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Abstract: We demonstrate in this work that expanded graphite (EG) can lead to a very large enhance-
ment in thermal conductivity of polyetherimide−graphene and epoxy−graphene nanocomposites
prepared via solvent casting technique. A k value of 6.6 W·m−1·K−1 is achieved for 10 wt% composi-
tion sample, representing an enhancement of ~2770% over pristine polyetherimide (k~0.23 W·m−1·K−1).
This extraordinary enhancement in thermal conductivity is shown to be due to a network of con-
tinuous graphene sheets over long−length scales, resulting in low thermal contact resistance at
bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting
offers the advantage of preserving the porous structure of expanded graphite in the composite, result-
ing in the above highly thermally conductive interpenetrating network of graphene and polymer.
Solvent casting also does not break down the expanded graphite particles due to minimal forces
involved, allowing for efficient heat transfer over long−length scales, further enhancing overall
composite thermal conductivity. Comparisons with a recently introduced effective medium model
show a very high value of predicted particle–particle interfacial conductance, providing evidence
for efficient interfacial thermal transport in expanded graphite composites. Field emission environ-
mental scanning electron microscopy (FE−ESEM) is used to provide a detailed understanding of the
interpenetrating graphene−polymer structure in the expanded graphite composite. These results
open up novel avenues for achieving high thermal conductivity polymer composites.

Keywords: thermal conductivity; expanded graphite; porous; effective medium model

1. Introduction

Increased thermal diss0ipation in modern electronic devices has led to a demand
for thermally conductive materials with superior thermal conductivity (k) [1,2]. The light
weight, high corrosion resistance, and excellent processability of polymeric materials make
them attractive for thermal management applications [3,4]. However, poor thermal con-
ductivity (0.5 W·m−1·K−1) [5,6] of polymers limits their application in the efficient heat
removal process. The addition of high thermal conductivity fillers such as graphene or
carbon nanotubes has been shown to significantly enhance the thermal conductivity of
polymer graphene nanocomposites [7–13]. Different effects have been investigated to
enhance the effectiveness of graphene in enhancing k, such as alignment and percolation
effects. Alignment of carbon nanomaterials [14–20] takes advantage of their thermal con-
ductivity in one direction (in−plane for graphene nanoplatelets and along the axis for
carbon nanotubes). However, the enhancement achieved in k through alignment effects
is anisotropic, potentially limiting the application of such composites. One of the most
promising approaches has been the percolative effect, where graphene–graphene contact
is used to bypass the polymer, leading to significantly higher thermal conductivity en-
hancement [8,13,21]. More recently, expanded graphite has been shown to yield very high
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composite k values [22–27]. In this paper, we explore the use of expanded graphite (EG)
for enhancing the thermal conductivity of polyetherimide (PEID) due to the unique appli-
cations of this polymer in electrical systems [28–30], which can benefit from efficient heat
dissipation. In particular, we show that expanded graphite/polymer composites prepared
through solvent casting can lead to more efficient heat transfer due to an almost continuous
network of graphitic sheets over long−length scales, which overcomes the problem of
low interfacial thermal conductance at graphene–graphene contact in typical percolation
environments. We have measured a composite thermal conductivity of 6.6 W·m−1·K−1

at just 10 wt% filler concentration. This value represents the highest k value measured in
a polymer composite at this low weight fraction of filler. Presented results provide new
avenues for achieving efficient thermal management in a wide range of applications.

Intercalation of acid molecules and oxidizing agents into graphite followed by rapid
heating (900 ◦C) causes intercalated agents to gasify, producing enough pressure to push
the adjacent graphite layers apart, resulting in expanded graphite (Figure 1a). Figure 1b
shows the graphite intercalated compounds (GICs), while Figure 1c shows expanded
graphite with a worm−like structure. EG achieved through such expansion has a highly
porous (Figure 1d,e), lightweight structure with a very low density (0.002–0.02 g·cm−3) and
exhibits high mechanical strength (10 MPa), thermal conductivity (25–470 W·m−1·K−1), and
electrical conductivity (106–108 S·cm−1) [31]. As a result, EG has emerged as a promising
material with applications such as flame retardancy [32], phase−change material [33,34],
electrodes [35,36], electrochemical sensors [37], fuel cells [38,39], batteries [40,41] and
supercapacitors [42,43].

Significant research has been performed into the use of EG in enhancing the thermal
conductivity of polymer graphene nanocomposites. Wu et al. [44] measured the thermal
conductivity of individual expanded graphite particles using a T−type method and re-
ported a value ~335 W·m−1·K−1 for EG particles. Tao et al. [45] prepared EG/PDMS
composite using a hot−press technique and reported a high thermal conductivity value
of 4.7 W·m−1·K−1 at 10 wt% EG composition. Zhao et al. [46] measured a high thermal
conductivity of 3.5 W·m−1·K−1 in EG/paraffin wax composites at 25 wt% composition.
Song et al. [47] measured a thermal conductivity of 1.66 W·m−1·K−1 at 20 wt% composition
in EG/MgCl2·6H2O composite. Wei et al. [48] created a network of expanded graphite par-
ticles using stearic acid and polyethylene wax and measured a high thermal conductivity
of 19.6 W·m−1·K−1 using ~25 vol% expanded graphite. Che et al. [49] employed syner-
gistic effects between expanded graphite and carbon nanotubes to achieve a high thermal
conductivity of ~3.0 W·m−1·K−1 at ~20 wt% composition in high−density polyethylene
(HDPE) composites.

In this work, we show that expanded graphite can lead to a remarkable increase
in the thermal conductivity of polyetherimide composites prepared via the approach of
solvent casting. Expanded graphite has a highly porous structure with interconnected
graphitic walls, as seen in the SEM image of expanded graphite in the air in Figure 1e.
Figure 1f shows the separation of adjacent graphite layers, which occurs due to the release
of gases during the expansion procedure. Such a porous structure is absent in graphene
nanoplatelets, also used in this work, and presented in Figure 1g. The graphitic sheets
form a continuous network over long−length scales, allowing efficient conduction of
heat. The approach of solvent casting offers the advantage of preserving this porous
structure of expanded graphite as seen in the field emission environmental scanning
electron microscopy (FE−ESEM) images of expanded graphite while it is embedded in
the polymer composite, in Figure 1h–j. The comparison of Figure 1e (showing EG in the
air) and Figure 1h–j (showing EG in the composite) clearly show that the porous structure
of EG is retained within the composite. This is due to the use of solvent casting, which
does not exert large forces on expanded graphite, preserving its porous structure, unlike
microcompounding, where large shear forces distort this structure [48,50]. Such a porous
structure gets infused with the dissolved polymer during the casting process resulting in a
highly thermally conductive interpenetrating network of graphene and polymer.
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Figure 1. (a) Schematic illustration of expanded graphite from graphite intercalated compounds
through thermal expansion. SEM image of (b) GIC, (c) expanded graphite after thermal expansion.
High−resolution FE−ESEM images of EG at magnification of (d) 100×, (e) 1500×, (f) 12,000×,
(g) FE−ESEM images of 60 nm graphene nanoplatelet. FE−ESEM images of EG/PEID composite at
(h) 350×, (i,j) 3500×.

The resulting interpenetrating polymer graphene structure from the solvent casting
method allows for very efficient heat transfer. This can be seen by observing that graphitic
nanosheets in this network are continuous for very long−length scales (the lateral dimen-
sions of these expanded graphite particles can range from a few hundred to thousands of
microns), as shown in Figure 1j (arrows indicate heat flow over long continuous paths).
The high in−plane thermal conductivity (k~2000 W·m−1·K−1) [12] of graphene nanosheets
forming this network allows very efficient heat transfer over long−length scales, resulting
in high composite thermal conductivity. We later show through X-ray diffraction and Ra-
man analysis that the graphitic layers forming the walls of this network retain the chemical
structure and exact interlayer spacing of graphite and can thus be expected to have the high
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thermal conductivity values reported for graphite nanoplatelets (kin~2000 W·m−1·K−1, and
kout~10 W·m−1·K−1) [12].

A unique advantage of this continuous network can be understood by noticing that
even at bends/turns, the graphitic sheets are still continuous, allowing for a very high
thermal conductance (low interfacial thermal resistance) at such junctions. The above effect
of low interfacial resistance at bends/turns in an expanded graphite network offers an
advantage over the effect of percolation [8,13,21,49,51–53]. Percolation involves enhancing
heat transfer through establishing discrete particle–particle contact resulting in efficient
heat conduction along a network of graphene particles. While this enhances thermal
conduction by bypassing the low thermal conductivity polymer, the interfacial thermal
resistance at the contact between discrete graphene particles in percolative networks can
still be significant. Konatham et al. [54] performed molecular dynamics simulations to
show that thermal contact resistance at graphene–graphene contact is 5.5 × 10−8 K/W,
which is comparable to graphene−polymer interfacial thermal resistance [8]. In expanded
graphite composites, however, the continuous nature of graphene sheets at bends/turns
results in much more efficient interfacial thermal transport at junctions, resulting in a
superior thermal conductivity enhancement overall. Another advantage of expanded
graphite−mediated k enhancement over percolation effect is that typically very high
volume concentrations are required to achieve particle–particle contact for percolation. In
the case of solvent−cast expanded graphite/polymer composites, however, the continuous
graphitic networks are present at all volume fractions, enabling achieving high k even at
low particle concentrations.

The polymers chosen for this work, namely polyetherimide and epoxy, enable the
advantage of superior thermal interaction with graphene [55,56]. Both polyetherimide and
epoxy have oxygen groups in their molecular structure that can enable strong thermal inter-
action through hydrogen bonding with the oxygen groups [57–59] in expanded graphene.
Such oxygen groups are introduced in expanded graphite during intercalation (with an
oxidizing agent) and the expansion process. Evidence for the presence of oxygen groups in
expanded graphite is provided through X-ray photoelectron spectroscopy (XPS) [60–62].

We further investigated the effect of sonication parameters on thermal conductiv-
ity enhancement and showed that lower sonication time and power result in larger ex-
panded graphite particles in the composite, which allows for heat to be conducted effi-
ciently along longer lengths scales, resulting in higher thermal conductivities. Finally,
we also compare the measured thermal conductivity results with a recently introduced
effective medium model that takes graphene–graphene contact into account for thermal
conductivity prediction.

2. Experimental Details
2.1. Materials

Graphite intercalated compound (GIC) or expandable graphite (EPG), with an average
particle size of ≥180 µm (+100 mesh size: ~92%) and expansion ratio 290:1 (ASB−3570),
were bought from a graphite store [63]. Graphene Nanoplatelets AO−4 (60 nm thickness
and lateral size 7 µm) were acquired from a graphene supermarket [64]. The epoxy resin
used for the study was EPIKOTE RESIN MGS RIMR 135, and the hardener used was
EPIKURE CURING AGENT MGS RIMH 137, both purchased from Hexion [65]. Commer-
cially available N, N−dimethylacetamide (DMAc), and polyetherimide (PEID) with a melt
index of 18 g/10 min (337 ◦C/6.6 kg) and a density of 1.27 g/mL were obtained from Alfa
Aesar [66] and Sigma Aldrich [67]. The organic solvents N−N, Dimethylformamide (DMF),
and Acetone were purchased from the University of Oklahoma chemical stock room.

2.2. Fabrication of the EG/Polymer Composites

The fabrication procedure of the EG/PEID composite is illustrated in Figure 2a and the
chemical structure of PEID is presented in Figure 2b. For EG/PEID composite preparation,
expandable graphite was first placed into a furnace at 900 ◦C for approximately 30–60 s in
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a crucible to obtain the required quantity of EG filler. EG so obtained was then dispersed
into 20 mL DMAc. Separately PEID pellets were dissolved into 50 mL DMAc at 130 ◦C
for 1 h. The DMAc solution with EG was mixed with a polymer solution and blended for
3 h at 130 ◦C, followed by a short−time (~40 s) probe sonication at 20% amplitude using
probe−sonicator (VCX 750 Sonicator, PRO Scientific Inc., Oxford, Connecticut, USA; power
output: 750 W, frequency: 20 kHz). The EG blended with a polymer solution of ~25–30 mL
was cast into a petri dish. Lastly, the petri dish was kept at 100 ◦C for 24–48 h to produce
the composite film. Likewise, 2.5 wt%, 7.5 wt%, and 10 wt% EG/PEID composite films
were prepared using this same procedure. For comparison, the graphene nanoplatelet
(GnP)/PEID composite films were also prepared using the same solution casting technique
for graphene with 60 nm thickness, respectively.
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Figure 2. (a) Schematic for the preparation process of EG/PEID composites, (b) chemical structure
of PEID.

To prepare epoxy/expanded graphite composites, resin was added to 90 mL N,N−dim-
ethylformamide (DMF) solution and stirred while heating at 150 ◦C to obtain a homoge-
neous mixture. Expanded graphite was added to this solution and stirred for one hour.
The solution was then tip sonicated for 40 s followed by stirring at 150 ◦C until the solvent
completely evaporated. After the solvent evaporated, a thick mixture of EG/epoxy was
obtained. This mixture was then spread over a PTFE sheet and kept in a vacuum oven
at 140 ◦C for 15 h to remove any residual solvent present in the mixture. On cooling the
mixture to room temperature, a hardener was added to it and mixed to obtain a homo-
geneous viscous paste. This paste was then transferred to aluminum molds and cured at
90 ◦C for 20 h.

3. Characterization

Thermal Conductivity (k): k of EG/polymer composites was measured by the laser
flash technique. A Netzsch LFA 467 Hyperflash (Netzsch, Selb, Germany) laser was
used to measure the through−thickness thermal diffusivity of the samples. A total of
8–12 samples of 12.5 mm diameter and 0.3–0.4 mm thickness were used to measure the
thermal diffusivity (α) at room temperature (23 ◦C). The samples were coated with graphite
spray before the measurement to efficiently absorb heat from a flash lamp, and an average
of 6–8 measurements was reported. This laser flash technique induces heat by a laser pulse
on one surface of the sample, and the temperature rise is captured on the other surface of
the sample as a function of time. α is determined by LFA using the following equation:
α = (0.1388 d2)/t1/2, where α is the thermal diffusivity (mm2/s), t1/2 is the time to obtain
half of the maximum temperature on the rear surface, and d denotes the sample thickness
(mm). The thermal conductivity was calculated using k = α× ρ×Cp, where k, ρ, and
Cp represent the thermal conductivity, density, and specific heat constant of the sample,
respectively. In this work, the density and specific heat of the composite samples were
calculated using a gas pycnometer (AccuPyc II 1340, Micromeritics Instrument Corporation,
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Norcross, GA, USA) and differential scanning calorimetry (DSC) (DSC 204F1 Phoenix,
Netzsch, Selb, Germany).

Scanning Electron Microscopy (SEM): Morphological characterization of EG filler and
EG/polymer composites was carried out by high−resolution field emission environmental
scanning microscopy (Quattro S FE−ESEM, Thermofisher Scientific, Waltham, MA, USA).
This SEM was operated in secondary electron (SE) mode at an accelerating voltage of 20 kV.
To prepare the samples for SEM imaging, liquid nitrogen was used to crack down the
composite to image over the cross−sectional area. Montage large area mapping of EG
fillers has been captured using MAPS software of FE−ESEM.

Raman Spectroscopy (RS): Raman spectroscopy (RS) was performed using a DXR3 Smar-
tRaman Spectrometer (Thermofisher Scientific, Waltham, MA, USA) to collect the data over the
range from 3250 to 250 cm−1, laser wavelength λL = 633 nm, spectral resolution = 0.16 cm−1,
and imaging resolution = 702 nm for the EG and GIC samples. An Olympus BX 41 micro-
scope with 5× objective, 10 s exposure time for 15 accumulations, and 3 scans per sample
were used to collect the spectra.

X-ray Diffraction (XRD): A PANalytical Empyrean Diffractometer (Malvern Panalytical
Ltd., Grovewood Rd, Malvern WR14 1XZ, UK) produced the information regarding the
crystal structure of EG compared to GIC using Bragg−Brentano focusing geometry at room
temperature. A total of 3 kW Cu Kα radiation (λ = 1.5406 Å) with a scan range of 2θ = 5 to
80◦and step size of 0.013◦.

X-ray Photoelectron Spectroscopy (XPS): X-ray Photoelectron Spectroscopy (XPS) was
performed for GIC and EG samples by Thermo Scientific K−alpha XPS (Thermofisher
Scientific, Waltham, MA, USA). A Kα gun source was used to excite the sample, and the
data were collected for an acquisition time of ~70 s at 400 µm spot size. The passing energy
of 200 eV was used to find the carbon (C), oxygen(O), and sulfur (S) peak in this analysis
spectrum. The atomic percentage of C, O, and S were investigated using the Avantage
software. To determine the atomic percentage, this software was used to perform the curve
fitting in accordance with Gaussian and Lorentzian functions.

4. Result and Discussion
4.1. Thermal Conductivity Results

The measured thermal conductivities of EG/PEID and EG/epoxy composites are
shown in Figure 3a,b. Thermal conductivity of solvent−cast EG/PEID composites is
measured to be around 6.6 W·m−1·K−1 at 10 wt% filler composition. This value repre-
sents a remarkable 2770% enhancement over the k (0.23 W·m−1·K−1) of pristine PEID,
providing new avenues for high thermal conductivity composites. Similarly, the measured
thermal conductivity of EG/epoxy composites also shows remarkable enhancement at
very low loadings of EG. At just 2 wt% EG composition, a thermal conductivity value
of 1.74 W·m−1·K−1 is achieved for the epoxy composite, representing an enhancement
of 1025% over pristine epoxy (0.16 W·m−1·K−1). Table 1 and Figure 3e show that the
measured value is significantly higher than similar graphene/polymer composites either
based on (a) uniformly dispersed graphene, (b) other expanded graphite−based methods,
and (c) graphene−based percolative networks.
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Figure 3. (a) Thermal conductivity value of EG/PEID (experimental and effective medium theory
(EMT)) and GnP/PEID composite with different filler content (2.5, 5, 7.5, and 10 wt%), (b) thermal
conductivity value of EG/epoxy composite with different filler content (0.5, 1, 1.5, and 2 wt%); (c) k
value of EG/PEID composite with different sonication time at 20% ultrasonication power; (d) k value
of EG/PEID composite with different ultrasonication power sonication for 40 s; (e) comparison of
thermal conductivity value of polymer composites in previous works.
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We first compare the measured values against previous results reported for the per-
colation effect based on establishing a graphene–graphene network. A key advantage
of expanded graphite is that a large enhancement in k value is achieved even at low
graphene loading, as opposed to the case of percolation, where typically much higher parti-
cle concentrations are required to achieve particle–particle contact. Kargar et al. achieved
around 6 W·m−1·K−1 in graphene/epoxy composites at a high graphene loading of 35 vol%
through the percolation effect [21]. Percolation was also found to yield a thermal conduc-
tivity of ~5.5 W·m−1·K−1 in Boron–Nitride/epoxy composites [21] at a volume loading
of 45 vol%. A high k of 6.6 W·m−1·K−1 is achieved in this work through the use of just
10 wt% EG content. Even in percolative k enhancement, the thermal interfacial resistance at
particle–particle contact can be relatively high. Konatham et al. reported a thermal bound-
ary resistance of 5.5 × 10−8 K/W, almost as high as at the graphene−polymer contact [54].
Expanded graphite, achieved through the solvent casting approach, leads to continuous
graphite networks (Figure 4a–d), overcoming the issue of low particle–particle interfacial
thermal conductance in percolative environments. Significant enhancement in k value of
EG/PEID composite has been achieved due to such continuous graphitic network of EG as
presented in Figure 4b,d throughout the composite film.
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The high k achieved in this work is also due to the use of solvent casting, which
offers the advantage of preserving the porous structure of expanded graphite within
the composite (seen in Figure 1f,i,j). This is due to only moderate forces being exerted
on expanded graphite during the solvent casting approach. Figure 1f,i compare the
porous structure of expanded graphite before and after it is embedded into the com-
posite and show that the porous structure of EG is largely retained within the compos-
ite. This is in contrast to microcompounding (melt−blending), where large shear forces
during the compounding process can exfoliate expanded graphite, converting it into a
nanoplatelet−like morphology. Mokhtari et al. [68] discussed such exfoliation of expanded
graphite through microcompounding.

We also compare measured k values of EG/PEID composite with those of GnP/PEID
composites in Figure 3a,b. The measured thermal conductivity of EG/PEID compos-
ites is dramatically higher relative to that achieved using graphite nanoplatelets. At
10 wt% composition, the k of EG/PEID composite (6.6 W·m−1·K−1) is higher by 572%
relative to GnP/PEID composite (1.0 W·m−1·K−1). Similarly, at 2 wt% composition, k
of EG/epoxy composite (1.74 W·m−1·K−1)) is higher by ~600% relative to GnP/epoxy
composite (0.25 W·m−1·K−1). At the low graphene content used in this work, GnPs are
well separated by polymer; high interfacial thermal resistance between GnPs and polymer
then restricts the enhancement achievable through the use of graphene nanoplatelets. These
results highlight the large advantage of expanded graphite over graphene nanoplatelets in
enhancing composite thermal conductivity.

We further investigated the effect of sonication parameters used during composite
preparation on k enhancement. Figure 3c,d show that lower sonication time and amplitude
lead to the higher thermal conductivity of EG/PEID composite. To understand the effect
of sonication parameters on the structural integrity of EG, we performed an FE−ESEM
analysis. As the porous interpenetrating network has a beneficial impact on thermal
conductivity enhancement (shown in Figure 4a–d), high−resolution images are obtained to
visualize the effect of sonication time on this porous network structure (Figure 5a,b). The
image of 10 wt% EG/PEID composite (Figure 5a,b) prepared with 3 min sonication time
at 20% amplitude shows an absence of porous structure within the composite, suggesting
that longer sonication time causes the porous structure to be damaged. FE−SEM images of
10 wt% GnP/PEID composite are also presented in Figure 5c,d.

While the above images show the expanded graphite embedded in the polymer, we
also show expanded graphite before it is embedded into the polymer in Figure 5e,f. These
images show that fragile, porous graphite is broken into nanosheets after 3 min sonication
time, whereas 40 s sonication time has a negligible effect on EG filler structure. Short−time
sonication thus offers the advantage of preserving the structure of expanded graphite while
also allowing uniform dispersion into the polymer matrix.

In the next section, we compare measured k values of EG/PEID composite with theo-
retical predictions based on a recently introduced effective medium model by Su et al. [69].
Comparison with theoretical predictions highlights the advantage of expanded graphite
and provides evidence for the outlined mechanism of heat conduction along continuous
graphitic paths.
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Table 1. Comparison of k⊥ for different polymer graphene and EG−polymer composite.

Filler Matrix Fraction k⊥
(W·m−1·K−1)

kmatrix
(W·m−1·K−1)

Enhancement
(%)

Preparation
Method Ref.

GnPs/MWCNT PS (3.5/1.5)
vol% 1.02 0.19 437 Melt mixing + Synergistic

effect [70]

Graphite PP 40 wt% 5.4 0.25 2060 Compression molding [71]

Multilayer GnP Epoxy 10 vol% 5.1 0.21 2300 Solvent casting, higher
sheer mixing [8]

fGO Epoxy 5 wt% 0.21 0.16 34 Solution casting [72]

EG LLDP 5.78 wt% 1.85 0.33 461 Melt mixing, 3D network
formation [48]

EG PMMA 7 wt% 0.47 0.125 276 Water-assistedmelt
extrusion [73]

EG LDPE 10 wt% 0.5 0.32 56 Melt mixing [74]

EG PDMS 10 wt% 4.7 0.18 2511 Solvent casting, hot press [45]

EG PEG 10 wt% 1.324 0.298 344 Melt mixing [75]

EG Paraffin 25 wt% 3.16 0.18 1695 Melt mixing [46]

EG PEID 30 wt% 1.6 0.2 700
Solvent mixing, melt
mixing followed by
injection molding

[76]

EG PEID 10 wt% 6.6 0.23 2770 Solution casting This work

PS—polystyrene; PP—polypropylene; PMMA—Poly(methyl methacrylate); LDPE—low−density polyethylene;
PDMS—polydimethylsiloxane; PEG—Polyethylene glycol.

4.2. Effective Medium Model for Thermal Conductivity Prediction

The effective medium model introduced by Su et al. [69] includes the effect of both
graphene−polymer and graphene–graphene thermal contact resistance. Effective composite
thermal conductivity ke through this model is computed by solving the following equation:

c0
k0 − ke

ke + (k0 − ke)/3
+

c1

3
[

2(k11 − ke)

ke + S11(k0 − ke)
+

(k33 − ke)

ke + S33(k3 − ke)
] = 0 (1)

where c0 and c1 are the concentrations of the embedding matrix and filler material, respec-
tively, k11 and k33 are the effective in−plane and through−plane thermal conductivities of
graphitic nanosheets. The effective thermal conductivities take into account the effect of
interfacial thermal resistance. S11 and S33 are the shape parameters related to the aspect
ratio of graphitic nanosheets, given by the following equations.

S11= S22=
α

2(1− α2)
3/2 [arccosα− α

(
1− α2

)1/2
], α < 1

S33= 1− S11

In the above equations, α is the aspect ratio (thickness/lateral dimension) of the
graphitic nanosheets, and k0 is the thermal conductivity of an interlayer surrounding
graphene sheets. The role of this interlayer is to include the effect of interfacial thermal
resistance at graphene−polymer and graphene–graphene contacts.

The effective thermal conductivities k11 and k33 are computed using the in−plane
and through−plane thermal conductivities of graphene (k1 and k3, respectively) and the
interlayer properties through the following equations,

k11 = k0[1 +
(1− cint)(k1 − k0)

cintS11(k1 − k0) + k0
] (2)

k33 = k0[1 +
(1− cint)(k3 − k0)

cintS11(k3 − k0) + k0
] (3)
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In the above equations, cint is the concentration of the interlayer. The values of different
parameters used in this effective medium model are described below.

In the Table 2, graphene thickness and length are the thickness and length of the
graphitic sheets forming the walls of the interpenetrating network. Average values of these
parameters were obtained from microscopy to be 10 µm for lateral length and 10 nm for
thickness. The thermal conductivity of the polymer phase is taken to be 0.23 W·m−1·K−1

from our measurements (in suitable agreement with the literature). The in—plane (k1) and
through—plane thermal conductivities (k3) of graphene were taken to be 2000 W·m−1·K−1

and 10 W·m−1·K−1, respectively [12,77].

Table 2. The values of different parameters used in EMT calculations.

Material Parameters Values

Average graphene lateral length, l, 10 µm

Average graphene thickness 10 nm

Aspect ratio of the graphene filler 0.001

Thermal conductivity of polymer phase 0.23 W ·m−1 ·K−1

Thermal conductivity of graphene filler, k1 and k3
(W ·m−1 ·K−1) 2000 and 10 W ·m−1 ·K−1

Thermal conductivity of interlayer with Kapitza resistance 0.04 W ·m−1 ·K−1

Thermal conductivity of the interlayer with a firmly
developed graphene–graphene contact state, 0.17 W ·m−1 ·K−1

The interfacial resistance between graphene and polymer is modeled as an interlayer
in the above theory. The thickness of this interlayer was nominally taken to be 2 nm, and
its thermal conductivity was assumed to be 0.04 W·m−1·K−1, resulting in an interfacial
resistance between graphene and polymer of 5 × 10−8 m2K/W [8], a well−accepted value
for interfacial thermal resistance between graphene and polymer.

A key parameter in the above model is the interfacial resistance at graphene–graphene
contact. This value was determined by fitting the measured values to the effective medium
model. A suitable agreement between measured thermal conductivities and predicted
values was obtained by using a graphene–graphene interlayer thermal conductivity of
0.17 W·m−1·K−1 (see Figures 3a and 6), which is more than four times higher than the
interlayer thermal conductivity of polymer graphene (0.04 W·m−1·K−1). This interlayer
thermal conductivity of 0.17 W·m−1·K−1 at graphene–graphene contact corresponds to a
graphene–graphene interfacial thermal resistance of 1.17 × 10−8 m2K/W. This value is sig-
nificantly smaller than the interfacial resistance predicted for regular graphene–graphene
contact [54] (5 × 10−8 m2K/W), providing evidence that graphene sheets are in superior
contact (covalently bonded) at bends/turns in an expanded graphite network, compared
to the contact between discrete graphene particles. The analysis points to the advantage
of the continuous graphitic network achieved through the use of expanded graphite via
solvent casting technique in enhancing the thermal conductivity of polymer composites.
We further show the effect of lower graphene–graphene contact conductance by decreasing
the graphene–graphene contact thermal conductivity in the model. It is seen that as the
graphene–graphene contact thermal conductivity is decreased from 0.17 to 0.10, the effective
composite thermal conductivity is decreased from 6.6 W·m−1·K−1 to 4.4 W·m−1·K−1 (by
almost 33.3%), indicating the importance of superior graphene–graphene contact conduc-
tance for achieving overall high composite k values. We next discuss the characterization of
EG filler and EG/PEID composites.
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Figure 6. Predicted thermal conductivity value based on the effective medium theory (EMT) with
different graphene–graphene interlayer thermal conductivity.

4.3. Morphologies of EG Filler and EG/PEID Composite

Analysis through FE–ESEM reveals the structural integrity of EG structure before and
after the preparation of polymer composite. SEM (Scanning electron microscopy) images
enable understanding of morphological differences between graphene nanoplatelets (GnPs),
Graphene Intercalation compound (GIC), and thermally expanded graphite (EG) (Figure 1a).
Thermal expansion of GIC with an average diameter of ~180 µm and thickness of 1–150 µm
turns it into a worm–like structure. Uneven expansion resulting from the expansion of
the intercalation compound at 900 ◦C leads to the separation of expandable graphite into
multiple layers resulting in a porous network with an average edge size of 10–20 µm. These
pores allow the formation of the interpenetrating graphene–polymer network where the
pores are wetted with PEID polymer. While Figure 1f shows expanded graphite before it is
used to prepare composite, FE–SEM also is used to study the structure of EG even within
the polymer composite. EG structures in EG/PEID composites with 7.5 and 10 wt% filler
are presented in Figure 4a–d. These figures show that solvent casting clearly preserves
the porous network structure of expanded graphite, enabling the creation of the highly
thermally conductive interpenetrating graphene–polymer network within the composite.

4.4. Analysis of Crystal Structure by XRD and Raman Spectroscopy

X-ray diffraction (XRD) analysis was performed to determine the crystal structure and
interlayer spacing of GIC and EG. Figure 7a shows a strong diffraction peak at 2θ = 26.133◦ (002)
for GIC, slightly shifted from the case of natural graphite 2θ = 26.5◦ [78–81]. A weaker peak
(004) is observed at 2θ = 54.37◦ [82] for GIC. The small shift in peak for GIC is attributed to
the presence of intercalated compounds. On the contrary, a reduced sharp peak is visible
at 2θ = 26.35◦ (002) [83] for EG (the inset of Figure 7a), closer to the (002) graphitic carbon
structure. A clear diminution is observed in the intensity at (002) peak, which is caused
due to disorder in graphitic morphology [84] after the expansion process. Still, a mostly
aligned peak position in EG indicates the existence of intact chemical structure of graphite
and interlayer order [85,86].This interconnected and stacked structure of EG enables better
thermal transport throughout the polymer composite [25]
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Nondestructive Raman analysis was also performed to further analyze the crystal
structure before and after the thermal expansion. Raman spectroscopy of Figure 7b exhibits
two inherent peaks of G band and D band at ~1580 cm−1 and ~1350 cm−1 for graphitic
material [87]. The G band signifies the stretching of defect−free sp2 carbon of hexagonal
ring due to in−plane tangential stretching of the carbon−carbon bonds [88], and the D
band represents the vibrational mode caused by the amorphous disordered structure of sp3

hybridized carbon [60]. The 2D band also can be seen at around 2700 cm−1 and represents
a second−order two−photon process [89]. Raman spectra of GIC clearly show those
characteristic peaks (G, D, and 2D bands). In contrast, G and 2D bands are present, but the
presence of the D band is negligible in EG Raman spectra. ID/IG ratio is typically used to
characterize the defective state of graphene. The absence of a D band in EG suggests the
presence of a highly ordered defect−free graphite structure in EG. This high degree of the
ordered structure of graphite, even after thermal expansion, has a strong beneficial impact
on the thermal conductivity enhancement of polymer graphene composite as it preserves
the intrinsic high thermal conductivity of graphene itself.

4.5. XPS Analysis of GIC and EG Filler

XPS analysis was further performed to investigate the concentration of carbon (C), oxy-
gen (O), and sulfur (S) elements before and after the thermal expansion of GIC, as presented
in Table 3. Figure 7c shows that two peaks of C1s and O1s at ~285 eV and ~532 eV [67]
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are present for GIC and EG filler, but the S2p peak (~169 eV) [90] is only visible in GIC
spectra because of the included intercalated compounds. The atomic percentage of carbon
increases from 85.14% to 95.76%, and oxygen reduces from 13.16% to 4.24% after expansion.
This is attributed to the fact that thermal expansion at 900 ◦C releases oxygen contents.
The presence of small amounts of oxygen groups in EG allows favorable interactions with
oxygen groups in PEID through hydrogen bonding, leading to efficient interfacial thermal
transport. This further enhances the thermal conductivity of EG/PEID composite.

Table 3. Atomic composition by XPS analysis of EG and GIC.

Atomic Composition by XPS (at%)

C (285.08 eV) O (532.08 eV) S (169.11 eV)

GIC 85.14 13.16 1.7

EG 95.76 4.24 -

5. Conclusions

In summary, we demonstrate that expanded graphite (EG) can lead to a large enhance-
ment in the thermal conductivity of EG/PEI composites prepared through solvent casting.
At 10 wt% EG composition, a high thermal conductivity of 6.6 W·m−1·K−1 is measured,
representing an enhancement of 2770% over pristine polyetherimide. This large enhance-
ment in thermal conductivity is found to be due to a network of continuous graphene sheets
over long−length scales achieved through the solvent casting technique, which preserves
the interconnected porous structure of expanded graphite within the composite. Even
at bends/turns in graphene sheets in such a network, the sheets are covalently bonded,
which minimizes the interfacial thermal resistance at junctions, enhancing heat transfer.
Overall, the resulting structure allows highly efficient heat conduction over long−length
scales along the continuous graphitic sheets. This results in the observed high thermal
conductivity of the composite through the use of EG. The thermal conductivity of EG/PEID
composite is also found to dramatically exceed that of graphene nanoplatelet (GnP)/PEID
composites by 572% for 10 wt% filler composition. At low filler loading, GnPs are well
separated by polymer and the resulting high graphene−polymer interfacial thermal resis-
tance results in low effective GnP/PEID thermal conductivity. Presented results highlight
the advantage of expanded graphite in enhancing the thermal conductivity of polymer
composites and can lead to novel avenues for achieving efficient thermal management in a
wide array of technologies.
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