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Abstract: BKc, channels, originally discovered in Drosophila melanogaster as slowpoke (slo),
are recognized for their roles in cellular and organ physiology. Pharmacological approaches implicated
BKc, channels in cellular and organ protection possibly for their ability to modulate mitochondrial
function. However, the direct role of BK¢c, channels in regulating mitochondrial structure and
function is not deciphered. Here, we demonstrate that BKc, channels are present in fly mitochondria,
and slo mutants show structural and functional defects in mitochondria. slo mutants display an
increase in reactive oxygen species and the modulation of ROS affected their survival. We also found
that the absence of BKc, channels reduced the lifespan of Drosophila, and overexpression of human
BKc, channels in flies extends life span in males. Our study establishes the presence of BKc, channels
in mitochondria of Drosophila and ascertains its novel physiological role in regulating mitochondrial
structural and functional integrity, and lifespan.

Keywords: potassium channel; mitochondria; reactive oxygen species; antioxidants; life span; aging;
BK(, channels

1. Introduction

The large-conductance potassium channel activated by calcium (Ca?") and voltage
(BKca/Slo/MaxiK) was originally cloned in Drosophila at the slowpoke (slo) locus [1-3] and addressed as
Kenmal in mammals. BKc, channel is ubiquitously present in the plasma membrane of all eukaryotic
cells. In Drosophila, extensive work has been performed on slo mutants where BK¢c, was shown to
carry transient Ca2+—dependent K* currents (Ixc,) in muscles [2,4], and neuronal cells [5]. In addition,
slo mutant has revealed roles of BKc, channel in neuronal functions, abnormal circadian activity,
and well-characterized locomotor disorder (hence the name slowpoke) [3,6].

In mammals, BK, is characterized to play similar roles in neuronal and non-neuronal cells [7].
They are the key ion channels with a large conductance, activated by gasses and lipids in addition to
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sensing changes in Ca?*, and voltage. In the last decade, mutations in Kcnmal gene have been associated
with a paroxysmal movement disorder, epilepsy, obesity, hypertension, and cancer in humans [8].
BKc, null mutant mice showed alterations in circadian rhythm, blood pressure, hearing, heart rate,
bladder control, locomotion, reproductive function, neurovascular coupling, airway constriction,
insulin secretion, and learning and memory [7,9]. In the absence of BKc,, the survival of mice
and weight gain was hampered [10] but in contrast, the absence of Slo-1 in Caenorhabditis elegans
was associated with slow motor aging and moderate extension of life span [11]. The majority of
these functions were shown to be associated with the BKc, localized to the plasma membrane [9].
One exception to plasma membrane localization of BKc, channels is their localization to mitochondria
of murine and rodent adult cardiomyocytes [8,12]. In the heart, activation of BK¢, is known to
play a direct role in cardioprotection from ischemia-reperfusion (IR) injury possibly via regulation of
mitochondprial function [8,12-14].

Mitochondria are energy-generating organelles of the cell involved in several metabolic and
signaling pathways. The inner mitochondrial membranes support the electron transport chain
(ETC) tightly-coupled with membrane potential (\pto) that participates in the generation of ATP.
Defects in ETC, {njt0, mitochondrial fusion—fission events, or ionic imbalance can cause mitochondrial
permeability transition pore (mPTP) to form, and result in apoptosis [15]. One of the well-established
consequences of mitochondrial dysfunction is life span [16]. Several ion channels present in the plasma
membrane and intracellular organelle membranes are known to regulate mitochondrial structure as
well as functional integrity [8]. Even though BKc, is shown to regulate mitochondrial function, there is
no direct evidence that BKc, can directly regulate mitochondrial structural and functional integrity.
Expression of BK¢, in coronary arteries from old rats, as well as humans, diminishes without showing
any changes in biophysical properties [17]. However, whether BK¢, directly affects life span is not
well studied. To address this question, we studied the BKc, channel mutant (slo) phenotypes with
respect to mitochondrial functional integrity and life span using the Drosophila model.

In this study, we found that BKc,/Slo is present in mitochondria of Drosophila as a functional ion
channel. The absence of BK¢, results in age-related changes in mitochondrial structural and functional
integrity. We also tested whether increased mitochondrial reactive oxygen species (ROS) is responsible
for the early death of flies and chelating ROS could partially rescue the aging phenotype. Ablation of
BKc, dramatically reduced the lifespan of Drosophila, while overexpression of human BKc, form
surprisingly increased lifespan only in males. In agreement, our microarray data revealed various life
span regulated transcripts altered in slo mutant flies. Taken together, our results define a novel function
for BKc, channel in regulating mitochondrial structure and function and reduction in life span.

2. Materials and Methods

2.1. Drosophila Stocks, Reagents, Dyes, and Antibodies

All fly stocks were maintained at 25 °C on standard medium (jazz mix, nipagin free) unless otherwise
stated. The experiments were carried out at 25 °C or 29 °C (for Gal4 efficiency) as mentioned in the
results sections or figures. The Canton S strain served as the wild-type (wt) stock and is indicated as
‘wt’ through the manuscript. The slo! mutants (chemical-induced mutation, originally characterized in
Elkins et al. 1986 [3]), RNAI lines, Gal4 lines, and wild type lines (Canton S and W1118) were obtained
from the Bloomington Stock Center. UAS Sod2 flies were a gift from Prof. David Walker (UCLA).

2.2. Immuno Cyto/Organelle Chemistry

Flight muscles were dissected and fixed with 4% (w/v) paraformaldehyde (PFA), washed and
permeabilized with 0.4% (v/v) Triton-X100. Mitochondria were isolated from whole flies and loaded
with mitotracker as described earlier [18]. Mitochondria and tissues were blocked with normal goat
serum (10%) and stained with primary antibodies (anti-ubiquitin 1:100 (FK2), and anti-BKc, 1:200) and
secondary antibodies, followed by DAPI (for tissues) (n = 5 independent experiments).
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2.3. Electrophysiology

Patch-clamp experiments using mitoplasts (mitochondria without outer membranes) were
performed as described previously [19,20]. Briefly, mitoplasts were prepared from mitochondria
isolated from whole D. melanogaster placed in a hypotonic solution (5 mM HEPES, 100 uM CaCl,, pH
= 7.2) to induce swelling and eventual disruption of the outer membrane. To restore the sample to an
isotonic condition (150 mM KCl, 10 mM HEPES, 100 uM CaCly, pH 7.2) a hypertonic solution (750 mM
KCl, 30 mM HEPES, 100 uM CaCl,, pH 7.2) was added. The patch-clamp pipette was filled with
an isotonic solution. Mitoplasts are easily recognizable due to their size, round shape, transparency,
and the presence of a ‘cap’, characteristics that distinguish these structures from the cellular debris that
is also present in the preparation. The low-calcium solution (1 uM CaCl,) contained the following:
150 mM KCl, 10 mM HEPES, 1 mM EGTA, and 0.752 mM CaCl, at pH 7.2. An isotonic solution
containing 100 uM CaCl, was used as the control solution for all of the presented data. The experiments
to assess the channel activity were carried out in patch-clamp inside-out mode [20]. The electrical
circuit was made using Ag/AgCl electrodes and an agar salt bridge (3 M KCl) as the ground electrode.
The current was recorded using a patch-clamp amplifier Axopatch 200B. The pipettes had a resistance
of about 14 M() and were pulled using a vertical puller.

The currents were low-pass filtered at 1 kHz and sampled at a frequency of 100 kHz. The traces
of the experiments were recorded in single-channel mode. The conductance of the channel was
calculated from the current—voltage relationship (Figure 1I). The probability of channel opening (Po,
open probability) was determined using the single-channel search mode of the Clampfit software.
Data from the experiments are reported as the mean values + standard deviations (S.D.). Student’s ¢-test
was used for statistical analysis (n = 5 independent experiments comprising of mitochondrial isolation
from 100 flies each).
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Figure 1. Localization of dSlo in isolated mitochondria. High-resolution confocal images of isolated
mitochondria from Drosophila (A-C, wild type, D-F slo mutants) loaded with mitotracker (A,D red)
and labeled with an anti-Slo antibody (B,E green). Overlays are shown in (C,F). Protein proximity
index for dSlo to mitotracker was 0.5 + 0.1.
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(G), Single-channel current-time recordings (left panel), current-voltage characteristics (middle panel)
and Po analysis of single-channel events in a symmetric 150/150 mM KCl isotonic solution (100 pM
Ca?*) at different voltages in mitoplast prepared from whole flies. (H), Effects of 1 uM Paxilline on
the single-channel activity. (I), Single-channel current-time recordings in symmetric 150/150 mM KCl
isotonic solution at control (100 uM Ca?*) and after reduction calcium concentration to 1 pM Ca2*.
(J), Analysis opening probability in the presence of 1 and 100 uM Ca®* at different voltages of the
mitoBK¢, channel in mitoplast prepared from whole flies. All data were acquired in a symmetric
150/150 mM KCl isotonic solution (n = 4). (K), Current—time recordings of single-channel activity
in symmetric 150/150 mM KCl isotonic solution at control (100 uM Ca?"), after reduction calcium
concentration to 1 uM Ca?* and after application of 10 uM NS1619. The bar graph shows the distribution
of the Po under the conditions above. * p < 0.001 vs. the control. ** p < 0.001 vs. 1 uM Ca2*. The data in

"

(G,JK) are presented as the means + S.D. The recordings were low-pass filtered at 1 kHz. “-” indicate a

closed state of the channel.

2.4. Reactive Oxygen Species and Quantification

2.4.1. Dihydroethidium (DHE)

Flight muscles were dissected quickly and placed in DHE (molecular probes) in PBS (1:1000
dilution) for 3 min and then washed in PBS three times for 3 min each. The samples were then fixed
in 4% (w/v) PFA for 3 min and then washed again in PBS twice for 2 min each time. Flight muscles
were then mounted in PBS and immediately photographed under a Zeiss confocal microscope (n =5
independent experiments).

2.4.2. Spectrophotometric Analysis

Flies were homogenized using a pestle, and ROS generation was detected from isolated
mitochondria by amplex red using fluorescence spectrophotometer (Hitachi F-2710) described
previously [18]. Briefly, 5 pug horseradish peroxidase (Sigma-Aldrich, St. Louis, MO, USA) was
added to the ROS buffer (mmol/L, 20 Tris-HCI, 250 sucrose, 1 EGTA-Nay, 1 EDTA-Na,, pH 7.4 at 37 °C)
and the baseline fluorescence was obtained (excitation at 560 nm and emission at 590 nm) for 30 min
(n = 4 independent experiments with 100 flies each to isolate mitochondria). The protein concentration
was used to normalize the amount of mitochondria from the same extracts.

2.5. ATP Measurement

ATP was measured from five individual groups of 2-week old females flies (n = 5 independent
experiments with 20 flies each), using Roche ATP bioluminescence assay kit CLS II according to
manufacturer’s instructions. Briefly, flies were homogenized in the lysis buffer and incubated for 5 min
at room temperature. The extract was spun down at 10,000 g and the supernatant was transferred
into a microwell plate. Upon addition of luciferase reagent, the luminescence was measured using a
luminometer. The ATP measurements were normalized to protein from the same extract.

2.6. Oxygraph

Mitochondria from 40 flies were harvested and resuspended in 100 pL. MiROS5 buffer (mmol/L,
0.5 EGTA, 3 MgCl,, 60 K-lactobionate, 20 taurine, 10 KH,POy, 20 HEPES, 110 sucrose and 1 g/L BSA
essentially fatty acid-free adjusted to pH 7.1). The assay was performed using the OROBOROS®
Oxygraph-2k (O2k, Oroboros Instruments, Innsbruck, Austria) similar to previously published
methods [21]. The oxygen electrodes were calibrated with air-saturated respiration medium (MiRO5) at
25 °C as per manufacturer instructions. SUIT protocol was used to test the activities of Complex I (malate
and pyruvate) and Complex II (rotenone and succinate). Following substrates and inhibitors were
added sequentially: malate (2 mM) and pyruvate (5 mM), succinate (10 mM), rotenone (0.5 uM), malonic
acid (5 mM), and antimycin A (2.5 uM). ADP (1-5 mM) was added at distinct steps after the addition of
Complex I and II substrates. FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) titrations
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(0.05 uM steps) were carefully performed to obtain maximum electron transport capacity. Cytochrome c
(10 uM) test was performed in each experiment to make sure that the mitochondrial membrane integrity
was not compromised. The rate of oxygen consumption (oxygen flux) as a function of time was
normalized to the total protein concentration for each experiment. Background calibration and air
calibration were performed as suggested by the manufacturer prior to the experiments. Data were
analyzed by DatLab software (v5.0, Oroboros Instruments, Innsbruck, Austria). n = 5 independent
experiments from 40 flies each. The protein content was used to normalize the amount of mitochondria
from the same extracts.

2.7. Electron Microscopy

Drosophila flight muscles were dissected in PBS and fixed in 2% (w/v) glutaraldehyde and 2.5%
(w/v) formaldehyde in PBS. Embedding, thin sectioning, and staining were carried out according to a
standard protocol [22] (n = 5 independent preparations).

2.8. Drosophila Survivorship (Life Span Assays)

Flies were collected upon eclosure and reared in vials (30 flies in each vial, n = 3 independent
assays) with food at 25 °C or 29 °C on a standard medium. The media was changed every 3 days and
a number of deaths were recorded until all the flies died (for every life span assay, we used at least
n > 20 flies per vial and 3 such vials as biological replicates).

2.9. Drosophila Geotaxis

A negative geotaxis assay [23] was performed by counting the number of flies that cross 5 cm
mark in 18 s after tapping them to the bottom of the vial (n = 3 independent experiments with 5 flies in
each experiment).

2.10. Dye-Feeding Assay

Flies were fed fluorescein (2% (w/v) in media) dye for 9 h and imaged under a fluorescent
microscope using 10X objective (Zeiss) (n = 5 independent experiments).

2.11. Paraquat/Glutathione Assays

Flies (2-3 days old) were starved for 2 h in 0.5% (w/v) agar and transferred into vials containing
fiberglass filter papers with 5% (w/v) sucrose and 20 mM PQ with or without 220 uM glutathione
(reduced). For the glutathione experiments, just eclosed flies were also reared on media containing
220 uM glutathione (reduced) for 1 week prior to PQ survival studies. Numbers of dead flies were
counted every 12 h and plotted (n > 20).

2.12. Cloning of Human BKc,/UAS-Flies

BKc,-HF full length was cloned in pUASTattb vector between Notl and Xhol restriction enzyme
sites. The construct was amplified by PCR using N-terminal c-myc tag pPCDNA3BKc,-HF as a template.
Briefly, BKc,-HF was amplified using sense primer 5'-AAG GAA AAA AGC GGC CGC ATG GGC
GCC GAG GAG CAG AAG-3’ and anti-sense primer 5’-CTA GTC TAG ACT CGA GTC AAA GCC
GCT CTT CCT G-3'. The PCR conditions were 95 °C for 5 min, 30 cycles of 95 °C for 30 s, 55 °C for 30 s
and 72 °C for 7 min followed by extension at 72 °C for 10 min. The clones obtained were confirmed by
sequencing (Genewiz). Constructs were injected into Drosophila embryos using services from BestGene
Inc (Chino Hills, CA, USA).

2.13. Microarray

Total RNA was isolated from 3-week-old female wild type and slo mutant flies using Qiagen
RNAeasy kit. RNA was treated with RNase-free DNAse I. RNA was quantified on a Nanodrop
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ND-100 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), followed by RNA quality
assessment by analysis on an Agilent 2100 bioanalyzer (Agilent, Palo Alto, CA, USA). Fragmented
biotin-labeled cDNA (from 100 ng RNA) were prepared using the GeneChip WT Plus kit.

Each Affymetrix gene chip Drosophila array (Affymetrix, Santa Clara, CA, USA) was hybridized with
the fragmented and biotin-labeled target (4.5 pg) in 200 pL of hybridization cocktail. Target denaturation
was performed at 99 °C for 2 min and then 45 °C for 5 min, followed by hybridization for 18 h. Then the
arrays were washed and stained using GeneChip Fluidic Station 450, and hybridization signals were
amplified using antibody amplification with goat IgG (Sigma-Aldrich, St. Louis, MO, USA) and
anti-streptavidin biotinylated antibody (Vector Laboratories, Burlingame, CA, USA). The chips were
scanned on an Affymetrix Gene Chip Scanner 3000, using Command Console Software. Background
correction and normalization were done using Robust Multichip Average with Genespring V 14.9
software (Agilent). A 1.5-fold differentially expressed gene (p < 0.05 values) list was generated.
The listing of differentially expressed genes and their fold change were loaded into Ingenuity Pathway
Analysis (IPA) 5.0 software (Qiagen Inc., https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis) to perform biological network and functional analyses. IPA converts gene sets
(with or without expression information) into related molecular networks based on IPA knowledge
database. Core analysis was performed for and the genes were categorized based on molecular
function, mapped to genetic networks, and ranked by score. The score reflects the probability that a
collection of genes equal to or greater than a number in the network could not be achieved by chance
alone. A score of more than 10 was used as a cutoff for identifying specific gene networks (n = 3
independent experiments with RNA isolated from 100 flies each).

2.14. Data Analysis

Data were analyzed using Sigma plot. Student’s t-tests or ANOVA were used for analyzing all
the data and reported as mean + standard error or the mean in text. p-values less than 0.05 were
considered significant.

3. Results

3.1. Presence of BKc, Currents in the Drosophila Mitochondria

In addition to the plasma membrane, BK¢c, channels are known to be present in the mitochondria
of rodent neurons [24] and endothelial cells [19]. In adult cardiomyocytes, they are exclusively present
in the mitochondria [12,25] but not in the plasma membrane [12,26]. In Drosophila, BKc, has been
well-characterized in the plasma membrane at the biophysical and physiological levels [7,27], however,
it is not known whether it is present or active in the mitochondria. In order to test for the presence
of BK¢, in mitochondria, we loaded isolated mitochondria with mitotracker [18] and labeled with
anti-BK¢, antibodies (Figure 1A,B,D,E). Mitochondria isolated from the whole wild-type but not slo’
mutant flies [1,3] showed the presence of a BKc,-specific signal (Figure 1A-F). Protein proximity index
(PPI) analysis [12] to estimate colocalization of BK¢, to mitotracker-loaded mitochondria showed a
value of ~0.5 £ 0.1 (n = 6), indicating ~50% of BK¢, signal colocalized with mitochondria.

BK(, has been recorded from cardiac and endothelial mitoplasts [8,19,25], but not in Drosophila
mitoplast (inner membrane of mitochondria). To examine whether BKc, is active in Drosophila mitoplast
(n = 5 independent experiments, mitochondria isolated from 100 flies each), we isolated mitoplast
from wild type flies and carried out patch-clamp analysis [19]. Approximately 80% of the currents
detected in the mitoplasts were attributed to BKc,-specific channels. We recorded channel activity
(Figure 1G) in the presence of 100 pM Ca?* in the bath pipette at holding potentials ranging from
+60 mV to —60 mV in a symmetrical solution (150 mM KCl, 10 mM HEPES, 100 uM Ca?t, pH7.2).
The current (I) vs. voltage (V) curve (Figure 1G) calculated from the single-channel currents showed a
conductance of 382 + 8 pS (n = 5) for mitoBK¢,. Surprisingly, the open probability of single-channel
current increases from ~0.6 at +60 mV to ~1.0 at =60 mV holding potentials (Figure 1G). On addition
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of paxilline (BKc, antagonist), the large channel conductance was completely blocked (Figure 1H),
confirming that the large currents were originated from paxilline-sensitive BKc,.

Since BK, is a Ca?*-sensitive channel, we also changed the Ca* concentration of bath solution
from 100 uM to 1 pM. Single-channel recordings showed a decrease in open probability (Po) at holding
potentials ranging from —40 mV to 40 mV (Figure 1I). Po vs. V plot shows increase in Po at 100 uM
as compared to 1 uM Ca?* (Figure 1]). Large conductance channels were not observed at 1 uM Ca?*.
However, on the addition of 1 tM NS1619 (BKc, agonist), the large-conductance channel reappeared
with a high Po (Figure 1K). Our immuno-organelle chemistry data indicate the presence of BKc,
channels in isolated mitochondria. In addition, our electrophysiological approach demonstrates the
presence of BK¢, in Drosophila mitochondria corroborating the immuno-organelle chemistry data.

3.2. Mitochondrial Functional Aberrations in BKc, Mutants

Given the presence of BK¢, in the mitochondria, we sought to investigate if BKc, plays a direct
role in its functional integrity using the BKc, (slo') mutant [1,28].

We tested if ROS, the major byproduct of mitochondria, is altered in slo! mutants. The slo! mutant
showed higher levels of DHE staining (a detector of ROS) in indirect flight muscles indicating significantly
(p < 0.05, n = 5) increased production and accumulation of ROS (Figure 2A vs. 2B, quantified in 2C).
We examined ETC function where ROS is generated and found that slo! mutant mitochondria showed a
significant increase in ROS production (Figure 2D-G). The increase was significant when pyruvate was
used as a substrate (Figure 2D,G, p < 0.01). To dissect which complex is generating this ROS, we used
specific substrates for complex I and complex II of ETC. With glutamate/malate (substrate for complex I),
we did not see any significant difference in ROS generation (Figure 2E,G). However, succinate (substrate
for complex IT) showed a much higher level of ROS generation (Figure 2FG) in slo' mutants, indicating
that increased ROS produced could be due to complex Il and or backflow of electrons to complex I [29].
Another mutant for dSlo, slo[f05915] [30] also showed the elevated rate as well as the amount of ROS
production by complex III (Supplementary Figure S1).
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Figure 2. Mitochondrial functional defects in slo! mutants. (A) (wt) and (B) (slo!) show indirect
flight muscles stained with DHE to detect ROS. (C) Quantification of ROS fluorescence in (A) and
(B) (wt-black, slo -grey). The graphs in (D-F) show ROS generation in isolated wt (black) and slo?
mutant mitochondria (gray) in the presence of pyruvate (D), glutamate/malate (E), or succinate (F) as
substrates. Succinate and pyruvate, but not glutamate/malate show an increase in ROS as detected by
the amplex red dye, compared to wt mitochondria. (G) Quantification of (D,E), and (F,H) shows ATP
levels increased in slo' mutants (wt-black, slo'-grey). (I) Quantification of oxygen flux from enriched
mitochondria from 40 thoraces of wt (black) and slo' mutants (gray) flies. Basal, complex I, complex II,
and ROX (non-mitochondrial residual oxygen consumption rate) oxygen consumption rates do not
significantly vary between wt and slo' mutants but combined complex I and complex IT and maximum
ETC consumption are significantly higher in slo! mutants.
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During oxidative phosphorylation, the energy released from oxidation/reduction reactions
drives the synthesis of ATP. Mitochondrial disintegration is often associated with a decrease in
ATP-generation [31]. We tested ATP-generation by mitochondria from two-week-old wt and slo!
mutant flies. Surprisingly, slo! mutant flies showed a significant increase (p < 0.001, n = 5) in
ATP-generation compared to wt flies (Figure 2H). We also measured the activity of complexes from both
wt and slo! mutant flies by measuring substrate driven oxygen consumption rates. In comparison to wt,
slo! mutant flies had similar basal rates and higher but not significant complex I and complex IT oxygen
consumption rates (Figure 2I). However, upon substrate saturation of both complex I and II combined,
the oxygen consumption rate was highly significant (p < 0.05, n = 5, Figure 2I). The maximum electron
transport system (ETS) capacity was also increased in slo! mutants suggesting a higher index of
mitochondrial uncoupling in these mutant mitochondria (Figure 2I). We did not observe a sex-based
difference between in slo' mutants.

3.3. Absence of BKc, Renders Flies Susceptible to Oxidative Stress

Our findings indicate abnormally hyper-functional mitochondria, which explain the higher level
of ROS production from the mitochondria. To analyze if increased ROS renders slo! mutant flies
sensitive to oxidative stress, we fed them with paraquat (PQ), a compound known to induce oxidative
stress [32]. We found that slo! mutants (Figure 3A) are highly sensitive to PQ feeding. Flies (2-3 days
old) maintained on starvation media for 2 h followed by exposure to 5% (w/v) sucrose combined
with 20 mM PQ showed 50% death of slo! flies within 15 h whereas the 50% wt survived up to 25 h
(Figure 3A,B). Hypersensitivity of slo! mutants to PQ was highly intriguing indicating that ROS plays
a detrimental role on the survivability of slo! mutants. We tested hypersensitivity to ROS by feeding
the flies with reduced glutathione (GSH) to see if glutathione feeding helps them survive in oxidative
stress. We observed improved survival of slo! mutants similar to wild type in PQ treatment upon
feeding of GSH (Figure 3C,D). These results show that increased ROS in slo! mutants is responsible for
oxidative damage and perhaps influences the survival of flies.
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Figure 3. Oxidative stress on fly survival. (A) Survival of slo! mutants is significantly lower compared
to wt flies fed on 20 mM PQ in 5% (w/v) sucrose. (B) Histogram shows 50% survival for and slo and
wit flies. (C) Survival of slo! mutants while PQ feeding with or without glutathione. (D) Histogram
shows 50% survival for and slo' mutants with or without reduced glutathione (GSH). GSH increased
the survival of wild-type and slo' mutants.
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3.4. Mitochondrial Structural Abnormalities in BKc, Mutants

In order to study the structure of mitochondria in slo! mutant flies, we analyzed the ultrastructure
of mitochondria in wt and slo' flies (Figure 4, n = 5). Electron microscopic analysis revealed major
differences in the ultrastructure of mitochondria (Figure 4B vs. E). We studied day 1 and day 30 time
points based on the differences observed in our initial experiments. The number of mitochondria in
slo’ mutant flies was less compared to wt from older flies (day 30). The mitochondria of older slo!
mutants showed severe defects in terms of cristae arrangement (Figure 4E). The size of mitochondria
in slo! mutant older flies was also increased as compared to the young flies, which could be attributed
to their swollen appearance and loss of continuous inner mitochondrial membrane (Figure 4D,E,G).
No major differences were observed between young (day 1) vs. older wt flies (day 30, Figure 4A,B,G).

Il Wild type
W sd X

Day 1 | Day 36-

Figure 4. Mitochondrial structural defects in slo! mutants. (A) Wt mitochondria from indirect flight
muscles at age 1 day show normal cristae organization. The slo! mutant mitochondria also show
normal structure but there are increased numbers of vacuoles in the muscles (D). (B) Wt mitochondria
at the age of day 30 also show a normal cristae organization. However, the slo’ mutant mitochondria
show disorganized cristae and swollen mitochondria (E). (C) Mitochondria of very old flies (at day 60)
in wt show swirling of cristae, a phenotype characteristic of old age but occasionally young (day 1) slo’
flies also show such swirls (F), indicated by white arrows. (G) The Average area indicated by histogram
showed no difference in day 1 mitochondria in between wt (black) and slo’ (gray) but significant
(* p < 0.05) difference at day 30.

Mitochondrial swirls are known to represent early events of deterioration. Unusually close
packing of cristae in an onion peel arrangement in the flight muscle mitochondria makes it feasible to
detect it by electron micrograph [33]. We observed sporadic mitochondrial swirls in very old wt flies
(=60 days, Figure 4C) but slo' mutant showed mitochondrial swirls from day 1 in the flight muscle
(Figure 4F, one to two occurrences per field). We have also observed the appearance of vacuoles in
young slo! mutant flies (Figure 4D) whereas they were not seen in the wt counterparts. Taken together
these analyses indicate major disorganization in mitochondrial structure in slo’ mutant flies, some of
them being hallmarks of the early aging phenotype. Mitochondrial structural disintegration, as well as
the appearance of swirls, indicated possible oxidative damage to mitochondria consistent with our
earlier results. Age-related abnormalities in mitochondria from flight muscles and other tissues of
Drosophila are well-documented [34,35]. Older flies show severe mitochondrial deterioration; including



Cells 2019, 8, 945 11 of 19

loss of cristae, increase in size (swelling) and loss of arrangement in muscle fibers [33]. This prompted
us to investigate if there are differences in the lifespan of slo’ mutant flies.

3.5. slo! Mutants Show Reduced Lifespan

Mitochondria are energy-generating organelles of the cell involved in several metabolic and
signaling pathways [15] such as lifespan. Our results showed mitochondrial structural and functional
defects in BKc, mutants. Hence, we further investigated the consequence of absence of BK¢, in lifespan.

We compared the lifespan of slo' mutants with wt flies. Even though flies were cultured in the
optimal nutritional conditions and temperature (25 °C), slo’ mutants surprisingly died within 45 + 3
days (Figure 5A, B, and Supplementary Figure 52) whereas wt flies survived up to 85 + 5 days, showing
that the slo' mutant has only ~50% of lifespan compared to wt flies. There was no significant difference
between females (Figure 5A) and males (Figure 5B) slo! mutants as they both showed decreased
lifespan by ~50%. Reductions in the lifespan of female Drosophila are also associated with mating [36].
To test whether BK, has any role in ‘cost of mating’, we performed a parallel study where males and
females were housed together. We did not detect any significant differences in the observed lifespan of
flies cultured separately or together (Supplementary Figure S2).
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Figure 5. slo' mutants reveal accelerated aging. Drosophila BKc, (slo') mutants show significantly
reduced lifespan of females (A) and males (B) by approximately 50% compared to wild-type (wt) flies.
The inset shows 50% survival for wt (black) and slo! (gray), which was reduced significantly for slo!
mutants. (C) Negative geotaxis assay for wt and slo flies at young (day 3) and older flies (day 30) shows
reduced ability of slo! mutants to climb the marked distance in a given time in vials compared to their
controls. (D) Increased polyubiquitination staining is observed in slo! mutants (red) as compared to wt
in both young and older ages and quantification is provided in (E). (F) slo! mutants show increased
intestinal perforations as determined by the leakage of fluorescein dye (green) from the gut unlike
control flies, which only show the dye in their gut at both young and older ages. (G) Quantification of
fluorescein signal from (F). (H) Microarray data showing differential expression of life span-related
genes in wt and slo! mutants.

Age-related locomotor impairments including negative geotaxis [23] are well-documented in
Drosophila [37]. Drosophila slo' mutants are known to have locomotor impairments [38] which were
also observed here in both males and females (Figure 5C). No significant changes in negative geotaxis
were observed in wt flies in between 3 days and 30 days old in both genders. Wild type flies survive
up to ~90 days and our geotaxis assays were performed on comparatively younger wild type flies.
However, with age slo! mutants showed a dramatic reduction in locomotion (Figure 5C, n = 3, 5 flies
each in each trial). Reduction in lifespan is directly associated with increased proteotoxicity [39,40].
We characterized slo! mutants at young and old age along with wt flies to study the age-related
deposition of protein aggregates in a flight muscle by immunofluorescence (Figure 5D). As shown



Cells 2019, 8, 945 12 of 19

earlier [39,40] anti-Ubiquitin (Ubq) antibody labels’ protein aggregates in indirect flight muscle in
old flies, we also observed a significant increase in protein aggregates (Figure 5D,E) in slo! mutants.
Surprisingly, the slo! mutant showed a higher amount of aggregates from a young age which
increased with old age (Figure 5D). Integrated fluorescence of protein aggregates showed a significant
increase in Poly Ubq fluorescence with age in both wt and slo! mutants (Figure 5E) (n = 5). We also
observed similar results with western blot studies where poly-Ubq streak was increased in slo’
mutants. In corroboration, we observed an increase in the levels of refractory to Sigma P, Ref(2)P,
a Drosophila orthologue of mammalian p62, which is a major component of protein aggregates in
flies [41] (Supplementary Figure S3). Age-dependent intestinal-perforations are utilized as markers of
aging and physiological changes associated with aging [42]. We tested age-related intestinal perforation
by feeding fluorescein dye to young and old flies from wt as well as slo! mutant groups (Figure 5F).
Surprisingly, the mutant flies showed fluorescent dye leakage through the intestinal perforations from a
young age (3 days) indicating the premature or accelerated aging phenotype (Figure 5F). Taken together,
our results suggest that slo! mutants not only show shortened lifespan but several accelerated aging
phenotypes (n = 5).

We conducted microarray studies using 3-week old wild type and slo mutants (n = 3) to investigate
if life span related genes are differentially regulated in the mutants. We found several genes implicated
in life span regulation altered in the slo mutants (Figure 5G). Methuselah mutants are well known to
expand the life span of Drosophila [43]. We indeed found overexpression of two Methuselah genes
explaining the converse phenotype of shortened life span in the slo mutants. Overexpression of
methionine sulfoxide reductase A (Epi71CD) is shown to increase life span, whereas in our arrays
we found a decrease of this enzyme, along with the mitochondrial antioxidant peroxiredoxin 3 [44].
Several other life span related genes were altered such as Thor, NLaz, Hsp22, and Daxx [45—48]
suggesting the absence of BKc, channel having an important role in regulating life span. In line
with the observed mitochondria-related oxidative stress in slo mutants, we also found 63 oxidative
stress-related genes altered (Supplementary Figure S4).

We further wanted to investigate if overexpression of BKc, in flies has a converse effect on life
span compared to the slo mutants. We created full-length BK¢c, pUAST plasmids and injected into
flies. Consistent with our previous results in Figure 5A,B flies overexpressing human BK¢, at 29 °C,
at which Gal4 efficiency is maximum, resulted in an increase in a life span of male flies (Figure 6A).
The effect was not seen in female flies where they had a similar life span compared to wild type flies
(Supplementary Figure S5). This showed that BK¢, has a definitive role in regulating life span and the
function is genetically conserved.
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Figure 6. slo" expression modulates survival. (A) Males overexpressing human (Hs) BK¢, increase
life span. Inset shows quantification of 50% survival of control and Hs BKc, overexpressing flies.
(B) Lifespan of control, slo RNAi under 24B Gal4 and slo! mutants at 29 °C. (C) slo! mutants are
partially rescued by the overexpression of Daughterless Gal4-UAS; Sod2. Inset histograms represent
the 50% survivability of the mutants. Histograms represent the 50% survivability of the mutants in
both (B) and (C).
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Using RNAis against BK¢, we also narrowed down that the reduction in lifespan is at least
partly through its action in the muscles. We tested global (Daughterless Gal4), neuronal (Elav Gal4),
and muscle (24B Gal4) knockdown of BK¢, and found that muscle knockdown of BK¢, showed a
reduction in lifespan compared to control flies (Figure 6B). We found that 24BGal4>slo RNAi decreased
the lifespan (Figure 6B) from 52 + 4 days to around 42 + 3 days at 29 °C, at which Gal4 efficiency is
maximum. The 50% survivability bar graphs show a significant decrease in the lifespan of 24BGal4>slo
RNAi (Figure 6B). The reduction in locomotor activity with age could also be associated with loss of
BKc, in the muscles where mitochondria play an important role [49].

As ROS generation was elevated in slo! mutants, we attempted to rescue the reduction in lifespan
of BKc, mutants by chelating ROS. We overexpressed SOD2 using UAS-SOD2 in slo! mutants using a
ubiquitous daughterless-Gal4 driver and cultured them to study their lifespan. As shown in Figure 6C,
both wt, and slo! mutants showed a modest but significant increase in lifespan on overexpression
of SOD2 at 25 °C (we observed similar results at 29 °C as well). We further calculated the time at
which 50% of flies survived. Overexpression of SOD2 increased 50% survivability by 10% but for slo
mutants, we observed ~36 + 8% increase. These results partially implicate ROS in the reduction of the
life span of slo! mutants and chelating ROS rescued the lifespan of slo' mutant flies. This suggests,
in addition to ROS, other mitochondrial abnormalities observed in slo! mutants could be contributing
to the reduction of lifespan.

4. Discussion

The presence of BK¢, in mitochondria has been extensively pursued in the mitochondrial channel
field in recent years [8,50]. Hence, we investigated if Drosophila mitochondria contain BKc, currents.
Our electrophysiological studies provide clear evidence for the presence of BKc, channels in the
mitochondpria of Drosophila. The currents measured are of typical BK¢, characteristics and they could
be blocked by paxilline, and activated by calcium. Surprisingly, Po decreased at higher voltages
which needs further characterization as this phenomenon could result from the presence or absence of
additional regulatory subunit. Our immunolabelling of mitochondria also confirmed localization of
BKc, to the mitochondria. These experiments indicate that the large current in Drosophila mitoplast is
highly sensitive to changes in Ca?* concentrations in the mitochondrial matrix, and could be blocked
by highly specific BKc, inhibitor, paxilline. The large-conductance and sensitivity to N51619, paxilline
as well as Ca?* and voltage in addition to mitochondrial immunocytochemistry indicate that Drosophila
mitoplast possess functional BK¢, proteins. These experiments for the first time establish BK¢, as a
mitochondprial ion channel across the species confirming an evolutionary presence. However, BKc, is
located in several other membranes, for example in plasma membranes in neurons and astrocytes [7,8],
along with mitochondrial membranes. It is yet to be deciphered how mitochondrial function is
controlled by BKc, with respect to its various locations.

The absence of BK¢, has several consequences on mitochondria. A dramatic increase in the
accumulation of ROS was observed in slo' mutant flies. Increased ROS can be detected in live tissues
of mutant flies and also a higher amount of ROS generation was observed in isolated mitochondria.
Energized slo! mutant mitochondria produce increased levels of ROS compared to wt mitochondria
when provided with specific substrates. This indicates that the increased ROS is a consequence of
dysfunctional mitochondria, although it does not rule out the contribution from NOX related enzymes
that are capable of producing ROS. However, other mitochondrial readouts such as ATP and oxidative
phosphorylation measurements further consolidate the hypothesis that the increased ROS observed
in slo’ mutant animals is due to mitochondria. The increase in ATP could also be due to sustained
membrane potential caused by reduced potassium leak, increasing proton flux from ATP synthase.
These results indicate hyper-functional mitochondria, which explain the higher level of ROS production
from the mitochondria. We have recently shown that genetic activation of BKc, channels reduces ROS
upon IR injury stress [13], which further supports a role for BK¢, in regulating ROS.
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The BKc, flies also display oxidative stress sensitivity in a ROS-based pathway [51]. When we
subjected the flies to oxidative stress using PQ, the BKc, mutant flies died within 48 h compared to
wt flies, which survive for more than 3 days. This indicated that BKc, flies are under high oxidative
stress and any further increase in ROS could be detrimental. The converse experiments by feeding
glutathione increased the survivability of slo! mutants indicating that ROS is at least a factor that
determines the survival of slo’ mutants.

Consistent with the functional abnormalities of mitochondria, slo! mutants also show several
structural defects in mitochondria. Although younger flies contain mitochondria of normal appearance,
occasional vacuoles and mitochondrial swirls are observed in flies even of day 1 age. As the flies age,
mitochondrial structural defects are further enhanced where cristae structure is lost and mitochondrial
swelling occurs. This depicts a progressive disintegration of mitochondria in an accelerated manner
perhaps one of the causes leading to the early death of flies. Given that mitochondria from slo
mutants produced higher amounts of ATD, it is possible that the absence of BKc, results in changes in
cristae as observed here which results in assembly of respiratory chain supercomplexes (RCS). RCS are
quaternary supramolecular structures that allow channeling of electrons amongst individual respiratory
chain complexes facilitate selective use of RCC subsets for nicotine adenine dinucleotide (NADH)- or
flavin adenine dinucleotide (FAD)-derived electrons [52]. These type of supramolecular organization
is commonly found in cristae, and the mitochondrial ATP synthase is also assembled as dimers
with increased ATPase activity and the dimerization is further augmented during autophagy [53].
Mitochondria are closely associated with lifespan and mitochondrial defects accumulate as the animal
ages. Interestingly in slo! mutants, mitochondrial abnormalities can be seen on day 1 or birth.
Mitochondrial switls are occasionally seen in slo' mutants, a phenotype hallmark of very old/dying
flies in wt situations.

Ion channels are reported to alter with age in rats and humans [17,54]. Expression of BK¢, channels
was shown to be reduced in aged coronary arteries possibly resulting in decreased vasodilator capacity,
increased the risk of coronary spasm and myocardial ischemia in older people [17,54,55]. In mice,
the absence of BKc, causes low body weight and decreased survivability in the first 10 weeks [10,56]
but a complete life span analysis has not been reported. In contrast, a recent report indicated a
moderate increase in life span and motor neuron activity in C. elegans BKc, mutants [11]. However,
broad augmentation of endogenous BK currents in vivo (gain-of-function BKc, TG mice) resulted in
protecting the heart from ischemia-reperfusion injury [13]. In our current study, we have discovered
that Drosophila lacking BKc, showed a decrease in lifespan supporting mammalian observations.
Flies mutant for BKc, not only die rapidly but show early and premature accumulation of aging
markers. This indicates that the presence of BK¢, is important in the regulation of aging. The key
reason for this difference between C. elegans, flies, and mammals could be attributed to the role of
electron transport chain (ETC) and ROS in aging. In C. elegans any perturbation with ETC results in
an increase in life span due to their anaerobic energy-producing capacity, which is the exact opposite
to what is observed in mammals and Drosophila [57]. One of the best examples for this difference is
in frataxin homolog gene (frh-1), where knocking down frh-1 significantly increased the life span of
C. elegans [58], but its ablation in mouse decreased life span [59], and recessive mutations in frataxin
cause Friedreich’s ataxia [60] in humans.

In agreement with accelerated aging, we observed the accumulation of age-related phenotypes
just after the birth of flies such as intestinal perforation and polyubiquitin aggregation accompanied by
motor defects in slo! mutant flies. This provides evidence that BK¢, channel function is required from
an early age, perhaps from developmental stages, for the animal to age in a wild type manner and it
regulates life span. Our microarray data intriguing shows increased expression of several methuselah
genes whose mutants are known to extend life span [43]. While it is not clearly shown if an increase
in methuselah expression reduces the life span, it is consistent with the proposed role of methuselah
where lack of it increases life span. We also observed several life span related genes altered in the
slo mutants along with oxidative stress genes in our microarray [45-48]. These results collectively
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show that slo is a major regulator of oxidative stress and life span and a detailed study is required in
the future to narrow down the direct role of BK¢, in regulating life span. The major limitation is the
contribution of mitochondrial vs. non-mitochondrial BKCa in regulation the lifespan of Drosophila.

Supporting our observation of ion channels regulating lifespan, it was recently shown that low
temperatures activate a cold-sensitive cation channel TRPA-1, which extends a lifespan by triggering
cellular signaling pathways [61]. It is also interesting that lack of BK¢, only from the muscles also
causes reduced lifespan similar to what is reported in earlier studies [62]. Conversely increasing
BKc, by Gal4-UAS based overexpression increased the life span indicates a true role for BKc, in
regulating life span. Human BKc, is 70% identical to Drosophila BKc, but is sufficient to rescues
as well as augment the life span of Drosophila indicating the function could be conserved across
species. This result is of relevance given expression of BK¢c, goes down with age in humans [63].
However, it is intriguing that only males show this effect while females do not show life span extension
upon overexpression. These results are in agreement with increase in a life span of male flies on
overexpression of specific DNA repair endonucleases [64]. DNA repair mechanisms are ATP-dependent
processes, and dysfunctional mitochondria over a longer period of time could trigger apoptosis and cell
death. This indicates gender-based differences in how BK¢, regulates life span or could be involved in
DNA repair mechanisms, which needs detailed study.

Taken together, our study establishes BK¢,/Slo as an important player in maintaining the structure
and functional integrity of mitochondria in Drosophila, and regulating lifespan. These findings also
corroborate earlier studies that expression of BKc, reduces during aging which increases the risk of
cardiovascular diseases in older people [17]. Our study also proves the existence of ion channel activity
for BKc, in the Drosophila mitochondria. Given the dual cellular localization (intracellular membranes
vs. plasma membrane) of BKc,, it is critical to evaluate its spatial specific role(s) in pathophysiology
in future studies. In our findings, we have not ruled out the role of plasma membrane BKc, but
introduced its new physiological role in aging. Presence of BKc, in the mitochondria and its role in
modulation of ROS opens up avenues to explore antioxidant-based therapies in diseases and disorders
related to these large conductance potassium channels. In the past decade, studies have indicated that
pharmacological and genetic activation of BKc, results in cellular and organ protection from ischemic
injuries. Despite recent successes with animal models, the translational aspect of BKc, channel openers
is still lacking due to poor selectivity of these agonists. With recent advancements in gene delivery and
gene therapy, our recent and current work reiterates the importance of expression of BK¢, to protect
organs from ischemic insult or increasing life span.
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