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Abstract

Background: Ab initio protein structure prediction methods generate numerous structural candidates, which are
referred to as decoys. The decoy with the most number of neighbors of up to a threshold distance is typically
identified as the most representative decoy. However, the clustering of decoys needed for this criterion involves
computations with runtimes that are at best quadratic in the number of decoys. As a result currently there is no
tool that is designed to exactly cluster very large numbers of decoys, thus creating a bottleneck in the analysis.

Results: Using three strategies aimed at enhancing performance (proximate decoys organization, preliminary
screening via lower and upper bounds, outliers filtering) we designed and implemented a software tool for
clustering decoys called Calibur. We show empirical results indicating the effectiveness of each of the strategies
employed. The strategies are further fine-tuned according to their effectiveness.
Calibur demonstrated the ability to scale well with respect to increases in the number of decoys. For a sample size
of approximately 30 thousand decoys, Calibur completed the analysis in one third of the time required when the
strategies are not used.
For practical use Calibur is able to automatically discover from the input decoys a suitable threshold distance for
clustering. Several methods for this discovery are implemented in Calibur, where by default a very fast one is used.
Using the default method Calibur reported relatively good decoys in our tests.

Conclusions: Calibur’s ability to handle very large protein decoy sets makes it a useful tool for clustering decoys in
ab initio protein structure prediction. As the number of decoys generated in these methods increases, we believe
Calibur will come in important for progress in the field.

Background
In ab initio protein structure predictions [1-5], it is often
the case that a large set of candidates (called decoys) is
generated, and one is required to select a single (or a
small selection of) best candidate(s) from the set. One
criterion for this selection is to choose decoys with
more neighbors over decoys with fewer neighbors. The
use of this criterion is well justified [6,7], and there are
a few tools which incorporate this strategy [1,8,9]. In the
popular protein structure prediction systems I-TASSER
[2,8] and ROSETTA [1], decoys are selected using the
following procedure: Starting with the set of generated
decoys, a threshold d is first decided. Then, from the
set, the decoy with the most neighboring decoys within
RMSD d from it is found, and is reported as the highest

ranking decoy. (Ties are broken arbitrarily.) This decoy
and all of its neighbors (the first cluster) are then
removed from the set, after which the decoy with the
most neighbors within RMSD d is again found. This
decoy is then reported as the second highest ranking
decoy, and together with all its neighbors (the second
cluster) are removed from the set. Similarly the third
highest ranking decoy is then found, and so on.
Current implementations of this procedure evaluate

pairwise RMSD (or approximate values) of the decoys,
resulting in runtimes which are at best quadratic in the
number of decoys. As the number of decoys grows to
the tens of thousands, this method becomes infeasible,
necessitating the development of faster methods. In this
paper we propose three strategies to speed up the pro-
cedure, with no compromise on the clustering per-
formed. That is, the resultant method produces exactly
the same clusters that are produced based on pairwise
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comparison, but only faster. In the first strategy we cre-
ate auxiliary groups of proximate decoys. This allows us
to, through the use of triangular inequality, deduce if a
group of decoys is (or is not) within the threshold dis-
tance from a given decoy. Our second strategy is to use
efficiently computable lower and upper bounds of the
RMSD to preliminary screen out unlikely candidates.
Thirdly, outlier decoys can be detected and removed
prior to the clustering. These strategies are implemented
in an open-source tool called Calibur.

Implementation
Coordinates of the Ca atoms on the protein fold back-
bone are used to represent the main structure of a pro-
tein. As distance measure between two protein
structures we use the backbone Ca-carbon root mean
squared deviation (Ca RMSD). Each Ca atom corre-
sponds to a point in 3D space. For two protein struc-
tures S1 = (s1,1, s1,2, ..., s1, n) and S2 = (s2,1, s2,2, ..., s2, n),
each si, j, 1 ≤ i ≤ 2, 1 ≤ j ≤ n, is a 3D point indicating a
Ca atom in the backbone. The Ca RMSD of S1 and S2 is
defined as:
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where ℛ is the set of all rotations and  the set of
all translations.

Strategy 1: Auxiliary grouping of decoys
To avoid pairwise Ca RMSD computation, proximate
decoys can be considered collectively, in deciding
whether they are within Ca RMSD d from a decoy. We
illustrate this idea in Figure 1, where the input decoys
are collected into five groups. When finding all the
decoys that are within Ca RMSD d from the decoy A
(which is itself in group 2), one can first consider each

of the five groups as a whole. In this case, all the decoys
in the groups 2 and 3 are within Ca RMSD d from A,
while all the decoys in the groups 1 and 5 are further
than d from A. No such conclusion can be collectively
made about the decoys in group 4. This strategy is
made possible by the fact that we can decide if an entire
collection of decoys is within Ca RMSD d from a decoy
A by comparing A to a representative decoy C for the
collection. That is, if A is within a certain distance from
C, then we conclude that the entire group is within d
from X. Similarly, no decoy in the group is within d
from A if A is further than some distance from C. How
this can be done is as follows.
We want a grouping such that each decoy belongs to

exactly one group, and is at most Ca RMSD r from the
group’s center (i.e. the representative decoy). This is
done as follows: First a distance r less than d is decided,
and an arbitrary decoy is set as a center. (Let r = d

2 for
Case 1 below.) Repeatedly we take an ungrouped decoy,
and try to find from all current centers for one which it
is within distance r from. If and when any such center
C is found the decoy is grouped with C and its distance
to C is recorded. Otherwise the decoy is declared as a
new center.
To locate the decoys in a group that are within dis-

tance d from a decoy A, one can consider the following
five cases (denote by C the group’s center and X an
arbitrary decoy in the group):
Case 1: A is in the group of C (including when A is the
group’s center), given that r = d

2 .
Case 2: Ca RMSD(A, C) + r ≤ d.
Case 3: Ca RMSD(A, C) > d + r.
Case 4: Ca RMSD(A, C) + Ca RMSD(C, X) ≤ d
Case 5: |Ca RMSD(A, C) - Ca RMSD(C, X)| > d
These cases are depicted in Figure 2. Since Ca RMSD

is a metric [10], triangular inequality applies. Hence in
Cases 1 and 2, all the decoys grouped with C must be
within distance d from A. In Case 3 the converse is true.
In Cases 4 and 5, we take advantage of the already

computed distance from the group’s center to each
member of the group. Again, triangular inequality
implies that in Case 4, the decoy X is within distance d
from A, while in Case 5 the converse is true. The Ca

RMSD between X and A is computed if and only if
none of the cases applies.

Strategy 2: Lower and upper bounds to Ca RMSD
Given any two decoys X and A, an efficiently compu-
table lower bound of Ca RMSD(X, A) can be used to
detect if Ca RMSD(X, A) is larger than a given
threshold d. Likewise, an upper bound can be used to
detect the case where Ca RMSD(X, A) is smaller than
d. Our strategy is to use multiple such efficiently
computable bounds as preliminary checks to reduce

Figure 1 Auxiliary grouping. Using auxiliary grouping of decoys.
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the much more expensive Ca RMSD computations.
We will first propose a few of such upper and lower
bounds, and then demonstrate how they are applied.
First consider any three decoys, O, X and Y. By trian-
gular inequality,
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Hence we can efficiently compute an upper and a
lower bound to Ca RMSD(X, Y), through an arbitrarily
chosen reference decoy O and pre-computed Ca RMSD
(X, O) values for each decoy X. In practice, one can use
n reference decoys O1, O2, ..., On to obtain n upper
bounds and n lower bounds.
The Euclidean distance between two decoys, after they

are re-orientated to minimize their Ca RMSDs to a
fixed arbitrary decoy, yields another upper bound to
their Ca RMSD [9]. This upper bound distance is
referred to as rRMSD.

Another lower bound can be obtained as follows.
Denote the centroid of a protein structure Sx as cx. The
signature Sigx for a protein structure Sx = (sx, 1, sx, 2, ...,
sx, n) is defined as:

Sig v v vx x x x n , , ,, , ,1 2  (1)

where vx, i = ||sx, i - cx||, 1 ≤ i ≤ n. Define the distance
between two signatures Sig1 and Sig2, called signature
distance, as:
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The signature distance of two protein structures is a
lower bound of their Ca RMSD, that is:
Lemma 1. Ca RMSD(S1, S2) ≥ dist(Sig1, Sig2)
Proof. Let R and T be the optimal rotation and trans-

lation found in computing the Ca RMSD of two

Figure 2 Deciding if decoys in a group is within d from A. Deciding if decoys’ distances are within the given threshold without exhaustive
Ca RMSD computation.
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structures S1 and S2. Let rk = ||Rs1, k - s2, k- T||
2, u1, k =

〈s1, k, c1〉 and u2, k = 〈s2, k, c2〉, 1 ≤ k ≤ n. u1, k and u2, k
are line segments with lengths v1, k and v2, k respectively.
It is known that the superposition in computing the

Ca RMSD of any two structures results in the centroids
of the structures to coincide [11].
Let θ be the angle between u1, k and u2, k. By trigo-

nometry, r v v v v v vk k k k k k k    1
2
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To decide if a decoy X is within Ca RMSD d of a
decoy A, we first compute the bounds and examine the
following.

• If any of the upper bounds of Ca RMSD(X, A) is
smaller than or equal to d. If so, clearly Ca RMSD
(X, A) ≤ d.

• If any of the lower bounds of Ca RMSD(X, A) is
larger than d. If so, clearly Ca RMSD(X, A) > d.

We compute Ca RMSD(X, A) if and only if these two
checks fail.
The upper and lower bounds can also be applied to

the conditions in Case 2 and Case 3 of Strategy 1, as
follows.

• In Case 2, if any of the upper bounds of Ca RMSD
(A, C) is smaller than d - r, then the condition Ca

RMSD(A, C) + r ≤ d holds.
• In Case 3, if any of the lower bounds of Ca RMSD
(A, C) is larger than d + r, then the condition Ca

RMSD(A, C) > d + r holds.

We compute Ca RMSD(A, C) for Case 2 and Case 3 if
and only if these two checks fail.

Strategy 3: Filtering outlier decoys
Another possible enhancement to performance is to
discard decoys with low similarity to other decoys in
the set, prior to the clustering. Here we propose an
efficient technique to quickly identify such decoys. Our
aim is to retain all of the high ranking decoys, and the
decoys which are within distance d from them. We
identify these as “good” decoys. Assume that every
high ranking decoy is within distance d from 10% of
all the decoys. For a random sample of n decoys, the
probability for a good decoy to be within a distance 2d
from at least one of the sampled decoys is 1 - 0.9n,
which is > 0.9999 when n = 100. Hence decoys that
are not within 2d from any one of 100 randomly
sampled decoys are likely not good, and are removed
from the set.

Overall program design
We designed a program based on the three strategies.
On a given set S of n input decoys, the program does
the following:

Step 1: Discover a suitable threshold distance d for
clustering S.
Step 2: Filter outlier decoys using 100 randomly
selected decoys, as in Strategy 3.
Step 3: Create auxiliary groups out of the decoys as
required by Strategy 1. Compute the signature (Sigx),
and the distances (Ca RMSD(X, O) for each decoy X
and reference decoy O; rRMSD(X, Y) for each decoy
X, Y) as required by Strategy 2.
Step 4: Find for each decoy A a neighbor set NA

which contains all the decoys in S within distance d
from A (A inclusive), using Strategy 1 with the preli-
minary checks of Strategy 2. This is done in a
straight-forward fashion as follows.

1. Set NA to an empty set.
2. For each auxiliary group of decoys G (C denote

the center of G),
(a) If A is in G, add all decoys in G into NA and
go for the next auxiliary group.
(b) Examine if Ca RMSD(A, C) + r ≤ d using each
of the upperbounds of Ca RMSD(A, C).

If true, add all decoys in G into NA. Go for the
next auxiliary group.

(c) Examine if Ca RMSD(A, C) > d + r using each
of the lowerbounds of Ca RMSD(A, C).

If true, skip G. Go for the next auxiliary group.
(d) Compute Ca RMSD(A, C).
(e) Examine if Ca RMSD(A, C) + r ≤ d.

If true, add all decoys in G into NA. Go for the
next auxiliary group.

(f) Examine if Ca RMSD(A, C) > d + r. If true,
skip G. Go for the next auxiliary group.
(g) For each decoy X in G,

i. Examine if Ca RMSD(A, C) + Ca RMSD(C,
X) ≤ d.
If true, add X into NA. Go for the next decoy
in G.
ii. Examine if |Ca RMSD(A, C) - Ca RMSD(C,
X)| > d.
If true, skip X. Go for the next decoy in G.
iii. Examine if Ca RMSD(A, X) ≤ d using each
of the upperbounds of Ca RMSD(A, X).
If true, add X into NA. Go for the next decoy
in G.
iv. Examine if Ca RMSD(A, X) > d using each
of the lowerbounds of Ca RMSD(A, X).
If true, skip X. Go for the next decoy in G.
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v. Compute Ca RMSD(A, X).
vi. If Ca RMSD(A, X) ≤ d, add X into NA.

3. Output NA.

Step 5: Start with an empty sequence Output.
Repeatedly find A Î S with the largest NA, append-
ing A to Output while removing NA from S and all
the neighbor sets.
Step 6: Output the decoys in Output. (For brevity
the program is set to output only the first 3 decoys.)

The threshold selection in Step 1 is addressed in the
next sub-section.
Steps 2 and 3 are performed straightforwardly.
Step 5 is performed by repeating the following until S

is empty: Find the decoy X Î S with the largest NX

(breaking ties arbitrarily) and append the decoy to Out-
put. Then, remove NX from S and for each Y Î NX,
remove Y from NZ for each Z Î NY.
Selection of a suitable threshold
We consider two decoys to be significantly related if and
only if their Ca RMSD is relatively small among all pairwise
Ca RMSDs of the decoys. Hence our strategy to threshold
finding is to identify a value d such that only x percent of
pairwise Ca RMSD distances are below d, for some suitable
x. Given x, a straightforward way to determine such a d
exactly is to compute all n × n Ca RMSDs and find the
(0.01xn2)-th shortest distance. Alternatively, a reasonable
approximation to the x-percentile value can be obtained effi-
ciently using only a relatively small random sample of the
decoys. In our tests, around 10 samplings of 100 decoys
each sufficed to determine this value quickly and consis-
tently in general. Our program uses this method by default,
with x set to min{100n-1/4, 10}. The expression 100n-1/4 is
heuristic. It’s aim is to reduce the percentile when more
decoys are available, in order to speed up the clustering (e.g.,
x = 10 when n = 10000, x = 5 when n = 160000).
A similar strategy would be to use the most frequently

occurring Ca RMSD among decoys, f say, as a reference
to decide a threshold distance d. (If the pairwise distances
are distributed normally, f would correspond to the 50th
percentile.) As a selectable option the program includes a
simple method based on this, in which we let d = cf + b,
where c is set to 2

3 and b is set to the minimum pairwise
distance discovered through random sampling.
Memory usage
In Steps 1-3 and 5, the memory required is linear in n.
For Step 4, in the theoretical worst case, |NX| = n for
each X, resulting in O(n2) memory usage. However,
such a scenario is unlikely to occur in the program’s
intended use. In practical use, |NX| is seldom above
0.2n, and small for most X. Note that in the case that
the number of neighbor sets of a given size falls off geo-
metrically with the size, the memory required to store

all neighbor sets would in fact be linear in n. In our
tests, the actual growth in memory usage is closer to O
(n) than O(n2).
If one is interested in only the highest ranked decoy

from the clustering, it is unnecessary to construct the
neighbor sets, since the sizes of the neighbor sets suffice
to determine such a decoy. In this case, the total mem-
ory usage would be linear in n. We include this mode of
operation as an option.

Results
Our C++ implementation of the program is called Cali-
bur. Calibur accepts as input a list of names of PDB
files (each for a decoy) and an optional threshold d. No
pre-processing is required of the PDB files. If no thresh-
old is given, Calibur automatically finds a suitable
threshold for the input decoys, as discussed. The
method which Calibur uses for threshold discovery can
be altered through commandline arguments. A list of all
the implemented methods is shown when Calibur is
called without any input arguments.

Effectiveness of strategies
The effectiveness of each of the strategies was evaluated
with decoys predicted by FALCON (reported in Alipa-
nali et al.: A protocol for automated NMR protein
structure determination, submitted for publication) on
the proteins TM1112 from the Arrowsmith Lab at Uni-
versity of Toronto (herein the set is referred to as
TM1112) and SH3 from Donaldson’s Lab at York Uni-
versity (herein referred to as CASKIN). Each of these
two sets contains 9999 decoys.
Auxiliary grouping, lower and upper bounds
Each of the different cases contributed in reducing the
runtime, although the amounts differed at different
thresholds (see Figures 3 and 4). At low thresholds, the
chances of decoys being further than the threshold dis-
tance are high. Hence evaluations via Case 3 and the
lower bounds are more effective. For a similar reason,
the effects of evaluations through Case 1 and the upper
bounds become elevated at larger thresholds.
In Calibur, the order in which evaluations are per-

formed, as well as the range of thresholds to use for the
evaluations has been optimized based on these
observations.
Filtering
On the data sets TM1112 and CASKIN, filtering did not
affect the clusters formed by the highest ranking decoys.
Their rankings remained the same. This is true even in
the cases where more than 70% of decoys had been fil-
tered prior to the clustering. Figure 5 and 6 show, for
TM1112 and CASKIN respectively, the number of
decoys filtered (out of the total of 9999 decoys) at var-
ious threshold values.
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Strategies’ effects on Calibur’s performance
To evaluate the strategies’ effects on Calibur at various
thresholds, the runtimes when the strategies are used
(“Calibur”) and when they are not used (“pairwise”)
were compared. For reference purposes, the runtime for
ROSETTA’s pairwise evaluation based clustering pro-
gram (“cluster_info_silent”) is also shown. ROSETTA is
currently the most popular system for protein structure
prediction. All the tests are run on a 3 GHz Intel Core
2 Duo PC with 2.98 G RAM running CentOS 5.3. All
three tools are compiled using GCC 4.1.2 with

optimization -O. The same codes is used for computing
Ca RMSD.
All the tools were given input such that the output

would be exactly the same. Hence we compare only their
runtimes. For pairwise and cluster_info_silent, the CPU
time is taken to be the total time needed for neighbors
finding and the recursive search for largest clusters. For
Calibur, the CPU time is the sum of the times taken for
signature computation, decoys re-orientation, filtering,
auxiliary grouping, neighbors finding, and the recursive
search for the largest clusters. Figure 7 shows the results

Figure 3 Contribution of Strategies 1 and 2 on TM1112. The number of Ca RMSD computations avoided (percentage over 9999 × 9998
computations) due to each of the cases considered, at different threshold values. For Case 2, the upper bounds are used for condition
evaluation prior to the actual Ca RMSD. The contribution from the upper bounds via the reference decoys can be completely accounted for by
rRMSD, while Ca RMSD evaluations contributed insignificantly. Only the contribution from rRMSD (label “Case 2 rRMSD_U”) is shown. For Case 3,
the lower bounds are used for condition evaluation prior to the actual Ca RMSD. While the contributions from both kinds of lower bounds
overlapped (label “Case 3_Ref_L or Sig_L”), there were contributions entirely due to evaluations using the signature (label “Case 3 Sig_L only”) as
well as the reference decoys (label “Case 3 Ref_L only”). The contribution from evaluating the actual Ca RMSD was highly significant as well
(label “Case 3”). In evaluating individual decoys, the upper bound obtained from rRMSD was highly effective at high thresholds (label “Accept
decoy, rRMSD_U”). The lower bounds from the reference decoys demonstrated noticeable effects (label “Reject decoy, Ref_L”). Other
contributions were insignificant.

Figure 4 Contribution of Strategies 1 and 2 on CASKIN. Same as Figure 3, but on the CASKIN data set.
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on the data set TM1112. The largest sizes of the clusters at
the thresholds 1, 2, 3, 4, 5, 6, 7 are respectively 1796, 6017,
7744, 8186, 8671, 9120, 9368.

Calibur’s performance on a large data set
Calibur’s performance in handling large numbers of
decoys was evaluated using a set of 29770 decoys for
the TM1112 protein generated by FALCON. For each
threshold in 0.5, 1, 1.5, 2, 3, 4, 5, we performed 10 trial
runs over a UNIX cluster. (More precisely, an HP XC
cluster with 378 nodes, each with 8× Xeon 3.0 GHz

CPUs and 16 GB memory, running RHEL 5.1.) All the
runs resulted in the same decoy clusters. Table 1 shows
the average CPU times (in sec).
In practice the largest clusters typically contain around

10% of the decoys. In the present case, the largest clusters
found at 1.5 threshold distance already contain more
than 18% of all the decoys. At this point, the correspond-
ing CPU time required by Calibur is about one third of
the time required when the strategies are not used.
As a further reference on Calibur’s performance in

high load use, Calibur completed in around 15000

Figure 5 Number of decoys filtered from TM1112. The number of decoys filtered from the set TM1112 using 100 randomly selected decoys
at different thresholds. Each value is an average of 10 numbers from 10 different trials using the same threshold. Error bars show the standard
deviations.

Figure 6 Number of decoys filtered from CASKIN. Same as Figure 5, but on the CASKIN data set.
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seconds CPU time under its default settings in our
recent tests using 100,000 decoys.

Evaluation of Calibur’s output decoys
To evaluate the decoys produced by Calibur, we com-
pared them to that obtained using SPICKER [8], the clus-
tering tool used in the leading ab initio protein structure
prediction system I-TASSER [2]. We used the decoy sets,
natives and SPICKER’s results published on I-TASSER’s
website [12], downloaded on the 24th of July, 2009. The
data consists of decoys for 56 targets. The number of
decoys for each target is shown in Table 2.
In order to compare Calibur with SPICKER in terms

of both output and speed we ran Calibur under the
same conditions as SPICKER. Both programs were com-
piled with optimization -O3 and were made to cluster
exactly the same set of decoys. Filtering was disabled in
Calibur. We noticed a limit on the number of decoys
that SPICKER handles. When the number of decoys is
larger than 13000, SPICKER samples only 13000 decoys
for clustering. To test Calibur with the same set of

decoys that SPICKER clusters, we obtained 13000
decoys from each decoy set that is larger than 13000
(using the same procedure as in SPICKER’s source
codes) and tested Calibur with these decoys.
When decoys are sampled, they may not be sufficiently

representative and the quality of the best decoy obtained
may be compromised. To investigate this effect, we ran-
domly sampled 1000, 2500, 4000, 5500, 7000, 8500,
10000, 11500 decoys from each of the original sets and
ran SPICKER and Calibur with these sampled sets. Since
only 6119 decoys are available for 1mkyA3, the full set
was used as the sampled set at sizes above 5500.
All the tests were performed on the same UNIX clus-

ter as in the previous section. Calibur used its default
method for automatic threshold distance discovery.
Table 3 shows, at different sample sizes, the average
TM-scores and total Ca RMSDs (to native) for the best
decoys reported by both tools, as well as the total CPU
times used, as reported by the UNIX servers. These
results are shown as histograms in Figures 8, 9 and 10.
Detailed results are given in Additional File 1. The

Figure 7 Runtime of cluster_info_silent, pairwise and Calibur on TM1112. The CPU times used to obtain cluster at different thresholds on
the TM1112 data set of 9999 decoys, by (1) cluster_info_silent (label “cluster_info_silent”). (2) Calibur without using any of the strategies (label
“pairwise“), (3) Calibur (label “Calibur”) (To account for variations caused by the filtering each point is an average of 10 trials), (4) Calibur with the
filtering mechanism disabled (label “Calibur without filtering”).

Table 1 CPU times of Calibur on large data set.

Threshold 0.5
(27)

1.0
(1966)

1.5
(5531)

2.0
(8560)

3.0
(14397)

4.0
(17915)

5.0
(19905)

Calibur 74 ± 7 506 ± 14 1047 ± 27 1482 ± 42 2369 ± 154 3109 ± 266 3616 ± 290

no filtering 225 ± 11 717 ± 22 1250 ± 35 1629 ± 42 2495 ± 180 3166 ± 233 3501 ± 272

Pairwise 2628 ± 72 2624 ± 69 2651 ± 66 2741 ± 83 3293 ± 205 4014 ± 130 4425 ± 324

Numbers in brackets are the sizes of the largest clusters at the corresponding threshold.
CPU times of (1) Calibur, (2) Calibur with the filtering mechanism disabled ("no filtering”), and (3) pairwise, on a set of 29770 decoys for the TM1112 protein.
Shown with ± standard deviation.
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average TM-score and total Ca RMSD reported by both
tools are similar, showing the decoys reported by both
tools to be comparable. The CPU times required by
Calibur are significantly less than SPICKER for sample
sizes above 2500, even with PDB files processing time
included. There is an observable trend of increase in
average TM-score as well as decrease in total Ca RMSD,
with an increase in sample size.
For each sample size, we counted the number of targets
where the best decoy reported by SPICKER has a better
TM-score than Calibur, as well as the number of targets
where the best decoy reported by Calibur has a better
TM-score. These numbers are shown in Figure 11.
Figure 12 shows the numbers where instead of the TM-
score, the Ca RMSD is compared.
Further experiment with Calibur using more decoys

than 13000 suggests that decoy quality may improve
when a fuller set of decoys is used. We randomly
sampled 16000, 19000, 22000, 25000, 28000 and 31000

decoys from each of the target sets and ran Calibur on
these sampled sets. At each of the sample sizes, if the
set contains less decoys than the sample size, then the
entire set of decoys was used. The results are shown in
Table 4 (details given in Additional File 2). The highest
average TM-score and total Ca RMSD is observed at
sample size 28000. Rank sum test shows the average
TM-scores obtained at the sample sizes above 13000 to
be higher than those obtained at sample sizes less than
or equal to 13000 (p ≤ 0.1).

Conclusion
Calibur is a carefully implemented tool, dedicated to the
purpose of clustering very large numbers of decoys. As
methods in ab initio protein structure prediction
advances, the number of decoys to be analyzed is
expected to increase, and the disability to cluster decoys
efficiently will eventually pose a hindrance to the ana-
lyses of various problems and subproblems in the

Table 2 Sizes of the decoy set for each target.

Target #Decoys Target #Decoys Target #Decoys Target #Decoys

1abv_ 12500 1dtjA_ 20000 1mkyA3 6119 1shfA 20000

1af7_ _ 12499 1egxA 20000 1mla_2 12500 1sro_ 20000

1ah9_ 27498 1fadA 12599 1mn8A 12500 1ten_ 20000

1aoy_ 32000 1fo5A 20000 1n0uA4 12499 1tfi_ 32000

1b4bA 12500 1g1cA 19997 1ne3A 12500 1thx_ 32000

1b72A 12499 1gjxA 12500 1no5A 12500 1tif_ 12500

1bm8_ 20000 1gnuA 17533 1npsA 20000 1tig_ 12500

1bq9A 20000 1gpt_ 32000 1o2fB_ 12500 1vcc_ 20000

1cewI 19830 1gyvA 11508 1of9A 20000 256bA 20000

1cqkA 19999 1hbkA 20000 1ogwA_ 19998 2a0b_ 32000

1csp_ 12500 1itpA 12500 1orgA 20000 2cr7A 12500

1cy5A 32000 1jnuA 20000 1pgx_ 20000 2f3nA 19999

1dcjA_ 20000 1kjs_ 20000 1r69_ 20000 2pcy_ 20000

1di2A_ 20000 1kviA 20000 1sfp_ 19985 2reb_2 12500

The number of decoys for each target.

Table 3 Total scores and CPU times.

Sample Average TM-score Total Ca RMSD Total CPU Time (s)

size SPICKER Calibur SPICKER Calibur SPICKER Calibur

1000 0.571107 0.578102 291.534 281.994 136.05 237.25

2500 0.574379 0.578386 284.937 286.09 687.45 746.84

4000 0.576045 0.576859 284.953 284.108 1851.34 1533.81

5500 0.574475 0.57845 284.18 283.055 3276.36 2781.55

7000 0.576323 0.578823 284.927 278.769 7029.09 4320.95

8500 0.57843 0.580889 283.325 279.248 8132.9 5906.61

10000 0.577543 0.581236 282.919 279.1 10745.5 7822.75

11500 0.578748 0.582175 282.644 281.192 14293.8 10374.2

13000 0.578432 0.582425 283.795 281.701 16608.8 12420.5

Average TM-score and total Ca RMSD for the best decoys obtained, as well as the total CPU time used, on the sampled sets of sizes 1000, 2500, 4000, 5500,
7000, 8500, 10000, 11500, 13000. (SPICKER requires additional pre-processing of the input PDB files which are not added into the CPU times here.)
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Figure 8 Average TM-scores for the sample sets at different sizes. Average TM-score for the best decoys obtained by SPICKER and Calibur
respectively on the sampled sets of sizes 1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.

Figure 9 Total Ca RMSDs for the sample sets at different sizes. Total Ca RMSD for the best decoys obtained by SPICKER and Calibur
respectively on the sampled sets of sizes 1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.
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Figure 10 Total CPU times for the sample sets at different sizes. Total CPU time (sec) used by SPICKER and Calibur respectively on the
sampled sets of sizes 1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.

Figure 11 Number of times decoy with better TM-score is reported by each method. Number of times the decoy with better TM-score
was reported by SPICKER and Calibur respectively, on the sampled sets of sizes 1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.

Figure 12 Number of times decoy with better Ca RMSD is reported by each method. Number of times the decoy with better Ca RMSD
was reported by SPICKER and Calibur respectively, on the sampled sets of sizes 1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.
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prediction of protein structures. It is our belief that
Calibur, together with the methods it implements, will
come in very useful when this situation arises. For this
reason, we have decided to release the source codes of
Calibur with an open license.

Availability and requirements
• Project name: Calibur
• Project homepage: http://sourceforge.net/projects/
calibur/
• Operating System(s): Multiple platform (tested on
Windows and Linux)
• Programming Language: C++.
• Other requirements: None.
• License: GNU General Public License

Additional file 1: Details of experiments using sample sets of sizes
1000, 2500, 4000, 5500, 7000, 8500, 10000, 11500, 13000.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
25-S1.pdf ]

Additional file 2: Details of experiments using sample sets of sizes
16000, 19000, 22000, 25000, 28000 and 31000.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
25-S2.pdf ]
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Table 4 Total scores and CPU times at larger sample
sizes.

Max sample
size

Average TM-
score

Total Ca
RMSD

Total CPU Time
(s)

16000 0.581143 283.749 28857.2

19000 0.582325 281.589 38928.9

22000 0.580996 279.887 45916

25000 0.581545 283.549 47083.1

28000 0.58272 278.243 50669.4

31000 0.581805 282.32 53582.2

Average TM-score and total Ca RMSD for the best decoys obtained, as well as
the total CPU time used, on the sampled sets of maximum sizes 16000,
19000, 22000, 25000, 28000 and 31000.
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