feature edges computation and
the density field computation for feature-based tetrahedron
mesh generation. Compared with the uniform orthogonal
grid mesh generation (5 seconds), the isotropic tetrahedron
mesh generation needs 10 seconds, and the feature-based
tetrahedronmesh generation needs more time in preprocess-
ing steps: (a) compute the image feature edges: 3.5 seconds
(XCAT data) versus 15 seconds (H&N patient data); (b)
compute the density field: 0.4minutes (XCAT data) versus 1.5
minutes (H&N patient data); (c) run particle-based meshing
framework: 10 seconds. Uniform and feature-based nonuni-
form tetrahedron meshes can be generated by our particle-
based meshing approach only if the desired density field is
available (the density field of uniform tetrahedron mesh is
globally uniform). Once these meshes are generated, they
are used by the 3D-2D DIR framework, and no additional
computation is required for the meshes. It should be noted
that the mesh generation could be done in advance as soon as
the planning CT is performed. So the time for this preprocess
can be hidden for the image registration process.

3.3. XCAT Phantom Data. Feature-based nonuniform tetra-
hedral meshes are created using approximately 1,000 vertices
on the original CT image (Figure 9(a), Phase 1 of the XCAT
male model). 60 DRRs are created from the target image
(Figure 9(b), Phase 4) at 60 different gantry angles equally
spaced over 360 degrees. The new volumetric images are
obtained by optimizing the deformation of the meshes by
comparing the 60 DRRs of the deformed images with the
corresponding projections of the target images in 100 itera-
tions of the elastic registration algorithm. Figure 9(c) shows
that the new reconstructed images are very close to the target
images.Their differences are illustrated in Figure 9(d), which
are very small.
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Figure 11: Demonstration of XCAT female phantom results. (a) Original image (Phase 1); (b) target image (Phase 4); (c) differences between
deformed and target images at the beginning of optimization; (d) differences between deformed and target images at iteration 5; (e) differences
between deformed and target images at iteration 100 (end of the optimization); (f) final deformed image from Phase 1.

To test the robustness and accuracy of the algorithm,
another XCAT female phantom with more complicated
motions including a large deformation between respiratory
Phase 1 and Phase 4 and the translation (globally translated
by four-voxel-size distance (i.e., about 4.68mm) in the
horizontal direction) is used. Other configurations are the
same as the previous male phantom case. Figure 11 shows
the intermediate and final results during the optimization
process.

While a conventional CBCT reconstruction requires
hundreds of projections, the mesh-based algorithm uses far
fewer projections since the information from the planning
CT image is used. The number of projections may vary from
case to case. Table 1 lists the deformation results using varying
numbers of projections. A larger number of projections
do yield a higher NCC and lower NRMSE, though at the
expense of longer calculation time and more radiation dose.
A reasonable balance can be observed at 60 projections, as
diminishing returns start to take effect by using a larger
number of projections.

Comparisons of results from different meshing algo-
rithms are shown in Tables 2 and 3. With regard to the
similarity of the final images, the nonuniformmesh provides
better results than the uniform orthogonal grid or uniform
tetrahedron meshes in 100 optimization iterations, for the
approximately same number of vertices.The uniform orthog-
onal grid mesh is the same as mentioned by Foteinos et al.,
who pointed out that it has the best registration performance
in their experiments [16]. With more vertices, the nonuni-
form meshing method provides image results very close to
the voxel-basedmethod,which has asmany vertices as voxels.
It shows that the voxel-based deformation may yield good
image intensity result, but the resulting DVF represents an
unrealistic anatomical mapping. This is a drawback of voxel-
based deformation and is due to its localized deformation
(i.e., there are too many sampling points and it is easy
to be trapped into some local minima). The feature-based
nonuniform meshing method overcomes this drawback and
yields more anatomically accurate DVF (both the NCC and
NRMSE measurements on DVF of the nonuniform meshing
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Table 1: Digital XCAT male phantom study results using various numbers of projections.

Number of projections used 10 20 30 60 90 120
NCC of images 0.9788 0.9812 0.9825 0.9855 0.9859 0.9860
NRMSE of images 0.1952 0.1836 0.1769 0.1612 0.1587 0.1585
NCC of DVF 0.7823 0.7946 0.8012 0.8150 0.8189 0.8201
NRMSE of DVF 1.0055 0.9076 0.8525 0.8118 0.7959 0.7951
Note. These comparison experiments are run through 100 iterations.

Table 2: Evaluation of reconstruction accuracy based on a digital XCAT male phantom.

Uniform orthogonal
grid

Uniform
tetrahedron mesh

Nonuniform
tetrahedron mesh

Nonuniform
tetrahedron mesh

Voxel-based
method

Number of vertices 1,050 987 1,005 10,004 8,650,762
NCC of images 0.9829 0.9835 0.9855 0.9858 0.9872
NRMSE of images 0.1749 0.1705 0.1612 0.1593 0.1514
NCC of DVF 0.7690 0.7829 0.8150 0.8265 0.6061
NRMSE of DVF 1.2366 1.0923 0.8118 0.8059 1.2484
Note. The three mesh-based methods are run through 100 iterations, while the voxel-based method needs 200 iterations.

Table 3: Evaluation of reconstruction accuracy based on a digital XCAT female phantom.

Uniform orthogonal
grid

Uniform
tetrahedron mesh

Nonuniform
tetrahedron mesh

Nonuniform
tetrahedron mesh

Voxel-based
method

Number of vertices 980 981 1,011 10,000 8,650,752
NCC of images 0.9789 0.9792 0.9829 0.9846 0.9775
NRMSE of images 0.1970 0.1954 0.1766 0.1682 0.2035
NCC of DVF 0.7687 0.7680 0.7672 0.7649 0.6292
NRMSE of DVF 1.3875 1.1358 0.9705 0.9777 1.0317
Note. The three mesh-based methods are run through 100 iterations, while the voxel-based method needs 200 iterations.

method are better than those of the voxel-based method,
which were applied in [1–3]). Furthermore, from Figure 12,
it is clearly seen that the energy curve of the feature-based
meshingmethod (the red linewith trianglemarker) decreases
dramatically faster than any other methods; that is, it has
faster convergence speed during the image registration opti-
mization. It is noted that because different meshes or voxel-
based methods may have different regularization terms,
such as different numbers of displacement vectors, we only
compare the similarity term in (9) to make the comparison
fair. With the large translation in the XCAT female phantom,
the results (in Table 3) of voxel-based method are not as
good as the meshed-based methods in both images and
DVF measurements, due to its localized deformation and
translation.

3.4. H&N Patient Data. This feature-based nonuniform
meshing image registration method has been tested on five
clinical data sets from the head and neck cancer patients
H&N01∼H&N05. Figure 13 illustrates the density field map-
ping based on image feature edges and feature-based tetra-
hedron mesh of H&N01 patient data. Figure 14 shows the
deformation results from axial view (a big tumor on the right
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Figure 12: The similarity energy (𝐸sim(D) term in (9)) curves of
different methods (voxel-based, uniform orthogonal grid, uniform
tetrahedron mesh, and nonuniform tetrahedron mesh) in image
registration.
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Table 4: Results with different numbers of projections on H&N01 patient data.

Number of projections used 10 20 30 60 90
NCC of images 0.8458 0.8459 0.8460 0.8460 0.8460
NRMSE of images 0.4798 0.4794 0.4792 0.4792 0.4792
Note. These comparison experiments are run through 50 iterations.

Table 5: Comparison of three meshes on the data of five head and neck cancer patients.

Patients Uniform orthogonal grid Uniform tetrahedron mesh Nonuniform tetrahedron mesh
H&N01

Number of vertices 936 992 1,007
NCC 0.8327 0.8358 0.8460
NRMSE 0.4988 0.4938 0.4792

H&N02
Number of vertices 1,040 990 1,000
NCC 0.9036 0.9122 0.9134
NRMSE 0.4182 0.4116 0.4084

H&N03
Number of vertices 980 1,000 998
NCC 0.8470 0.8471 0.8482
NRMSE 0.4748 0.4743 0.4722

H&N04
Number of vertices 1,001 1,000 1,000
NCC 0.7756 0.7806 0.8111
NRMSE 0.5841 0.5817 0.5567

H&N05
Number of vertices 980 1,000 995
NCC 0.7565 0.7690 0.7843
NRMSE 0.6278 0.6092 0.5712

Note. The three mesh-based methods are run through 50 iterations.

Table 6: Evaluation of boundary-based DIR accuracy on an H&N cancer patient data.

Status Initial Boundary-based DIR Full DIR
NCC of images 0.7627 0.7875 0.7919
NRMSE of images 0.5938 0.5569 0.5479

side of the patient’s chin shrinks) compared with the con-
ventional CBCT reconstruction results of H&N01 patient
data. The effects of various numbers of projections are also
evaluated and the results are shown in Table 4. The three
meshing methods, uniform orthogonal, uniform tetrahe-
dron, and feature-based nonuniform tetrahedron (as shown
in Figure 15), are evaluated with results shown in Table 5 for
all patient data sets. The nonuniform meshing method again
yields the highest accuracy and has faster convergence speed
during the image registration. It is noted that, comparing
the accuracies in the XCAT phantom data and the H&N
patient data, the NRMSE seems larger in the patient cases
(∼0.5) than that in the XCAT cases (<0.2); this is because, in
the patient case, the reconstructed CBCT image is computed
based on the planning CT image, and the patient had the
planning CT scan and daily CBCT scans on different days
and machines, which may cause the differences in the image
background, noises, and so forth, resulting in larger NRMSE

values. However, it is acceptable in the image results as shown
in Figure 14.

3.5. Boundary-Based 3D-2D DIR Results. For the H&N05
cancer patient data, which has a large deformation on tumor
during treatment, we use it to evaluate the effectiveness
of the boundary-based 3D-2D DIR method. Figures 16(a)
and 16(b) show the original and final differences of one
projection boundary in boundary-based DIR. Figure 16(d)
demonstrates that the final deformed CT images are very
close to the target images (Figure 16(e)) and their differences
are very small by further intensity-based 3D-2D DIR.

The accuracy of the boundary-based 3D-2DDIR and fur-
ther intensity-based 3D-2D DIR are performed on H&N05
cancer patient data. Both the NCC and NRMSE shown in
Table 6 demonstrate that boundary-based DIR can provide a
good initial guess of the deformation for the further intensity-
based 3D-2D DIR; that is, after the boundary-based 3D-2D
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Figure 13: Demonstration of the feature-based mesh generation on the H&N01 patient data. (a) The original image; (b) extracted feature
edges; (c) density field; (d) a 2D view of the interior meshes with color-mapping.

(a) (b) (c)

Figure 14: Demonstration of H&N01 patient results from axial view. (a) Original CT image; (b) deformed image; (c) target image (daily
CBCT).

DIR, NCC and NRMSE are close to the final 3D-2D DIR
accuracy results.

With the GPU-based implementation, taking this H&N
cancer patient data for example, our boundary-guided
method takes 5.26 seconds per iteration, which is about 10
times faster than the non-boundary-guided method (i.e.,
59.75 seconds).Themultiresolution scheme is used to further
improve the speed on both boundary-based 3D-2D DIR and

further intensity-based 3D-2D DIR. In the experiment, only
the CBCT images are downsampled into different resolution
levels (three levels for experiments on H&N05 patient data),
from the coarsest level (CBCT projection: 256 × 192, time
for boundary-based DIR: 1.37 seconds/iteration, and time
for intensity-based DIR: 3.15 seconds/iteration) to the higher
level (CBCT projection: 512 × 384, time for boundary-based
DIR: 2.11 seconds/iteration, and time for intensity-basedDIR:
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(a) (b) (c)

Figure 15: Three types of meshing for H&N01 cancer patient data. (a) A uniform orthogonal grid; (b) a uniform tetrahedron mesh; (c) a
feature-based nonuniform tetrahedron mesh.

(c) (e)(d)

(a) (b)

Figure 16: Demonstration of H&N05 patient data results. (a), (b) Differences between projection of the original/final surface voxel (white
dots) and the target CBCT projection boundary (black dots); (c) original CT image; (d) reconstructed image from original CT image; (e)
target image (daily CBCT).

15.01 seconds/iteration) and finally to the full resolution
level (CBCT projection: 1024 × 768, time for boundary-
based DIR: 5.26 seconds/iteration, and time for intensity-
based DIR: 59.75 seconds/iteration). At the same time, the
proposed method needs fewer optimization iterations (35
iterations compared with original 50 iterations). The signif-
icant advantage of this method is that, instead of registering
thewhole image, we just need to register the surface voxel and
projection boundaries, which involves much fewer number
of voxels and pixels. In addition, in the H&N patient data
case, we only focus on the 3D surface and 2D projection
boundaries, so that the effects of different image modalities
will be ignored. By using both GPU implementation and
multiresolution scheme, the volumetric image reconstruction
of 512 × 512 × 140 H&N cancer patient can be accomplished

within 3 minutes (compared with 6.9 minutes of the original
3D-2D DIR in Section 2.2.5), so that this boundary-based
3D-2D DIR method could be probably used in the clinically
practical studies.

4. Conclusion and Future Work

The feature-based nonuniform meshing allows more sam-
pling points to be placed in the important regions; thus
the deformation can be controlled more precisely. With the
approximately same numbers of sampling points (vertices),
the feature-based nonuniform meshing method produces
better registration results, where a larger NCC is obtained
compared with the uniform orthogonal grid and the uniform
tetrahedron meshes. While this improvement may seem
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small, it is important to note that the NCC is very close to
1 because only minor anatomic changes occur. The NRMSE
measurement is also provided to represent the differences
between deformed images and the ground truth images.
In H&N patient data, again, the feature-based nonuniform
meshing method yields the highest accuracy of registration
among the various methods.

It is intuitive that more sampling points (10,000 versus
1,000) lead to better results. In contrast, the voxel-based
deformation provides the best image results in XCAT male
phantombut requires usingmore than eightmillion sampling
points. However, when the optimized DVF is compared with
the ground truth DVF, the DVF of voxel-based deformation
is significantly less similar to the ground truth than the
feature-based nonuniform meshing method. Voxel-based
deformation may yield better image intensity result, but the
resulting DVF represents an unrealistic anatomical mapping.
This is a drawback of voxel-based deformation and is due to
its localized deformation.The feature-basedmeshingmethod
overcomes this drawback and yields more anatomically accu-
rate DVF.

As for the mesh quality, before deformation, the nonuni-
form tetrahedral meshes are generated based on the smooth
density field as introduced in Section 2.1.2 so that we can
obtain the high-quality adaptive tetrahedral meshes without
any degradation and self-intersection. After image registra-
tion (deformation), the adaptive tetrahedral meshes are all
good as well. These are two factors to guarantee no degraded
and self-intersected tetrahedrons in the deformed meshes:
(1) in the proposed energy function in (9), the regularization
term 𝐿(D) and weighting factor 𝜇 are to achieve the smooth-
ness of the DVFs. (2) The target DVFs are quite smooth
in both the XCAT phantoms and H&N cancer patients. Of
course, if the DVFs are highly varying with sharp discontinu-
ities or weighting factor 𝜇 is not set properly, the deformed
tetrahedral meshes will have problems, such as degradations
or self-intersections. Since the mesh quality study is beyond
the scope of this work, future studies are warranted.

The repeated use of CBCT during a course of treatment
could deliver high extra imaging dose to patients. For
example, if weekly CBCT pelvis scans are performed with the
conventional faction scheme, the total dose will be around
4.05mSv/scan × 6 weeks = 24.3mSV; and the total dose
of head scans will be around 2.0mSv/scan × 6 weeks =
12.0mSV (Table II in [39]). If the daily CBCT is performed,
the total dose will be much higher. Using this method,
far fewer projections are needed to produce a set of high-
quality volumetric deformed images than in conventional
CBCT reconstruction, which can dramatically reduce the
radiation dose during CBCT scans. Additionally, it is clearly
seen that the feature-based nonuniform meshing method
has faster convergence speed than other methods during the
registration process.

Moreover, the proposed boundary-based 3D-2D DIR
method can substantially further improve both the accuracy
and the speed of reconstructing volumetric images by pro-
ducing a good initial DVF. This eventually will lead to a fast
and safe daily volumetric imaging with a very small number
of projections for image-guided radiation therapy or online

adaptive radiation therapy. There might be a limitation of
this boundary-based method, if the deformation happens
mainly in the internal organs. In the case of lung, its intensity
is significantly different from that of chest wall, so we may
segment lung and apply the proposed boundary-based 3D-
2D DIR method only focusing on the lung first.

In the future, our feature-based nonuniform meshing
method may also be applied to 4D images registration. A
CBCT scan acquires approximately 600 hundred projections
in a full rotation, and if they are sorted into ten respiratory
phases, the corresponding 4D simulation CT set can be used
to generate a high-quality, full 4D CBCT image set without
exposing the patient to additional imaging dose. Currently,
the feature-based nonuniform meshing method has been
employed to some head and neck cancer patient data and
achieved excellent results. In the future, we will investigate
and determine the clinical accuracy of the method based on
more patient data and statistical analysis in some follow-up
applications for other cancer cases: such as breast, lung, and
prostate cancers.
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