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Abstract
Many different approaches have been developed to model and simulate gene regulatory networks.
We proposed the following categories for gene regulatory network models: network parts lists,
network topology models, network control logic models, and dynamic models. Here we will
describe some examples for each of these categories. We will study the topology of gene
regulatory networks in yeast in more detail, comparing a direct network derived from transcription
factor binding data and an indirect network derived from genome-wide expression data in mutants.
Regarding the network dynamics we briefly describe discrete and continuous approaches to
network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate
that some simple network dynamics can be simulated in this model.

Introduction
Most cellular processes involve many different molecules.
The metabolism of a cell consists of many interlinked
reactions. Products of one reaction will be educts of the
next, thus forming the metabolic network. Similarly, sig-
nalling molecules are interlinked and cross-talk between
the different signalling cascades forms the signalling net-
work. And the same is true for regulatory relationships
between genes and their products. All these networks are
closely related, e.g. the regulatory network is influenced
by extracellular signals. But there are characteristic fea-
tures in the signalling network, which do not exist in the
regulatory network; therefore dealing with these networks
separately makes sense. Our main interest is in transcrip-
tion regulation networks and we will refer to them as
"gene networks", but many principles are valid for a wide
range of networks. High-throughput technologies allow
studying aspects of gene regulatory networks on a
genome-wide scale and we will discuss recent advances as
well as limitations and future challenges for gene network

modelling. This survey is largely based on and is an exten-
sion of two previous publications [1,2].

Gene networks are concerned with the control of tran-
scription, i.e. how genes are up and down regulated in
response to signals. In the 1960's genetic and biochemical
experiments demonstrated the presence of regulatory
sequences in the proximity of genes and the existence of
proteins that are able to bind to those elements and to
control the activity of genes by either activation or repres-
sion of transcription. These regulatory proteins are them-
selves encoded by genes (Figure 1). This allows the
formation of complex regulatory networks, including pos-
itive and negative feedback loops. These principles of gene
regulation apply to prokaryotes (e.g. bacteria) as well as to
eukaryotes (e.g. higher organisms). The control of gene
activity is much more complex than Figure 1 suggests. It
involves many kinds of proteins thus allowing additional
levels of control particularly in eukaryotes. Transcription
factors, the proteins that recognize the regulatory ele-
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ments in the DNA (the binding sites) need to interact with
other proteins in order to activate gene expression. In
addition to control of gene expression there are regulatory
controls to determine the maturation, transport and deg-
radation of the mRNA, as well as its translation. Just to
illustrate the complexity of gene regulation: Gene Ontol-
ogy (GO), a controlled vocabulary used to describe pro-
tein functions contains currently over 7500 different
terms describing biological process 'transcription', includ-
ing over 6500 terms under process 'regulation of tran-
scription' [3].

Gene networks are often described verbally in combina-
tion with figures to illustrate sometimes-complicated
interrelations between network elements. Due to the com-
plexity of these networks, such models are not always easy
to comprehend and they often leave a considerable
amount to ambiguity to the reader's imagination. Since
the 1960's methods from mathematics and physics have
been used to describe and simulate small gene networks
more stringently. Nowadays, molecular biological meth-
ods and high-throughput technologies make it possible to
study a large number of genes and proteins in parallel ena-
bling the study of larger gene networks. This allows tack-
ling gene networks more efficiently and has led to a new
discipline called Systems Biology, which seeks to combine
methods from biology with methods from mathematics,
physics and engineering to describe biological systems.

We proposed to categorize gene networks models in four
classes according to increasing level of detail in the mod-
els [1]. Each class has its own advantages and limitations.
The four classes are:

i. parts lists – a collection, description and systematisation
of network elements in a particular organism or a particu-
lar biological system (e.g., transcription factors, promot-
ers, and transcription factor binding sites);

ii. topology models – a description of the connections
between the parts; this can be viewed as wiring diagrams
where directed or undirected connections between genes
represent different types of interactions;

iii. control logic models – a description of combinatorial
(synergetic or interfering) effects of regulatory signals –
e.g., which transcription factor combinations activate and
which repress the transcription of the gene;

iv. dynamic models – the simulation of the real-time behav-
iour of the network and the prediction of its response to
various environmental changes, external, or internal stim-
uli.

Obviously, for a fixed number of network elements each
next level is more detailed and complex. But the size of the
networks that we are able to model at each particular level
is limited. Much larger networks can be described on top-
ological level than on the dynamic level. In the following
section we will discuss these classes in more detail.

Organisational levels of gene network models
"All models are wrong, but some are useful". – George E. P. Box

Parts list
Compiling the parts list is the first step in developing any
model of some complexity and is not always a trivial exer-
cise. Simple parts lists of genes, transcription factors, pro-
moters, binding sites and other molecular entities are
useful means for assessing the network complexity and for
comparing different organisms. Such parts lists can be the
result of a genome-sequencing and annotation project,
where the complete DNA sequence of an organism is
determined and all (or at least many) genes and proteins
are identified. A parts list could also be represented as a
database of regulatory elements or it could be ontology
terms of transcription regulation processes assigned to a
set of genes.

Comparing such lists from different organisms can pro-
vide an indication of the complexity of the transcriptional
machinery or be used to predict the presence or absence of
particular metabolic pathways [4-6]. The number of
known and predicted transcriptional regulators in eukary-
otic organisms varies from about 300 in yeast to about
1000 in humans (Table 1).

Many publications address the computational identifica-
tion of transcription factor binding sites for instance by
analysing promoter sequences of coexpressed genes [7].
One approach is to search for short sequences that are
overrepresented in the promoters of a particular group of
genes (e.g. clusters of coexpressed genes or sets of longer
sequences known to bind a particular transcription factor)
in comparison to the promoter sequences of all other
genes. This approach obviously depends on the availabil-
ity of the sequences for many genes and their upstream
regions. Such an approach was applied in a cell cycle study
in Schizosaccharomyces pombe, where Rustici et al. showed
that the presence or absence of consensus binding sites in
the promoter regions corresponds to the cyclic expression
pattern of the genes [8]. Genes with a peak expression at
similar cell cycle stage often share similar sets of consen-
sus binding sites.

However, the exact promoter regions are usually
unknown and even the transcription start sites are only
known for a few genes. Baker's yeast (Saccharomoyces cere-
visiae) has a relatively small genome with short intergenic
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regions, considering about 600–1000 bp upstream of the
translation start site (ATG) appears to be a good approxi-
mation for the promoter regions. In higher organisms like
vertebrates the intergenic regions and thus the putative
promoter regions are much larger than in yeast, therefore
the identification of regulatory elements in the DNA
sequence by computational means has turned out to be
rather elusive. Some studies have focused on the compu-
tational analysis of higher-level organisation of transcrip-
tion factor binding sites in promoters, such as frequently
occurring combinations of known binding sites [9,10], or
restricted the search for regulatory elements to conserved
sequence regions, identified by genome comparisons, a
method often referred to as phylogenetic footprinting
[11]. However, phylogenetic footprinting does not always
work, because the localisation and the binding sites them-
selves are not always conserved [12,13].

Transcription factor localisations can be identified experi-
mentally, too. For example, individual binding sites can
be detected using the "DNAse I footprinting assay"; pro-
teins bound to the DNA protect it from degradation by
DNAse I, therefore these regions can be analysed further
[14]. Another common experimental method is the "elec-
trophoretic mobility shift assay" (EMSA) sometimes
called "band shift assay" or "gel retardation assay" – DNA

fragments that are bound by protein move slower in an
electrophoretic gel than unbound fragments [15,16].
These methods allow fine mapping of individual binding
sites, but are very labour intensive. High-throughput
methods such as the Chip-on-chip method (see addi-
tional file 2, which describes this methods in more detail)
allow the genome-wide detection of binding sites for a
transcription factor, but the spatial resolution and signal
quality is limited. Furthermore, assigning transcription
factors to their target genes based on the genomic localisa-
tion is difficult due to the size of intragenic and intronic
regions and long range effects of some transcription fac-
tors.

Nevertheless parts lists provide the first impression of
gene networks in different organisms and they are neces-
sary to have before we continue by having a look at the
network topology.

Topology models
Once we know the transcription factors and their binding
sites, we can describe the gene transcription regulatory
networks by graphs with nodes corresponding to genes
and edges to regulatory interactions [17]. (Note the differ-
ence between these discrete graphs and plots of mathemat-
ical functions also often referred to as graphs.) A short
introduction to discrete graphs is given in additional file
1, for more details please consult for example Cormen et
al. [18]. One important concept that we will use below is
a representation of a graph by a so-called adjacency
matrix, where the element aij in a row i and column j
equals 1 (i.e., aij = 1), if node i is connected to node j, oth-
erwise aij = 0. Graph representations have been used for
various biological data sets ranging from protein-protein
interactions networks to coexpression networks, they have
been long used in mathematics, physics and computer sci-
ence, and many aspects of graphs and their applications
have been studied (e.g., [19-21]).

In a directed graph (i.e., a graph where connections
between nodes have a definite direction) we call genes
(nodes) with outgoing edges (arcs) source genes. For a
given source gene, we call the set of all genes with incom-
ing arcs from that source gene its target genes. Regulatory
relationships can be of various natures. For a specific

Representation of a simple, fictional transcription factor net-workFigure 1
Representation of a simple, fictional transcription 
factor network. All genes shown encode transcription fac-
tors that control the activity of genes encoding transcription 
factors.

GENE 1 GENE 2 GENE 3 GENE 4

DNA

transcription factor binding site 

in promoter region

coding DNA

transcription factor

Table 1: Number of transcription regulators in different organisms

Organism number of genes number of transcription regulators

yeast 6682 312 (4.7%)
fly 13525 492 (3.6%)
human 22287 1034 (4.6%)

The number of genes and transcriptional regulators (genes annotated with GO term GO:0030528 "transcription regulator activity" for yeast 
(Saccharomyces cerevisiae) was taken from SGD http://db.yeastgenome.org/cgi-bin/SGD/search/featureSearch and for fly (Drosophila melanogaster, 
DROM3) and human (Homo sapiens, NCBI 34 dbSNP120) was taken from ENSEMBL http://www.ensembl.org/Multi/martview
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model we need to define the precise meaning that we
assign to the edges (Figure 2). For instance, an arc from a
gene A to B may mean that source gene A is a transcription
factor, which is known to bind to the promoter of target
gene B. A rather different network will be obtained if an
arc from A to B denotes the observation that the disrup-
tion (e.g., mutation) of source gene A changes the expres-
sion of target gene B. We will present examples for these
types of networks in the next section. A widely studied
type of molecular network of a different type is the pro-
tein-protein interaction network, where the nodes repre-
sent proteins and two proteins are connected by an
undirected edge, if they bind to each other (Figure 2) [22].
A different network will be established by connecting
genes based on their sequence similarity. Networks can
also be built based on the co-occurrence of gene names in
journal abstracts. If two gene names frequently occur in
the same abstracts it is likely that they share some kind of
functional relationship [23].

To illustrate knowledge that we can obtain from studying
network topology, we will compare and combine infor-
mation from two high throughput data sets for the yeast
Saccharomyces cerevisiae. The first is obtained from chro-
matin immunoprecipitation experiments for transcrip-
tion factors (ChIP network), while the second is obtained
from microarray experiments on single gene deletion
mutants (mutant network), for more detail on the experi-
mental methods please refer to additional file 2. Microar-
ray experiment measurements can be presented in a data
matrix, where rows represent genes and columns particu-
lar experiments (hybridisations). For instance, in the ChIP
experiment each column will correspond to a particular
transcription factor (studied in the particular experiment),
while in the mutant experiment each column will corre-
spond to a particular mutant. In this way, not only rows,
but also columns will correspond to genes. The measure-
ment values are typically real numbers, such as intensity
levels, expression levels, or p-values, depending on the
data processing steps applied. By applying an additional
data processing step, often called thresholding, we can
transform these continuous values into discrete values
(e.g., if we chose a threshold t, then we can replace any xij
by 0, if xij <t, and by 1, otherwise). In this way we will
transform the original measurement matrix for these exper-
iments into an adjacency matrix defining a graph: two
genes in this graph are connected, if the measurement
value is higher than the chosen threshold.

The ChIP network is based on experimental data pub-
lished by Harbison et al. [24]. As described in additional
file 2 they used genomic tiling arrays to identify the
genomic regions bound by transcription factors. The
authors assigned each genomic region to one or two target
genes based on proximity in the genome. Relative intensi-

ties of spots are the basis for an error model that assigns a
probability score (p-values) to binding interactions,
which we use for discretisation.

The starting point for the mutant network is the gene
expression data matrix published by Hughes et al. [25].
Each experimental condition, which in our case is a partic-
ular gene deletion mutant, corresponds to a column and
each gene corresponds to a row (for more detail see addi-
tional file 2). We discretise the data matrix using a gene-
specific standard deviation estimate γ obtained from the
error model proposed by Hughes et al. [25].

The size of the networks depends on the discretisation
thresholds chosen (Table 2). The criteria used to choose
these thresholds are rather subjective, for the following
comparisons we focused on these thresholds: ChIP net-
work pt = 0.001 and mutant network γ = 2.5.

What do these two networks mean and how do they com-
pare? In the ChIP network, an arc A→B means that the
gene A codes for a transcription factor that binds to the
promoter of gene B, while in the mutant network it
means, that the mutation of A will change the expression
level of B [23]. The ChIP network describes physical inter-
actions, but it does not tell us anything about the effects
of these interactions. The mutant network is similar to the
one used in gene networks built by classical genetics
means – we know that a mutation (perturbation) of the
first gene has an effect on the second one, but it does not
necessarily mean a direct physical interaction – there may
be a long transcriptional or signalling cascade leading
from the first gene to the second. In this way the first net-
work is likely to contain direct interactions, while the sec-
ond may include indirect interactions as well. However, it
is possible that some of the 'direct' interactions of the
Chip network are not biologically functional and thus
may not be supported by mutant network. Most impor-
tantly it should be noted that the experimental conditions
in the two experiments are not identical, which may result
in considerable discrepancies between the two networks.

First we can observe that both networks consist of one
major component and almost all genes are part of it and
are connected (this is true for a wide range of discretiza-
tion thresholds). The degree distributions resemble
roughly a power-law, i.e. most source genes have few tar-
get genes, while few source genes have many (Figure 3).
Rung et al. discovered that the number of connections can
indicate the functional class of the gene. Genes in the
mutant network with many outgoing arcs (high outdegree)
often encode proteins with regulatory functions, whereas
genes with many incoming arcs (high indegree) are pre-
dominantly involved in metabolism [26]. Functionally
related genes tend to be close in the networks, it is there-
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fore possible to identify functionally related genes by
comparing their neighbourhoods [23]. Manke et al. found
directly interacting transcription factors and those, which
are members of a protein complex, to occur together as
putative DNA-binding modules more often than expected
randomly [27].

When we compare and combine the mutant network and
the ChIP network we immediately observe that their inter-
section is sparse. They share 102 edges connecting 13
from a total of 23 shared source genes to 93 distinct target
genes (Table 3 and Figure 4). In the mutant network these
13 source genes are connected to 937 distinct target genes
by 1157 edges (89 edges per source gene, 8.8% of the con-
nections are in the intersection); whereas in the ChIP net-
work they are connected to 631 distinct target genes via
924 edges (71 edges per source gene, 11.0% of the con-
nections are found in the intersection). We used the
hypergeometric distribution to compare target sets of all
source genes [23] to identify source genes with target set
intersections larger than expected by chance (Figure 5).
We found that 9 of the 23 shared transcription factors
Arg80p, Gcn4p, Hir2p, Mbp1p, Stb4p, Ste12p, Swi4p,
Swi5p and Yap1p have significantly similar target sets in
both networks (p < 0.05, 4000 genes in total) (Table 3).
In these cases the transcription factor localisation might
actually explain the changes in gene expression we see in
the corresponding deletion mutants. One would assume

that due to the nature of the experiments some effects in
the mutant network are indirect effects that could be
explained by a combination of direct connections in the
ChIP network (Figure 6A). We find that indeed a number
of connections in the mutant network can be explained by
a combination of two edges in the ChIP network (Figure
6B).

Others have observed that when comparing different pro-
tein-protein interaction networks, their intersections are
small, too. Only few interactions are reported by several
experiments despite using just different methods to meas-
ure the same interactions [28]. Reassuringly, the shared
interactions turned out to be more reliable than most of
the data [28]. Here we work with experiments measuring
different, if somehow related effects, but still the propor-
tion of connections between functionally related genes is
increased in the intersection of the two networks. In the
intersection 40 of 102 (39.2%) connections connect
genes that have the same cellular role in YPD, compared
to less than 20% in the original networks (Table 2).

To summarise we can say that although the two networks
are rather different, the part that is common to both is bio-
logically more meaningful, and some of the indirect inter-
actions of the mutant network can be explained by the
direct interactions in the chip network.

Network topologies, particularly in yeast, have been
widely studied and many interesting observations have
been made. It has been proposed that the existence of
highly connected genes (hubs) in a network might make
networks more tolerant to random failure of network ele-
ments [29,30]. In protein-protein interaction networks it
seems possible to classify hubs in combination with
expression data: Han et al. [31] showed that hub proteins
can be divided into two groups based on the level of coex-
pression between their neighbours in the network (the
proteins directly connected to the hub proteins). Hubs
with low coexpression seem to link functionally separate
modules and removing these hubs leads to more rapid
disintegration of the network [31]. However so far this has
not been observed in transcription networks.

Luscombe et al. compiled data from ChIP-on-chip experi-
ments for yeast to construct a network of 142 transcrip-
tion factors, 3420 target genes and 7074 regulatory
interactions [32]. To study the dynamics of this network
they traced the paths from the target genes back to initial
transcription factors, starting from target genes that are
differentially expressed under particular conditions as
demonstrated in previously published microarray experi-
ments. Depending on the conditions, different sets of
genes are expressed, leading to different sets of target
genes as start points for the backtracking and different

Edges and arcs of a graph can represent different kinds of relationshipsFigure 2
Edges and arcs of a graph can represent different 
kinds of relationships. Some examples are shown.
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transcription factors along the path. This is consistent
with results from ChIP-on-chip experiments and demon-
strates that the topology of the gene regulatory network is
not independent of the experimental conditions [24].

In a different line of investigations, Lee et al. [31], and
Milo et al. [33], identified re-occurring structural elements
(motifs) in the networks. They examined topological net-
works derived from ChIP-on-chip data for structures con-

sisting of 3, 4 or more edges that occur in the original
network more often than in randomised networks. Net-
work motifs they identified to be significantly more fre-
quent than in randomised networks included feed-
forward and feedback loops. These motifs may partly be
the result of gene duplications during genome evolution
[34].

Table 2: Some properties of the mutant network and the ChIP network at different thresholds

ChIP network
(p < 0.01)

ChIP network
(p < 0.001)

mutant network
(γ = 2.0)

mutant network
(γ = 2.5)

mutant network
(γ = 3.0)

source genes 202 169 250 236 227
target genes 4939 2845 5396 4778 3920
genes 4980 2930 5654 4798 3959
edges 18842 6170 32017 17436 10356
edges where source gene and target gene have the same 
cellular role annotation in YPD http://www.proteome.com

3694 (19.6%) 857 (13.9%) 4096 (12.8%) 2425 (13.9%) 1507 (14.6%)

edges per source gene 93.3 36.5 135.7 73.8 45.6

Log-log plot of the node connectivity in different topological networksFigure 3
Log-log plot of the node connectivity in different topological networks. The genes with the highest degrees are ABF1 
in the ChIP-network and TUP1 in the mutant network, adapted from [2]
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These are just some examples of possible analyses that can
be performed on topology level. However, arguably the
main reason to study the network topology is to prepare
the ground for the next step of building more detailed
models for gene networks. Before any logic or dynamic
network model can be constructed we need to know
which gene products interact and which are mutually
independent. Even if we take the view that in the real-
world network every gene is connected to every other gene
to some degree, not all these connections are equally
strong and a discretization step can be used to keep only
the strong connections in the model. A complete network
where everything is connected to everything may not be a
practical approach to network modelling on a genome
scale.

Arguably the most important question is if we can find
modules, i.e. subnetworks that are relatively isolated from
the rest of the network. If such modules are found, they
can help us to use the reductionist approach later on by
allowing modelling the parts of the network independ-
ently on a more detailed level. For instance, if we can
build a dynamic model of an independent module, then
we can perform simulations independently from the rest

of the network. The existence of modules in biological sys-
tems has often been taken as an axiom [35]. However, a
precise definition for what constitutes a module is elusive,
and therefore this term has been used in various contexts
[36]. In a graph representation it is natural to define a
module as a 'relatively' isolated component, and indeed
such components were found in protein-protein interac-
tion networks. In contrast isolated components have hith-
erto not been found in the wiring diagrams of eukaryotic
transcription regulation networks [26]. Several methods
have been proposed to identify modules as groups of
genes coexpressed under specific conditions [37,38], but
there remain controversial opinions regarding the exist-
ence and nature of modules in gene networks [39,40].
Biologically meaningful pathways are sometimes used to
define modules and to implement a reductionist
approach. However, this easily breaks down in conditions
when the pathways interact.

In general, data sets used for topological models have
important limitations. While hundreds of organisms have
been fully sequenced and many genes are identified rela-
tively reliably, the data sets underlying most topological
models are much less complete. Only a fraction of all pro-

Table 3: Degrees of the source genes that are shared between the mutant network and the ChIP network (data for YPD medium 
only)

target genes
source gene in the mutant network in the ChIP network shared between ChIP and mutant

network
intersection significant according to

hypergeometric test

YAL051W YAF1 1 61 0 no
YOR028C CIN5 1 153 0 no
YHL009C YAP3 2 18 0 no
YKL043W PHD1 3 67 0 no
YLR014C PPR1 7 25 0 no
YBR083W TEC1 20 42 0 no
YMR275C BUL1 27 3 0 no
YPL049C DIG1 32 51 0 no
YLR113W HOG1 145 12 0 no
YOL067C RTG1 177 6 0 no
YER040W GLN3 52 16 1 no
YMR021C MAC1 52 42 2 no
YGR040W KSS1 253 18 2 no
YLR182W SWI6 42 158 3 no
YOR038C HIR2 25 16 2 yes
YMR042W ARG80 5 16 4 yes
YDL056W MBP1 6 134 4 yes
YMR019W STB4 9 33 5 yes
YML007W YAP1 37 72 8 yes
YDR146C SWI5 35 120 9 yes
YHR084W STE12 43 63 14 yes
YEL009C GCN4 51 75 19 yes
YER111C SWI4 547 161 29 yes

sum of edges 1572 (1157) 1362 (924) 102

13 source genes have common target genes in both networks (bold). Last column shows if the intersection between the target sets is larger than 
expected randomly (hypergeometric test, p < 0.05, 4000 genes in total)
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tein-protein interactions in yeast have been tested; most
large-scale experiments show high noise levels; and
whereas the genome sequence is independent of particu-
lar growth conditions and (sometimes) is even conserved
in fossils, data like protein-protein interactions and tran-
scription factor localisations are condition dependent. In
this context it is particularly important to note that some
experimental methods are performed under conditions
considerably different from the natural conditions in the
cell. For example, the yeast-2-hybrid technology was used
to determine protein-protein interactions between
human proteins, yet the yeast cell provides a very different
environment from a human cell [41,42]. This can be a
considerable source for variation and systematic errors.
Some experimental techniques are performed in test
tubes, thus providing the most "unnatural" conditions.
Unfortunately various limitations are unavoidable and we
have to work with incomplete data for a limited set of con-
ditions.

We can conclude that genome scale topological represen-
tations have helped us to make many interesting observa-
tions about the network properties, however the main

question of finding well defined modules of such net-
works on topology level is still open.

Control logics models
Once we know the network topology, the next step is to
study the rules of interaction between the different ele-
ments in the network. For instance, if a promoter consists
of only one binding site for a transcription factor, we may
want to know whether it is an activator or a repressor. If
several transcription factors bind to a promoter, we need
to know what each factor does, but also how these factors
interact (Figure 7). Biological studies demonstrate that
some promoters show combinatorial behaviour that can
be approximated by Boolean functions (AND, OR, NOT
and combinations of these), but in other cases the interac-
tion is more complicated [43]. Linear functions, Boolean
functions, decision trees, and Bayesian probability distri-
butions have all been used to describe the network logic.
We can distinguish between discrete functions and con-
tinuous functions. Discrete functions are based on the
assumption that a gene can be in a finite number of states.
In the simplest case we use only two different states to
describe the activity of genes (e.g., expressed and not
expressed). We can thus use Boolean functions to describe
the interactions between transcription factors, e.g. "gene j
is active, if transcription factor A AND B are bound to the
promoter". It has to be stressed that such 'states' are only
approximations of reality, that in the real world the inter-
actions are not so well defined and are often fuzzy.

Continuous functions use continuous values (real num-
bers) to represent the gene activity. Weights wij represent
the interaction between genes i and j, which can be posi-
tive or negative. Thus the activity gi of gene i can be calcu-
lated as the weighted sum of the activities of all n genes:

gi = wi1 g1 + ... + win gn

This approach assumes that the influence of one gene on
another gene is linear. Note that the network topology
will determine which of the weights wij are equal to 0 (i.e.,
if there is no arc from gene i to gene j in the network topol-
ogy, then wij = 0). Like Boolean functions, linear functions
are only approximations. For instance, it is not possible by
linear functions to model a situation where the same tran-
scription factor can play a role of an activator or repressor
for the same gene, depending on the presence or absence
of other transcription factors.

Although few promoters have been studied in great detail,
there are excellent examples, such as the description of the
promoter action logics of sea urchin developmental gene
Endo16 [44]. The Endo16 promoter consists of almost 30
regulatory elements stretched over a region of 2.3 kb.
Based on experimental data collected using modified pro-

Venn diagrams of the intersection between the mutant and the ChIP networkFigure 4
Venn diagrams of the intersection between the 
mutant and the ChIP network. The Venn diagram on the 
left hand side shows the intersection of the source genes 
between the mutant network and the ChIP network; the 
right hand side shows the intersections of the target genes 
between both networks. The connections between the two 
Venn diagrams indicate the corresponding number of edges. 
The networks share 23 source genes and 102 edges, but only 
13 of the shared genes contribute to 102 shared edges, 
which connect to 93 distinct target genes. The 23 shared 
source genes are connected by 1362 edges to 631 target 
genes in the ChIP network and by 1572 edges to 937 target 
genes in the mutant network (see also Table 3).
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moter constructs Davidson and co-workers constructed a
model expressed as an algorithm combining Boolean and
linear functions. This algorithm takes as an input the
occupancy information from 12 binding sites and outputs
a value, that 'can be thought of as the factor by which, at
any point of time, the endogenous transcription activity
(...) is multiplied as a result of the interactions mediated
by the cis-regulatory control system' [44]. Predictions of
promoter manipulations based on this model have largely
been confirmed in subsequent experiments. Extending
their earlier work the group of Davidson compiled a regu-
latory network containing over 40 genes by the construc-
tion of a model that integrates extensive experimental
evidence on early development of sea urchin embryos
[45].

Recently Klamt et al. published an example for control
logic networks [46], based on hypergraphs, which are an
extension to the graphs described above. Several hyper-
edges pointing to the same node represent OR relation-
ships, but edges are allowed to combine to represent AND
relationships. Weights on the edges distinguish positive
and negative relationships. The authors provide a set of

methods to analyse these networks, just to list a few exam-
ples: computation of all positive and negative signalling
paths, computation of all positive and negative feedback
loops and computation of minimal cut sets. These mini-
mal cut sets report the smallest number of interventions
necessary to force the network into a particular behaviour,
for example, a minimal number of deletions necessary to
block the activation of a particular downstream protein in
a signalling cascade. These methods are implemented in
the software tool CellNetAnalyzer and the example pre-
sented, a model of a signalling network for T-cell activa-
tion shows that these analyses are non-trivial for
signalling networks of a typical size.

Soinov et al. used a supervised learning approach to build
decision-tree-related classifiers. A decision tree is a predic-
tive model (Figure 8). Soinov et al. built decision trees
which allow us to predict the gene expression activity of a
particular gene (leaf node) based on the expression data
of other genes (interior nodes) [47]. Although the gene
predictions are binary in this approach (the gene is pre-
dicted be "active" or "inactive"), this system utilizes con-
tinuous expression values, such as microarray data.

Bayesian networks provide a probabilistic framework for
modelling gene regulatory networks [48-50]. Their graph-
ical representation is a directed acyclic graph, where each
node represents a variable and the edges represent
dependencies. For a more detailed description of the
application of Bayesian networks in gene expression anal-
ysis see the reviews by Pe'er [51] and Friedman [52]. Segal
et al. applied a learning procedure based on probabilistic
graphical models to networks consisting of groups of
coregulated genes [53].

There are situations where neither Boolean rules nor lin-
ear functions are powerful enough to express the control
logics: transcription factors might bind competitively, if
one factor is bound, the other one is excluded, as is the
case for example in the phage λ switch between lysis and
lysogeny [54]. In some cases, transcription factors have to
form homodimers or heterodimers to be fully functional.
The transcription factors might have to bind sequentially
or might act synergistically. In these situations it might be
necessary to use more complex functions (here this would
be solved by Boolean circuits with memory or delay). It
remains an open question what is the minimum reper-
toire of functions to describe regulatory logics.

Dynamic models
The knowledge of the parts list of a network, its topology
and the control logics are necessary requirements in order
to expand the model to capture dynamic changes during
time. Compared to the approaches above, the dynamic
models can be described as 'classical' approaches to gene

Illustration of the target set comparisonFigure 5
Illustration of the target set comparison. A In the ChIP 
network transcription factors are connected to their target 
genes (regulation set); in the mutant network the deleted 
genes are linked to all genes with differential expression in 
this particular mutant background (effectual set). B Some 
transcription factors are present in both networks (ChIP and 
mutant network); we can therefore compare the genomic 
localisation (regulation set) with the expression changes in 
the mutant cell (effectual set). Reproduced from [2]
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network modelling, as many of them have been devel-
oped and studied long before the current genome era. Typ-
ically, they are relatively small, involving only a few genes.
They aim at describing and often simulating the dynamic
changes in the state of the system and predicting the net-
work's response to various environmental changes and
stimuli.

Various dynamic models have been proposed. Greller and
Somogyi subclassified them [55] as follows: "Dichoto-
mies for framing our thinking on how to best represent a
particular biological network problem include the follow-
ing distinguishing attributes: quantitative versus qualita-
tive measurements; logical versus ordinal variables (e.g.
Boolean versus abundances); deterministic versus proba-
bilistic state transitions (e.g. differential equations versus
hidden Markov); deterministic versus statistical overall
system description (e.g. vector field versus Bayesian belief
network probability distributions); continuous versus dis-

crete state (e.g. continuous intensities or concentrations
versus low, medium and high); nonlinear versus linear
elementary interactions and state update rules (e.g. multi-
plicatives, sigmoids or non-monitonics versus linear
ramps); high-dimensional versus low-dimensional (e.g.
>> 100s of variables versus << 100 variables); stochasticity
present and profound versus absent or present as nuisance
noise (e.g. probabilistic state transitions versus small
amplitude errors); measurement error substantially cor-
rupting and obfuscating versus negligible distortion." In
the following sections we describe several approaches fol-
lowing the discrete to continuous model axis. The discrete
model approaches we consider include Boolean network
based models [56-58] and Petri nets [59-62], the dynamic
systems are based on difference or differential equations
[63-65]. We will then discuss hybrid models, which com-
bine discrete and continuous elements [66-68].

Direct and indirect effectsFigure 6
Direct and indirect effects. Red arcs are from the mutant network, green arcs from the ChIP network. A In the mutant 
where transcription factor A is deleted (disrupted) the expression of gene B is significantly different from its expression in the 
wild type. The transcription factor A does not bind to the putative promoter region of gene B (no green arc), but to the puta-
tive promoter region of transcription factor C, which in turn is found in the putative promoter region of gene B. This indirect 
path from A to B in the ChIP network might therefore explain the direct path in the mutant network. B All direct effects in the 
mutant network that could be explained by indirect paths via one additional transcription factor in the ChIP network.
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Boolean models
The simplest dynamic models – synchronous Boolean net-
work models – were used as a model for gene regulatory
networks already in the 1960's by Stuart Kauffman as [69].
Boolean networks are based on the assumption that
binary on/off switches functioning in discrete time steps
can describe important aspects of gene regulation. In syn-
chronous Boolean network models all genes switch states
simultaneously (Figure 9). We can introduce the concept
of the state of the network defined as an n-tuple of 0s and
1s describing which genes in the network are or are not
expressed at the particular moment (Figure 9). As time
progresses, the network navigates through the 'state
space', switching from one state to another, as shown in
Figure 9D. For a network of n genes, in total there are 2n

possible different states, for instance, for a three gene net-
work the possible states are (0,0,0), (0,0,1), ..., (1,1,1). We
can follow the succession of states with time and study
which states are reached. Some states might never be
reached. It is possible to look for attractors: these are states
or series of states that once reached will not be left any-
more. The small example network in Figure 9 has two
attractors: one attractor is a single state (0,0,1), and the
second attractor consists of two alternating states (1,0,1)
and (0,1,0).

Kauffman introduced the notion of canalizing function – a
Boolean function that has at least one input variable
(canalizing variable) and one value (0 or 1) for that input
(canalizing value), which determines the value of the out-
put of the function regardless of other variables (i.e., if the
canalizing variable has the canalizing value, then the out-
put of the function do not depend on other variables, but
if the canalizing variable does not have the canalizing
value, then the output of the function is determined by
the values of other variables) [70]. He hypothesized that
genes are predominantly controlled by such functions
(whether this is indeed true is still unknown). Kauffman
used randomly generated networks to study their general
features [69]. He found that under certain assumptions
about the network topology (a limited number of incom-
ing connections at each node) and logics (promoters are
predominantly controlled by canalizing functions) there
are only a small number of states in which the network
will stay for most of the time. These states are called attrac-
tors; any other state, if possible at all, will lead to an attrac-
tor state in a relatively small number of steps. Moreover,
the system either reaches a steady state or fluctuates
between the attractor states in a regular fashion. Kauffman
hypothesized that attractors correspond to different cell
types of an organism. The number of cell types predicted
by this model corresponds well with our current knowl-
edge [70].

This approach has been generalized in a number of ways.
Randomly generated networks are used to study the
dynamics of complex systems [71]. Stochastic extensions
to deterministic Boolean networks were proposed – so-
called noisy networks by Akutsu et al. [72] and Probabil-
istic Boolean Networks by Shmulevich et al. [73].

Thomas and Thieffry describe a generalized model for the
qualitative description of gene regulatory networks [74].
They introduce a notion of gene state and image, the last
effectively representing the substance produced by the
respective gene. There is a time delay between the change
of the gene state and the change of the image state. By
introducing several levels of gene activity and thresholds
for switching the gene states they go beyond binary mod-
els, but they do not make continuous changes possible.

Petri nets
Petri nets are an extension to graph models and have been
used successfully in many areas for example to simulate
metabolic networks. For a brief introduction into Petri
nets see Pinney et al. [59] or the more detailed reviews by
Moore et al. and Hardy and Robillard [60,61]. Petri nets
allow simple quantitative representation of dynamic proc-
esses like mass flow in a network. Petri nets were devel-
oped in the 1960's by Carl Adam Petri and have since
been extended. In general they are directed graphs consist-
ing of arcs and two different kinds of nodes, the place
nodes and the transition nodes (Figure 10). The arcs only
connect place nodes to transition nodes and vice versa.
The dynamic aspect is introduced by so-called tokens. Each
place node can contain tokens. Each arc has a 'weight' that
determines how many tokens are needed for a transition
along this arc. Intuitively, you can imagine that the tokens
travel along the arcs if there are a sufficient number of
them at the source node (as determined by the weighted
arcs) and the transition nodes determine the exchange
ratio along the way. In the simplest case, a transition node
fires (= a transition takes place) always if sufficient tokens
are present in the input place nodes.

In metabolic networks the place nodes represent metabo-
lites and the transition nodes represent reactions. Metab-
olite concentrations correspond to the number of tokens
in the particular place nodes and the stoichiometry is
described by the weights of the arcs. Subsequent analyses
of Petri net models look for place nodes running out of
tokens or accumulating tokens and for subnetworks that
are inactive. Interesting are invariants, such as transition
invariants (T-invariants), where the transitions reproduce
a given state. In metabolic networks T-invariants represent
reactions reproducing the given concentrations of metab-
olites, as for example in steady state situations. For exam-
ples of the application of Petri Nets in the analysis of
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Decision treesFigure 8
Decision trees. A decision tree is a special type of tree where the root and each interior node correspond to a variable; an 
arc to a child represents a possible value of that variable. A leaf represents the predicted value of target variable given the val-
ues of the variables represented by the path from the root. Following a route from the root node to a leaf node at each inte-
rior node we have to decide, which path to follow. Effectively each possible path encodes a decision rule. A Example for a 
decision tree. By following from the root node (top) to a leaf node (bottom) one has to make a decision at every interior node. 
B Corresponding set of decision rules.
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metabolic networks see articles by Koch et al., Kuffner et
al., Schuster et al. or Steggles et al. [62,75-77].

Petri nets are particularly suitable for modelling metabolic
reactions, because the similarities are intuitive and there is
no need for detailed information about the reactions
rates. This is an advantage, because often these rates are
not known and hard, or at least costly to obtain. The lack
of information about reaction rates is one major short-
coming for the application of differential models, which
we will discuss in the next section. However, sometimes

the reaction rates will be crucial to the function of the
whole metabolic pathway and therefore need to be
included in the pathway model (there are extensions to
Petri Nets which address this, see the section on hybrid
models below).

Difference and differential equation models
Boolean networks and Petri nets can reveal important net-
work properties, but are too crude to capture some impor-
tant aspects of network dynamics. Difference and
differential equations allow more detailed descriptions of
network dynamics, by explicitly modelling the concentra-
tion changes of molecules over time [63,64,78-80].

The basic difference equation model is of the form

g1(t+Δt) - g1(t) = (w11 g1(t) + ... + w1n gn(t)) Δt

...

gn(t+Δt) - gn(t) = (wn1 g1(t) + ... + wnn gn(t)) Δt

where gi(t + Δt) is the expression level of gene i at time t +
Δt, and wij the weight indicating how much the level of
gene i is influenced by gene j (i,j = 1...n). Note that this
model assumes a linear logic control model – the expres-
sion levels of genes at a time t+Δt, depends linearly on the
expression levels of all genes at a time t. For each gene, one
can add extra terms indicating the influence of additional
substances [64].

Example for network logicsFigure 7
Example for network logics. Genes A, B and C control 
the activity of gene D; D is active if A and B are bound, but 
not C; right: shows the FSLM representation for such a pro-
moter. Reproduced from [2].
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Differential equation models are similar to difference
equation models, but follow concentration changes con-
tinuously, modelling the time difference between two
time steps in infinitely small time increases, i.e. Δt is
approaching 0.

Dynamic networks models have been reviewed inten-
sively [81-84]. One of the largest transcription network
models using differential equations we are aware of is a
model for segment polarity genes and pattern formation
in the early development of Drosophila by von Dassow et
al. [85]. Their system included 48 parameters, such as the
half-lives of messenger RNAs and proteins, binding ranges
and cooperativity coefficients. The initial model described
all known interactions, but it also revealed that the addi-
tion of at least two new hypothetical interactions were
needed to ensure that the behaviour of the model was
consistent with the observations.

Difference and differential models depend on numerical
parameters, which are often difficult to measure experi-
mentally. An important question for these models is sta-
bility – does the behaviour of the system depend on the
exact values of these parameters and initial substance con-
centrations, or is it similar for different variations. It seems
unlikely that an unstable system represents a biologically
realistic model, while on the other hand, if the system is
stable, the exact values of some parameters may not be
essential. For instance, the Drosophila developmental
model [85] is stable – it tolerates tenfold or more varia-
tion in the values of most individual parameters.

Many software packages have been developed for dynam-
ical simulation of biological networks, but the exchange
of models and data between these software packages was
often not easy. The systems biology markup language
SBML was developed to address this problem. SBML is an
XML-based format that allows describing models soft-
ware-independently [86]. (XML eXtensible Markup Lan-
guage allows to define special-purpose markup languages,
capable of describing many different kinds of data.) An
example for a markup language is HTML. Nowadays
SBML model descriptions can be used on many software
platforms, enabling data exchange and cross-validation of
models. This has also enabled the establishment of model
databases like BioModels, a curated database of published
quantitative kinetic models [86]. This is a central database
where biological models published in scientific journals
can be deposited.

Hybrid models
In the real world systems both continuous aspects and dis-
crete aspects are present. In general, concentrations are
expressed as continuous values, whereas the binding of a
transcription factor to DNA is expressed as a discrete event

(bound or unbound). However, the boundaries between
the discrete and continuous aspects depend on the level of
detail that our model is designed for. For instance, on sin-
gle cell level the concentrations may have to be expressed
by molecule counts and become discrete, whereas if we
use thermodynamic equilibrium to model the protein-
DNA binding, the variable describing the binding state
becomes continuous.

Hybrid models have been developed in an attempt to
describe both, discrete and continuous aspects in one
model, and such models have therefore been proposed,
for instance in [67,68].

There are extensions of the Petri net model, that allow us
to include knowledge about the dynamics of reactions: for
example to include stochastic time delays for the transi-
tions, first applied to molecular biology by Goss and Pec-
coud [87]. In these networks the firing of transition nodes
depends not only on the number of tokens in the input
place nodes, but also on a stochastic component. In their
study of circadian rhythms Matsuno et al. used another
type of extension to Petri nets to simulate gene regulatory
networks [88]: in addition to standard Petri nets Hybrid
Functional Petri Nets (HFPN) contain continuous place
nodes and continuous transitions. Continuous place
nodes can hold a real numbers and continuous transition
nodes are firing at a constant rate. In metabolic networks
this rate corresponds to reaction rates. However, this
means we loose one major advantage of Petri nets over
difference and differential models: we need information
on reaction rates. If we have information only for some
reactions, HFPNs provide a compromise by allowing the
implementation of a mix of continuous and discrete place
nodes and transitions.

Another example for hybrid models is the phage λ model
by McAdams and Shapiro [89], where elements similar to
ones used to describe electronic circuits have been
exploited.

Finite State Linear Model (FSLM)
As an example we will describe the finite state linear model
(FSLM), more detailed descriptions of FSLM can be found
in [2,90,91]. It combines the advantages of Boolean net-
works such as simplicity and low computational cost,
with the advantages of continuous models, such as con-
tinuous representation of concentrations and time. The
activity of genes is described by discrete states (e.g., gene
is 'on' or 'off'), but the gene product concentrations are
expressed as real numbers. Time is continuous in FSLM
and the state of the network determines directly the con-
centration change rates, while the state is in turn affected
by the concentrations themselves.
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In FSLM there is only one class of molecules, represented
by substances. There are three types of network elements:
binding sites, control functions and substance generators (Fig-
ure 11A). The binding sites in the FLSM are comparable to
DNA binding sites for transcription factors in the pro-
moter regions of genes. A combination of binding site(s),
control function(s) and a substance generator in the FSLM
corresponds to a biological gene (Figure 11A). A gene net-
work consists of one or more such genes, which influence
each other via the substances they produce (Figure 12).

The binary FSLM allows only two possible states for the
binding sites (bound or unbound) and substance generators
(on or off). A generalisation of the FSLM model and a more
mathematically thorough definition can be found in [91].
For each substance there is a corresponding substance gener-
ator. The substances can bind to binding sites, but each
binding site can be bound by one substance only. The
binding of a substance to a binding site bj depends on the
association constant aj and the dissociation constant dj of the
binding site (0 < dj <aj). The binding site is bound if the
concentration of the binding substance exceeds the asso-
ciation constant. If the substance concentration falls
below the dissociation constant then the binding site is
released and switches to the unbound state. The biochemi-
cal equivalents of the association and dissociation con-
stants in FSLM are affinity constants. The difference
between the association constant aj and the corresponding
dissociation constant dj leads to a hysteresis characteristics

(Figure 11B) for the switching between the states of a
binding site (see for example [65]). The concentration
threshold for the switch between the states of the binding
site depends on the state of the binding site itself. Using
discrete states to represent the binding sites means we
approximate the binding equilibrium with a simpler step
function.

The states of a set of binding sites comprise the binary
input vector to a Boolean control function F. Depending on
the input state vector the control function computes an
output state (on or off). A substance generator S changes the
concentration of a substance in time in a linear fashion.
The concentration can either increase with rate r+ or
decrease with rate r- (r- < 0 < r+), corresponding to sub-
stance production and degradation, respectively. The out-
put state of a control function determines the activity of a
substance generator, i.e. whether the concentration of a
particular substance is increasing or decreasing. Note that
the linear increase and decrease rates that are assumed in
the FSLM are only approximations to the reality.

Let us illustrate the dynamics of the FSLM by modelling a
negative feedback loop (Figure 12). To begin with the sub-
stance concentration of the repressor is low, the binding
site is unbound, the substance generator is active and
therefore the substance is produced with rate r+. Its con-
centration increases until it reaches the association con-
stant of the binding site. The binding site switches to the
bound state, which in turn leads to the inactivation of the
substance generator, and the substance concentration
decreases with rate r- until it reaches the dissociation con-
stant of the binding site. Consequently, the binding site
switches to the unbound state, the substance is generated
again, its concentration increases and the process repeats
itself. Figure 13 shows the behaviour of a gene network
consisting of two genes, demonstrating that a very simple
network of just two genes can exhibit a non-trivial behav-
iour.

FSLM can be used to build complex models for instance to
simulate the life cycle of phage λ (Figure 14). Phage λ is a
virus that infects Escherichia coli cells [92]; it either inte-
grates into the host genome and stays dormant (lys-
ogenic) or causes production of new phage particles and
lysis of the host cell, to allow spreading the infection. The
decision for one or the other alternative (lysis vs. lysog-
eny) is made by the so-called lambda switch, which is
based on competitive binding of two transcription factors
to overlapping regions in the genome of phage λ. If the
repressor is bound, the phage stays dormant, if the repres-
sor is degraded and the activator can bind, new virus par-
ticles are being made. The FSLM model of phage λ allows
two different kinds of behaviours, which correspond to
lytic or lysogenic behaviour.

Example for a small Boolean network consisting of 3 genes X, Y, ZFigure 9
Example for a small Boolean network consisting of 3 
genes X, Y, Z. There are different ways for representing the 
network: A as a graph, B Boolean rules for state transitions, 
C a complete table of all possible states before and after 
transition, or D as a graph representing the state transitions. 
Reproduced from [2].
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In our example models the biological systems are rela-
tively simple, but for larger networks we often lack
detailed information about the biology.

Stochastic networks
All networks mentioned so far are deterministic – they
assume that the next state of the system is determined by
the current state and the external inputs. However, in real
world systems stochastic effects may play an important
role. For instance, for some genes in yeast the number of
mRNA molecules is close to one copy per cell [93]. This
means that it is likely that there is a considerable intrinsic
noise element present – some cells apparently have more
mRNA molecules of the given species present than others.
Thus modelling a cell by using continuous concentrations
effectively means modelling an ensemble of cells by mean
values of stochastic variables. It is not obvious to what
extent this is possible. It has been demonstrated that the
stochastic effects are important for the phage λ switch
decision between lysis and lysogeny [94]. Lately experi-

mental studies have tried to measure the level of intrinsic
noise in eukaryotic cells (e.g., [95,96]). Simulating a sto-
chastic model is computationally more expensive,
because the simulations have to be run several times to
provide a good impression of the system behaviour. But
stochastic models are not always necessary; it depends on
the system that is to be modelled. If the number of mole-
cules involved is small and if important processes depend
on random effects, stochastic models might be the best
choice.

Reverse engineering and synthetic networks
"With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk" – John von Neumann

Reverse engineering of gene networks
Reverse engineering refers to an approach where one starts
from data and tries to design a model that fits the data
(semi-) automatically within the given model class, with-
out additional prior hypothesis about the biological sys-

A metabolic reaction (left) and its representation as a Petri net (right)Figure 10
A metabolic reaction (left) and its representation as a Petri net (right). Aldolase splits one molecule of Fructose-1,6-
bisphosphate into one molecule Dihydroxyacetonephosphate and one molecule Glyceraldehyde-3-phosphate. The Triosephos-
phateisomerase then transforms one molecule Dihydroxyacetonephosphate into one molecule Glyceraldehyde-3-phosphate 
(the reversibility of the reaction has been omitted here for the sake of clarity). In the Petri net representation place nodes (cir-
cles) are denoted by p, transition nodes (boxes) by t and tokens numbers by m. The place node p1 represents Fructose-1,6-
bisphosphate and m1 the number of tokens or number of Fructose-1,6-bisphosphate molecules present. The transition node t1 
represents the enzyme Aldolase. The weights on the edges reflect the stoichiometry of the reactions. p2 Dihydroxyace-
tonephosphate, m2 number of Dihydroxyacetonephosphate molecules, t2 Triosephosphateisomerase, p3 Glyceraldehyde-3-
phosphate, m3 number of Glyceraldehyde-3-phosphate molecules.
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tem. The model derived from the data is judged by the
results of simulations compared to new experimental
data. For example, one could use a gene expression data
set to construct a particular gene network model that is
consistent with the data. Inconsistencies between simu-
lated data generated using this model and new data, that
has not been used to construct the model, indicate short-
comings of the model. These inconsistencies can be used
to choose between alternative models, or to improve the
model. However, reverse engineering is possible only (1)
if we have chosen an appropriate model class (in the sense
that the desired properties of the real world network can
be described in it), and (2) if we have enough quantitative
data describing the behaviour of the system. Of course,
even if the answers to these two questions are positive,
reverse engineering is still a difficult problem, and few
efficient algorithms are known. The methods chosen for
reverse engineering depend crucially on the kind of mod-
elling technique used. Quantitative models are normally
more demanding than qualitative models. Dynamic mod-
els contain many parameters, and detailed experimental
data are required to work out the parameters.

Miyano et al. have proposed algorithms to infer Boolean
networks [67,72] and Friedman et al. developed methods
to extract probabilistic graphical models, such as Bayesian
networks from experimental data [49,52]. Tegner et al.
proposed an approach for the reverse engineering of
dynamic gene networks based on integrating genetic per-
turbations [97]. They identified " [...] the network topol-
ogy by analysing the steady-state changes in gene
expression resulting from the systematic perturbation of a
particular node in the network." [97]. However, they only
apply their approach to simulated data and to a compara-
tively small biological system consisting of only 5 genes.

Synthetic networks
A powerful approach to test our understanding of gene
regulatory networks is to build new networks from scratch
in an approach called synthetic biology. Predictions of small
models have been successfully tested experimentally
using specifically engineered control circuits, such as feed
forward loops [98] and feedback loops [99-103]. In a
sense this is reverse engineering of a real world network.

The building blocks of the finite state linear modelFigure 11
The building blocks of the finite state linear model. A Binding sites are represented by triangles, control functions by 
boxes and substance generators by diamonds. Dotted lines represent cases where the discrete output of one element is the 
input for another element. B Switching behaviour of the binding sites. The curve (left) is typical for processes with hysteresis 
characteristics of a system that does not instantly follow the forces applied to it, but reacts slowly, or does not return com-
pletely to their original state: that is, systems whose states depend on their immediate history. The threshold for switching the 
states of the binding sites in FSLM is state dependent and results in a similar curve (right). [c] concentration of substance bind-
ing to binding site j; assoj, dissoj association and dissociation constants for binding site j; u binding site not occupied, o binding site 
occupied. Reproduced from [2].
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For a more detailed description see the reviews by Kaern
et al. and Ball [104,105].

Summary and open questions
"If you torture the data long enough, Nature will confess." –
Ronald Coase

At the basis of any modelling, including network model-
ling, there is a realisation and acceptance that a model
describes only some properties of the 'real world' system,
and ignores others. Thus it emphasizes particular aspects
of reality, leaving out details that are not relevant for the
purpose of the study.

How far are we from being able to build realistic cell mod-
els? The availability of large-scale data sets such as micro-
array gene expression and genomic localisation data
triggered the search for suitable approaches to model
complex biological systems. As the result of genome
projects we are now able to compile parts lists on genome
scale, though we do not know how many important cate-
gories in these parts lists are missing. Models describing
the network topology are approaching the whole genome

scale. High-throughput experiments, most notably micro-
arrays, provide us with temporal information about tran-
scriptional processes in time series experiments. These
have been used to study control logics as well as some
dynamics aspects of transcription regulation in processes
such as the cell cycle [8,106,107], stress response
[108,109], or galactose utilization [110]. Models have
been built to explore the fundamentals for example of the
cell cycle for yeast [65] and improvements in the under-
standing of genome wide dynamics of cell cycle have been
made [111]. Nevertheless, high-throughput technologies
have yet to have a direct impact on quantitative real time
simulations of gene networks.

The function of about one third of all genes is still
unknown for the yeast Saccharomyces cerevisiae despite it
being one of the best-studied organisms. And even for
many of the better-known genes and core processes that
have been studied for decades, like the cell cycle, there is
still not enough data available to exactly know all changes
in concentration and activation patterns. Currently it
seems not feasible to simulate even relatively simple cells
like yeast. Mechanisms like RNA interference, regulated

Example for the dynamics of a simple FSLM networkFigure 12
Example for the dynamics of a simple FSLM network. A In this negative feedback loop the substance generator pro-
duces a substance, which acts as a repressor of its own control function. B Environment change graph recording the changes in 
repressor concentration during time. From the initial concentration the repressor accumulates with rate r+ until the associa-
tion constant of the binding site brep is reached at time t1. Then the substance generator is switched off and the repressor 
degrades with rate r- until the dissociation constant is reached at time t2. The substance generator then produces the repressor 
until the association constant is reached again (means Boolean „not“). Reproduced from [2].
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degradation of mRNAs and proteins, chemical modifica-
tions of key molecules and others might play a larger role
than anticipated in current models, other processes might
still be unknown. It is obvious that the separation into
gene regulatory networks, metabolic networks and pro-
tein interaction networks is possible only up to a certain
degree. To what extent can the transcription regulation
networks be decoupled from other networks, such as sig-
nal transduction networks? We need to integrate many
types of information if we want to build realistic dynamic
models, however, for current modelling approaches we
have to limit the complexity of the systems we are dealing
with.

One possibility to reduce the complexity of biological sys-
tems depends on the modularity of the real world net-
works and their robustness (stability against changes of
various network parameters and initial conditions). If the
networks are modular and robust, it might be possible to
build genome scale networks as sets of smaller modules.
If we can find modules – units behaving independently of
each other – it would be possible to build the complete
model as a set of modules.

The belief that real world biological networks 'must be'
robust and 'must be' modular is quite wide spread. How-
ever precise definitions of biological robustness and mod-
ularity and, moreover, the proofs of their presence remain
elusive. The principles of modularity and robustness used
in engineering are sometimes given as a reason that the
same must be true in biological systems, but there are
many examples when the 'designs' in nature, which are
obtained by natural selection are different from the
designs one would use in engineering. However, there are
other arguments why biological networks could be mod-
ular, such as reuse of the components after genome dupli-
cations, but they are no proofs. There are indications that,
on the dynamic level, network modules exist. For
instance, cell growth can be decoupled from cell cycle in
yeast (e.g., [112]), indicating that to some extent inde-
pendent modules control these two processes. Similarly,
the Drosophila developmental network indicates that the
exact values of the model parameters may not be crucial
in large-scale systems behaviour [85]. But to what extent
can specific processes be decoupled from each other?

Another possibility to reduce complexity in network mod-
els depends on the importance of the exact values of
parameters and substance concentrations. How much do

A FSLM network consisting of two genes and four binding sitesFigure 13
A FSLM network consisting of two genes and four binding sites. Left: The control functions of both genes have two 
inputs each. One input is from a binding site for its own substance, thus each gene is autoregulated by a negative feedback loop. 
Gene 1 has an additional negative feedback on gene 2, whilst gene 2 has an additional positive feedback on gene 1. Right: Result 
of the simulation of this network in FSLM. a1 association constantof binding site 1, d1 is the corresponding dissociation con-
stant; a2, d2, a3, d3, a4, d4 correspondingly; ¬ Boolean „not“, &Boolean „and“. Reproduced from [2].
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Description of phage λ using the elements of FSLMFigure 14
Description of phage λ using the elements of FSLM. In the FSLM model for phage λ the substance generators high-
lighted in grey produce substances, which bind to binding sites on the left (the connections have been omitted to improve the 
readability of the figure). The promoters PL1, PL2, PR1, and PR2 are used to model the behaviour of the λ terminator sites tL1, tL2, 
tR1, and tR2. The substance generators connected to them are only active, if N is bound to the respective binding sites. The sub-
stance "Struc" represents the structural proteins of the phage particles. The shaded grey boxes indicate the number of different 
states that the corresponding control functions can have. A simulation of phage λ using this model leads to lysogenic behaviour 
or lytic behaviour. In the lysogenic mode the initially active genes are inactivated, and the substance concentrations decrease 
rapidly, only CI is produced. The fluctuations of the CI concentration are due to the negative feedback loop involving the bind-
ing site OR3. In the lytic mode, CI and CII are not produced, but the other substance generators are active. The concentrations 
of Int, N, and Q increase infinitely because of the lack of a negative feedback control. The inset describes the effect of the 
stress response of the host cell using elements not yet implemented in the FSLM simulator. For a more detailed description of 
the model see [2, 91]. Reproduced from [2].
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the exact quantitative values, such as substance concentra-
tions, matter in determining the more general patterns of
system behaviour, such as cell differentiation? If we are
not interested in predicting the exact concentrations of
different substances, but only in the patterns of the sys-
tems behaviour such as steady states, we can often use
simplified Boolean-type networks instead of differential
equations [113] and hybrid models might offer "good
enough" solutions.

The question "Is real time simulation on genome scale
possible at all?" is still open. Obtaining high quality sys-
tematic quantitative data characterizing systems parame-
ters such as mRNA, protein and metabolite
concentrations, interactions and spatial and temporal
localization of different molecules will be important. Nev-
ertheless, the data will not provide new insights automat-
ically. We believe that hypotheses expressed as rigorously
defined models, the properties of which can be studied
independently and tested on experimental data, will play
an important role in understanding the living systems on
genome-wide level. In any case, finding the right language
for describing the models is a prerequisite for success.
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