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Abstract

Diffusion MRI has evolved towards an important clinical diagnostic and research tool. Though clinical routine is using mainly
diffusion weighted and tensor imaging approaches, Q-ball imaging and diffusion spectrum imaging techniques have
become more widely available. They are frequently used in research-oriented investigations in particular those aiming at
measuring brain network connectivity. In this work, we aim at assessing the dependency of connectivity measurements on
various diffusion encoding schemes in combination with appropriate data modeling. We process and compare the
structural connection matrices computed from several diffusion encoding schemes, including diffusion tensor imaging, q-
ball imaging and high angular resolution schemes, such as diffusion spectrum imaging with a publically available
processing pipeline for data reconstruction, tracking and visualization of diffusion MR imaging. The results indicate that the
high angular resolution schemes maximize the number of obtained connections when applying identical processing
strategies to the different diffusion schemes. Compared to the conventional diffusion tensor imaging, the added
connectivity is mainly found for pathways in the 50–100mm range, corresponding to neighboring association fibers and
long-range associative, striatal and commissural fiber pathways. The analysis of the major associative fiber tracts of the brain
reveals striking differences between the applied diffusion schemes. More complex data modeling techniques (beyond
tensor model) are recommended 1) if the tracts of interest run through large fiber crossings such as the centrum semi-ovale,
or 2) if non-dominant fiber populations, e.g. the neighboring association fibers are the subject of investigation. An
important finding of the study is that since the ground truth sensitivity and specificity is not known, the comparability
between results arising from different strategies in data reconstruction and/or tracking becomes implausible to understand.
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Introduction

Over recent years, there has been a growing interest in

investigating the connectivity profile of the entire brain, referred

to by the scientific community as the human connectome [1,2]. By

allowing in vivo imaging of the brain’s major fiber pathways,

diffusion MR tractography [3–6] has turned out to be a promising

technique to map the connectome at the millimeter scale.

Recently, several groups have independently proposed to build

structural connection matrices from diffusion MR tractography

using various diffusion acquisition protocols and models [7–10].

Diffusion Tensor Imaging (DTI) is a frequently-used method to

model the diffusion data in order to obtain orientational

information. This method maps the orientation of fibers by fitting

a second-order symmetric tensor on the diffusion data [11].

However, the use of a single tensor limits DTI to a single direction

of maximum diffusion inside each imaging voxel. Consequently,

DTI fails to correctly map diffusion in voxels where two or more

fiber populations interfere [12]. Behrens et al. concluded that one

third of white matter voxels may be affected by this problem [13],

and later work by Jeurissen et al. reported finding two or more

fiber orientations in 90% of white matter voxels [14].

Other approaches have been proposed to address this issue,

such as Diffusion Spectrum Imaging (DSI), which allows

measuring the diffusion spectrum [15–17]. This method requires

specific diffusion encoding schemes, by which three-dimensional

q-space is sampled, usually following a Cartesian grid. DSI was

validated with phantoms made of parallel capillaries filled with

water, as well as with manganese-enhanced rat optic tracts. The

results showed that the crossing fiber orientations estimated with

DSI were in excellent agreement with the results from histology

[18,19].

Subsequently, another diffusion acquisition has emerged, called

high angular resolution diffusion imaging (HARDI). These
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acquisitions are characterized by a large number of diffusion

encoding gradients distributed over a single shell in q-space.

Several reconstruction schemes can be used to analyze HARDI

data, such as Q-Ball Imaging (QBI) [20] or Constrained Spherical

Deconvolution (CSD) [21]. QBI is a model-free reconstruction

scheme measuring the angular structure of the diffusion spectrum.

It has been shown to allow the mapping of complex diffusion

structures in areas of crossing and kissing fibers, such as the

intersection between the optic radiation and the splenium of the

corpus callosum, Meyer’s loop, or the middle temporal gyrus [22].

Though HARDI-based approaches and DSI have undoubtedly

the potential to better disentangle complex fiber structures

compared to DTI, it still remains unclear to which level these

techniques provide a gain for in vivo whole-brain tractography and

thus in clinical research, nor whether respective scalar maps may

provide additional information over the fractional anisotropy (FA)

or apparent diffusion coefficient (ADC) maps.

Behrens et al. suggested that higher order reconstruction

schemes should increase the sensitivity of tractography as

compared to DTI [13], especially for non-dominant fiber tracts.

More recently, Wedeen et al. made a comparison between DSI

and DTI tractography based on adult macaque and human brains

[12]. They showed a substantial improvement with DSI in the

mapping of crossing fibers, especially in complex fiber crossing

areas such as the optic chiasm, the centrum semi-ovale or the

brainstem. However, comparing DTI and more complex

approaches is still a poorly understood topic. A better knowledge

of the relationship between the diffusion encoding scheme, the

fiber orientation estimation method, and the resulting tractogra-

phy would help in selecting the adequate diffusion scheme for a

given application.

In this work, we acquire diffusion MRI data sets with different

encoding schemes, and study the influence of the diffusion scheme

on the mapping of the human connectome. This presents a

challenge, as the methods differ in a number of acquisition

parameters such as overall scan time and b-value used and as the

reconstruction may introduce bias to the results. To be able to

compare the results, we need to find a common description. Thus,

we aim at comparable SNR properties, apply for all data the same

tractography methodology, and use the structural connection

matrices as a means to investigate differences between the

techniques. It should be noted that the applied diffusion encoding

schemes were chosen to match the appropriate models and

analysis methods, i.e. DTI, QBI and DSI. In the following, the

term diffusion encoding scheme will be used to refer to a data set

consisting of diffusion images with a specific number of diffusion

directions and q-space frequencies. This implies subsequently the

use of an appropriate model and method to estimate the

orientation information.

For the sake of comparability, we aim at reducing the degrees of

freedom in reconstruction and tractography, and choose an

approach that is publicly available and provides means to deal

with all acquired input data. This approach could be criticized as

all the aspects acquisition, reconstruction and tractography could

be specifically optimized towards a particular goal. In this study,

however, we purposely aim at acquiring input data that match in

basic conditions (SNR) and we rely on publicly available

methodology.

We compare the structural connection matrices obtained from

three diffusion schemes. The outcome of the connectivity matrices

represents clinically relevant information and – at the same time –

this metric allows us to largely omit differences in the methodology

that may exist but do not reflect a practical relevance. We evaluate

and quantify the performance in terms of brain connectivity by

using global network measures and by studying several associative

fiber pathways. Using those measurements, we show that the three

schemes exhibit clear differences and analyze the factors

responsible for those differences. However, we emphasize that

ultimately, the choice of the diffusion scheme should be driven by

the application.

Materials and Methods

1 MRI Acquisitions
This study was approved by the ethics committee of the Centre

Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzer-

land). Written informed consent was obtained for all subjects, in

accordance with our institutional guidelines. Five healthy female

volunteers from 22 to 30 years old were scanned at 3T (Magnetom

Trio, a Tim System, Siemens, Germany) using a 32-channel

receive head matrix coil. For each subject, eight diffusion

acquisitions were performed on three separate days, as follows:

four DSI scans with 258 directions, sampling q-space by taking the

points of a cubic lattice within a hemisphere whose radius is 5

lattice units, three of them with a maximum b-value of 8000 s/

mm2 (DSIq5b8000(1), (2) and (3), acquired on day 1, 2 and 3) and

one with 6400 s/mm2 (DSIq5b6400 on day 3); one DSI scan with

129 directions, sampling q-space by taking the points of a cubic

lattice within a hemisphere whose radius is 4 lattice units, with a

maximum b-value of 6400 s/mm2 (DSIq4 on day 2); one HARDI

scan with 257 encoding gradients uniformly distributed over a

sphere and a maximum b-value of 3000 s/mm2 (HARDI on day 1,

or QBI); two DTI scans with 65 and 21 directions (DTI65 and

DTI21 on day 1 and day 3, respectively), with encoding gradients

uniformly distributed over a sphere and a maximum b-value of

1000 s/mm2. The acquisition parameters are summarized in

Table 1. Note that the HARDI scan is frequently denoted by the

term QBI in what follows, in order to give emphasis to the

employed reconstruction technique.

For all acquisitions, a twice-refocused spin echo sequence [23]

with bipolar diffusion encoding gradients and identical imaging

parameters was used (repetition time, field of view and spatial

resolution). This sequence allows minimization of residual eddy-

current effects to a level that has been demonstrated to be

negligible for the presented application at the used system [23,24].

Therefore, post-hoc eddy current correction was not applied. The

Table 1. Parameters of the diffusion MR acquisitions.

DSIq5b8000 DSIq5b6400 DSIq4 HARDI DTI65 DTI21

TR (ms) 6000

TE (ms) 138 138 138 110 89 89

Max. b-value
(s/mm2)

8000 6400 6400 3000 1000 1000

Encoding
gradients

258 258 129 257 65 21

Acquisition
block

96696634

Spatial
resolution
(mm)

2.2162.2163

Number of
averages

1 1 2 1 4 3

Day 1,2,3 3 2 1 1 3

doi:10.1371/journal.pone.0075061.t001
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diffusion encodings in the DSI schemes were implemented in an

interleaved fashion, leading to an alternating acquisition of low

and high b-value images, which serves an improved qualitative

assessment of motion. To maximize the match between the scans

with different encoding schemes, the acquisition time was kept

constant (approx. 26 minutes), i.e. the DTI65 scan was acquired

with four averages leading to 256 (4664) acquired diffusion

directions. Individual repetitions (single averages) as well as the

complex averaged images (two and four averages) were used for

the comparison analysis. The complex averaging is based on the

method presented in [25], however, no phase correction was

applied as the scans with the highest diffusion weighting of 8000 s/

mm2 did not provide enough signal for a reliable phase estimation.

Though suboptimal due to the lack of phase correction, it turns

out that the used implementation improved the data quality of

averaged images. In agreement with recent literature [25] we

found that i) compared to magnitude averaging, the complex

averaging decreases the noise floor following the square root law

and ii) the SNR improvements are very similar to magnitude

averaging and only slightly below the expected square root

increase as function of number of averages. SNR estimates slightly

below the expected square root dependency indicate the presence

of residual phase cancellations from bulk head and physiological

motion.

Similarly, the DSIq4 was acquired with two averages leading to

256 (26128) acquired diffusion directions (in the following we refer

to the averages as individual scans). The DTI21 was not SNR-

matched and resulted from the averaging of three individual scans,

corresponding to an acquisition time of about 6 minutes. Note that

all diffusion acquisitions used an identical EPI readout and

repetition time. Matching the EPI readout time (SNR) of the

individual scans leads to the acquisition of averages for DSIq4,

QBI and DTI series. This enables additional analysis steps, i.e.

exploring the effects of averaging on the connectome based

analysis for those scans. As an illustration, several diffusion-

weighted images are depicted in Figure 1.

For anatomical reference, a high-resolution T1-weighted (MP-

RAGE) MRI was performed in a matrix of 24062566160 voxels

of 1mm61mm61.2mm resolution (TR/TI/TE = 2300/900/

2.89ms, iPAT = 2, TA = 5:12min) [26].

2 Structural Connection Matrices
The creation of the structural connection matrices follows the

four-step process depicted in Figure 2 [27,28]. First, both the gray

and white matter volumes are extracted from the high-resolution

T1-weighted acquisition of day 1, and the gray matter (cortical

surface and sub-cortical structures) is partitioned into small regions

of interest (ROIs). Then, each diffusion MR acquisition (each

series) is processed in order to get a diffusion map, i.e. a map

containing the orientational information in an adequate form for

tractography. The diffusion map is subsequently used to perform

whole-brain tractography. Finally, for each subject and for each

diffusion MR acquisition, a connection matrix is built by

computing the number of fibers connecting every pair of ROIs.

Each of these steps is described in what follows.

2.1 Extraction and Partition of the Cortical Surface and
Sub-cortical Structures

The aim of this step is to partition the cortical surface into ROIs

that are compact and of similar size. Ideally, each ROI should be

placed in the same anatomical location for each subject, thus

allowing inter-subject comparison of the connection matrices. The

proposed procedure relies on an atlas-based cortical registration

method using the curvature information, i.e. sulcus and gyrus

[29,30]. This method has been directly implemented in the

Freesurfer software (http://surfer.nmr.mgh.harvard.edu), provid-

ing an automatic labeling of the cortex into 66 gyral-based parcels,

which are defined using curvature-based information on 40

manually labeled brains [29].

When studying the human connectome, the partition into those

66 anatomical regions may however not provide a sufficient

resolution to evaluate the connectivity locally. In this context, our

group recently proposed a subdivision of the original Freesurfer

atlas into 998 small ROIs with a surface of about 140mm2 [27,28].

This custom atlas is transferred to the cortical surface of each

subject with Freesurfer, by applying the transformation computed

for the original atlas-based cortical registration, thus maintaining

the topological constraints.

Additionally, the deep gray nuclei (thalamus, pallidum, puta-

men, caudate nucleus, nucleus accumbens and subthalamus), as

well as the hippocampus, the amygdala and the brainstem are

identified by an atlas-based segmentation using the same software

[31]. Since all these structures are relays for the cerebral fibers,

they are considered as a ROIs, leading to a total number of 1015

ROIs.

Furthermore, whole-brain tractography requires a white matter

mask which defines the volume in which the virtual fibers are

allowed to grow. This white matter mask is obtained by filling the

white matter surface and removing the ventricles, the deep gray

nuclei, the hippocampus and the amygdala.

The gray matter partition is based on the T1-weighted MP-

RAGE acquisition. Since diffusion MR data are acquired using a

different field of view and because of the subject’s position

variability across scanning sessions, both the cortical partition and

the white matter mask need to be transformed to the space of each

diffusion MR acquisition. This is achieved using a rigid-body

registration method (FLIRT registration tool with 6 degrees of

freedom [32], http://www.fmrib.ox.ac.uk/fsl/). Note that this

registration does not account for the different distortion properties

of the anatomical and the EPI readouts.

2.2 Processing of Diffusion MR Acquisitions
Before reconstruction of the orientation information, image

quality of each diffusion series was manually inspected visually for

subject motion. The first processing of the raw images from each

diffusion series comprised the registration to the anatomical

MPRAGE scan using an affine registration to remove inter-series

subject motion.

Each diffusion MR acquisition has to be processed to produce a

diffusion map containing the orientational information, such that

it is suitable for whole-brain tractography. The reconstruction

technique is specific to the scheme used for the diffusion MR

acquisition. For DSI data, reconstruction of the data is achieved

according to the DSI protocol [16] as follows: the diffusion

spectrum is obtained by taking the Fourier transform of the q-

space MR signal. Next, the diffusion spectrum is radially

projected, yielding an Orientation Density Function (ODF). In

other words, the ODF extracts the angular structure of the

diffusion spectrum. In the case of HARDI, data are processed

according to the QBI technique, i.e. using the Funk-Radon

transform, which was shown to provide a good approximation to

the ODF [20]. Finally, DTI data are reconstructed by fitting a

second-order symmetric tensor, describing the diffusion along each

direction [11]. All these reconstruction techniques are implement-

ed in the Diffusion Toolkit [33] (http://www.trackvis.org/dtk),

allowing an automatic processing of diffusion MR data. The

diffusion toolkit is used for all reconstructions as it parameterized

all reconstructions in a way that they provide ODFs and/or tensor

Comparison of Diffusion MRI Schemes
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fields optimized for streamline tractography. In the context of the

goals of this study, this provides a fair base for comparison

performed across the various diffusion scans.

2.3 Whole-brain Tractography
Whole-brain tractography is performed using a streamline

algorithm which creates virtual fibers in the brain white matter,

estimating the trajectories of real axonal bundles [8,12,34], as

described below.

First, in each white matter voxel a set of normalized direction

vectors is extracted, corresponding to the local maxima of

diffusion. For DSI and QBI data, this is achieved by identifying

the local maxima of the ODF. In the case of DTI a unique vector

is obtained corresponding to the first eigenvector of the tensor.

Then, in each voxel a set of uniformly distributed initialization

points is chosen according to a random process. The number of

points is arbitrarily set to 32nv, with nv the number of direction

vectors in voxel v. Next, from each initialization point a fiber

growth process is started in two opposite directions using a fixed

step size of 1mm, locally following the direction vector that is the

closest to the current fiber trajectory. To avoid abrupt changes of

direction, the process is aborted if it results in a change of

trajectory sharper than 60 degrees/mm. The growth process is

Figure 1. Diffusion-weighted images. Diffusion-weighted images obtained with various b-values: b = 1000 s/mm2 single average (A), b = 1000 s/
mm2 four averages (B), b = 3000 s/mm2 single average (C), b = 8000 s/mm2 single average (D).
doi:10.1371/journal.pone.0075061.g001
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stopped when both end-points of the virtual fiber have left the

white matter.

Additional fiber post-filtering is performed as follows. A length

threshold is applied, such that all fibers shorter than 5mm are

eliminated. Very short fibers (range ,5 mm) are indeed not

considered as relevant information as we mainly focus on the

major fiber pathways. The same procedure is applied to fibers

longer than 200mm, which are unlikely to represent realistic

axonal pathways considering the field of view of the MR

acquisitions. Finally, a fiber is kept only if both end-points lie in

one of the ROIs obtained with the previous step. After filtering,

each tractography experiment results in approximately 0.4 to 0.6

million virtual fibers. Note that this quantity results from an

arbitrary setting of the number of initialization points for

tractography.

2.4 Construction of the Connection Matrices
Combining the gray matter partition and the whole-brain

tractography described previously [27,28], we can identify the set

of fibers F(i, j) connecting each pair of ROIs i and j. We then

collect this information in a connection matrix, where each cell

M(i, j) contains the number of fibers connecting the ROIs i and j.

Note that the diagonal of the connection matrix is arbitrarily set to

zero, i.e. all fibers that link a given ROI to itself are discarded.

Note that the connectivity as it is measured in this work is similar

to the definition of the connectivity proposed by Yo et al. for

deterministic tractography approaches [35]. However, since our

ROIs all have similar sizes, we do not normalize the connectivity

by the surface of the ROIs.

In what follows, we use the term fiber when referring to a single

trajectory produced by tractography. In contrast, the set of fibers

connecting a given pair of ROIs is denoted by the term connection.

Additionally, we also introduce the matrix of the connection

distance d(i, j), defined as the geodesic distance in the brain white

matter (i.e., the shortest path being confined in the white matter

volume) separating the ROIs i and j. This metric turns out to be

essential to the analysis of the connection matrices.

Since we aim at studying the influence of the diffusion encoding

scheme on the connection matrices obtained with tractography, it

is essential to 1) maximize the comparability across the diffusion

schemes and 2) minimize the differences in the methodology. First,

we use identical EPI readout duration and repetition time for all

diffusion acquisitions and we use complex averaging to keep the

scan time constant. For the reconstruction of the pixel-wise tensor

or ODF the respective SNR is scaling with the square root of the

number and duration of the EPI readout. Thus, a match of scan

time represents an attempt to equalize the different diffusion

acquisitions. Second, the processing of the diffusion data is based

on a software package that is suited for all the diffusion encoding

schemes used in this study. This ensures that the produced

diffusion maps have identical properties. The other steps of the

methodology are independent from the diffusion acquisitions and

applied equally (i.e. with the same parameters) to all diffusion

maps (e.g. registration of the gray matter partition and

tractography).

Results

1 Visual Inspection of All Scans
Qualitatively all scans are rated of no or very low motion

parameters. As mentioned previously, the diffusion encodings in

the DSI schemes are implemented in an interleaved fashion,

leading to an alternating acquisition of low and high b-value

images. Thus, visual inspection of an entire DSI scan resorted by

ascending b-value allows reasonable qualitative assessment of

motion throughout the entire experiment.

2 The Relationship Between Connectivity and Diffusion
Encoding Scheme

We evaluate the connectivity produced by each diffusion

encoding scheme using the number of computed connections,

i.e. the number of links between a pair of ROIs given by at least

one fiber. The results of the whole brain analysis for the individual

subjects are reported in Table 2. To account for physiological and

Figure 2. Overview of the methodology. The creation of the structural connection matrices is a four-step process: gray matter partition into
regions of interest (ROIs) and white matter mask extraction (A), processing of the diffusion MR acquisitions (B), whole-brain tractography (C) and
construction of the connection matrices (D).
doi:10.1371/journal.pone.0075061.g002
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anatomical differences across individuals, we define the normal-

ized connectivity as the ratio between the number of connections

computed from any scan and the average connections of the three

DSIq5b8000 scans. The relationship between the normalized

connectivity and the diffusion encoding scheme is depicted in

Figure 3. Additionally, we perform paired t-tests on the number of

connections under the null hypothesis that the samples come from

distribution with equal means, and report the corresponding p-

values in Table 3.

The normalized connectivity is found to be very similar across

the three DSIq5b8000 scans, with a variation of only 5.2%. The

normalized connectivity obtained with the DSIq5b6400 scan is

98.4% (averaged over the five subjects). Accordingly, the null

hypothesis cannot be rejected for the number of connections

between the four DSIq5 scans at p = 0.05. The averaged intra-

subject scan-rescan variability, evaluated by computing the

standard deviation across the three DSIq5b8000 scans (s= 229),

is found to be smaller than the averaged inter-subject variability

(s= 533). Note that the scan-rescan reproducibility is performed

for DSIq5b8000 only, as the entire scanning protocol was being

performed on three separate days due to the extensive scan time.

The scan-rescan reproducibility of the DSIq5 scan is used to

ensure the comparability of the data rather than as a comparison

metric across the various diffusion encoding schemes.

The DSIq4, QBI and DTI scans result in a significantly lower

normalized connectivity than the DSIq5 scans (p#1.8e-3). Those

results are unchanged after a Bonferroni correction, except for the

pair DSIq4– DSIq5b8000(2) for which the null hypothesis cannot

be rejected. We note that DSIq4 and QBI scans produce similar

results, with a normalized connectivity of 84.6% and 83.6%

(averaged over the five subjects), respectively. The paired t-tests

reveal that the differences between those two diffusion schemes are

not significant (p = 0.32). The DTI64 and DTI20 scans produce

the lowest normalized connectivity overall, with an average of

76.5% and 77.8%, respectively. In this case again, the null

hypothesis cannot be rejected (p = 0.20), but the two scan variants

differ significantly from both the DSIq5 (p#2.1e-4) and the

DSIq4/QBI (p#6.8e-3) schemes. We note however that after a

Bonferroni correction, the differences between DTI and DSIq4/

QBI scans do not remain significant. Additional results obtained

with the DTI scans are presented in the next section.

In the results presented above, a connection is considered if

there is at least one virtual fiber between the corresponding pair of

ROIs. The added connections observed for the DSIq5 scans might

thus be due to spurious fibers (i.e. single tracts generated

artifactually), and hence not representing meaningful connections.

To rule out this possibility, we repeat our experiments by

considering only the connections consisting of at least nf fibers,

with nf = {5, 20}. Our observations remain valid for these two

connectivity thresholds, suggesting that the added connections

observed for the DSIq5 scans are not spurious connections (see

Tables S1–S4).

With the proposed tractography algorithm, the number of

generated fiber tracts is proportional to the average number of

diffusion directions per voxel, which depends on the type of

diffusion encoding scheme. The higher connectivity (defined as

higher number of connections) observed for DSI and QBI scans

could thus result artifactually from the higher number of seed

points per voxel. To rule out this possibility, we apply a fiber

limitation as follows. First, we choose a fixed value Fs defined as

the minimum number of fibers produced for subject s across all

diffusion schemes. Then, for each subject and diffusion scheme, a

subset of Fs fibers is randomly chosen prior to the computation of

the connection matrix. This ensures that every connection matrix

of an individual subject is built using the same number of fibers.

Although a small increase of the averaged normalized connectivity

can be observed with the fiber limitation for the DSIq4, QBI and

DTI scans (up to 2.2%), the reported results are essentially

unchanged (Figure 3, light gray bars). Consequently, the reported

connectivity differences cannot be attributed to the number of

Figure 3. Normalized connectivity as a function of the diffusion encoding scheme. Dark gray bars represent averages across the five
subjects and symbols indicate data for individual subjects. Light gray bars represent the averaged normalized connectivity after fiber limitation,
ensuring that every connection matrix of an individual subject is built using the same number of fibers.
doi:10.1371/journal.pone.0075061.g003
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generated fiber tracts, implying that the connectivity results are

largely decoupled from the number of seed points per voxel.

3 The Effect of Complex Averaging
As previously mentioned, we use complex averaging as a way to

maximize the SNR [25]. Averaged DSIq4 and DTI65 data are

thus computed using 2 and 4 individual scans, respectively, but

also the individual scans that form the SNR matched DSIq4 and

QBI experiment are investigated. Note the four times reduced

scan time for the individual scans (6.5 vs. 26 minutes). DTI21 data

result from an averaging of three individual scans only, and

consequently have comparable SNR properties to the individual

scans of DTI65. In what follows, we analyze the influence of the

averaging on the connectivity, by comparing the results from

individual scans with those obtained after averaging.

We analyze the normalized connectivity obtained from the

following data sets: DSIq4 individual scans and averaging of two

scans, DTI21 individual scans and averaging of two and three

scans, DTI65 individual scans and averaging of two, three and

four scans. For DTI data, the normalized connectivity is found to

be very similar, not only for the various levels of averaging, but

also across DTI21 and DTI65 data sets. This is confirmed by

paired t-tests on the number of connections, showing that the DTI

scans cannot be statistically differentiated from each other (p$0.19

for all pairs of DTI data sets). However, we observe a trend of

higher variance when averaging scans and when going to higher

directional encodings. The normalized connectivity obtained with

the DSIq4 scheme is found to be higher for the individual scans

than for the averaged acquisitions (2.4% on average). Although the

observed difference is small it remains statistically significant, as

confirmed by the paired-t test on the number of connections

(p = 3.85e-4).

4 The Role of Connection Distance
Next, we focus on the connection distance, i.e. the distance

along a fiber path between a pair of ROIs. The connection

distance has been previously defined as the geodesic distance in the

white matter separating each pair of ROIs [36]. For each

connection matrix, we collect the set of distances associated with

the obtained connections. We report in Figure 4 the connection

distance distribution for the various diffusion encoding schemes

(averaged over the five subjects). Although the distributions reveal

similar characteristics, the DSIq5 scans show a heavier tail

compared to the DTI scans (see distances .50mm). The DSIq4

and QBI scans lie between the DTI and DSIq5.

Moreover, we notice that the differences across diffusion

schemes are mainly found in the range 50–100mm. To confirm

this observation, we compute the averaged normalized connectiv-

ity in the following categories of connection distance: 0–50mm,

50–100mm and 100–200mm. The results obtained for each

diffusion scheme are reported in Table 4. The normalized

connectivity in the range 0–50mm is above 89% for all diffusion

schemes. For the range 50–100mm it is only approximately 76%

for DSIq4 and QBI, and 59% for DTI65 and DTI21. In the range

100–200mm the normalized connectivity is above 81% for QBI

and DTI scans, but only of 66% for the DSIq4 scan. However,

due to the small proportion of long connections in the data sets the

variability is particularly high in the range 100–200mm. The

corresponding results should thus be interpreted with caution.

Table 2. Number of connections for the individual subjects.

DSIq5
b8000(1)

DSIq5
b8000(2)

DSIq5
b8000(3)

DSIq5
b6400 DSIq4 QBI DTI65 DTI21

Subject 1 12755 12709 12386 12411 10736 10915 10052 9882

Subject 2 14119 13848 13720 13812 12227 11759 10778 11134

Subject 3 13570 14256 13535 13441 11142 11084 10456 10829

Subject 4 13543 13597 13504 12952 11238 11258 9760 10206

Subject 5 13757 13282 13800 13795 11737 11372 10506 10455

doi:10.1371/journal.pone.0075061.t002

Table 3. P-values obtained for paired t-tests performed on the number of connections.

DSIq5
b8000(1)

DSIq5
b8000(2)

DSIq5
b8000(3)

DSIq5
b6400 DSIq4 QBI DTI65 DTI21

DSIq5b8000(1) – 0.96* 0.16* 0.07* 2.9E-05 3.6E-05 5.0E-05 1.3E-05

DSIq5b8000(2) 0.96* – 0.50* 0.34* 1.8E-03 7.7E-04 2.1E-04 3.8E-05

DSIq5b8000(3) 0.16* 0.50* – 0.41* 3.4E-04 3.2E-04 1.8E-04 8.8E-05

DSIq5b6400 0.07* 0.34* 0.41* – 1.6E-04 3.8E-04 5.3E-05 4.3E-05

DSIq4 2.9E-05 1.8E-03 3.4E-04 1.6E-04 – 0.32* 3.3E-03 5.2E-03

QBI 3.6E-05 7.7E-04 3.2E-04 3.8E-04 0.32* – 2.6E-03 6.8E-03

DTI65 5.0E-05 2.1E-04 1.8E-04 5.3E-05 3.3E-03 2.6E-03 – 0.20*

DTI21 1.3E-05 3.8E-05 8.8E-05 4.3E-05 5.2E-03 6.8E-03 0.20* –

Null hypothesis: the samples come from distributions with equal means. The * symbol indicates the pairs of diffusion encoding schemes for which the null hypothesis
cannot be rejected (p.0.05).
doi:10.1371/journal.pone.0075061.t003
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5 The Impact on Selected Associative Fiber Pathways
As an illustration, we select and identify several major

association fiber pathways, as follows. Primary motor cortex

(PMC) projections connect the left and right precentral gyri

through the corpus callosum. The inferior longitudinal fasciculus

consists of the fibers originating from the temporal lobe and

ending in the occipitoparietal junction or in the occipital lobe. The

superior longitudinal fasciculus connects the inferior and superior

parietal lobules with the middle and superior frontal gyri. The

arcuate fasciculus projects from pars triangularis, pars opercularis

and the rostral part of the middle frontal gyrus to the superior,

middle and inferior temporal gyri. Finally, the cingulum bundle

comprises the fibers interrelating the cingulate and parahippo-

campal gyri. All those regions are identified using the gyral-based

atlas from Freesurfer. In Figure 5, we plot the above-mentioned

fiber pathways for the various diffusion encoding schemes of a

single subject. Additionally, we report in Table 5 the averaged

normalized connectivity for the fiber pathways of primary motor

cortex projections, inferior longitudinal fasciculus, superior longi-

tudinal fasciculus, arcuate fasciculus and cingulum bundle (for

reference see Figure 5). In Figure 6, we show the corresponding

distributions of connection distances for the five fiber pathways.

With DSI and QBI scans, the primary motor cortex projections

are widely distributed throughout the precentral gyri, from the

apex down to its lower limit at the lateral sulcus. In contrast, only

the apical part of the precentral gyri is connected with the DTI

data sets. This is confirmed by a strongly decreased normalized

connectivity for the DTI scans (below 5%). The superior

longitudinal and arcuate fasciculi show a lower connectivity for

DSIq4 and QBI (around 50%) than with DSIq5. This is explained

by the fact that the fibers capture the global shape of the tract but

are less spread throughout the origin and destination regions. The

normalized connectivity obtained for these fiber tracts is further

decreased with the DTI scans (between 14% and 28%), indicating

that the corresponding fiber pathways are difficult to identify with

this type of diffusion scheme. For example, we see in Figure 5 that

the right arcuate fasciculus cannot be retrieved with the DTI scans

of subject one, and that the superior longitudinal fasciculus is only

partially mapped. It is important to note that these three fiber

pathways mainly consist of connections whose distance lies in the

range 50–100mm, as confirmed in Figure 6.

Figure 4. Number of connections as a function of the connection distance. The connection distance d(i, j) is defined as the geodesic
distance in the brain white matter separating the regions of interest (ROIs) i and j. These results are obtained by averaging over the five subjects.
doi:10.1371/journal.pone.0075061.g004

Table 4. Normalized connectivity as a function of the diffusion encoding scheme.

DSIq5 b8000(1) DSIq5 b8000(2) DSIq5 b8000(3) DSIq5 b6400 DSIq4 QBI DTI65 DTI21

0–50mm 1.00 1.00 1.00 0.99 0.92 0.89 0.89 0.91

50–100mm 1.02 1.00 0.98 0.96 0.77 0.76 0.59 0.59

100–200mm 0.97 1.06 0.97 1.06 0.66 0.81 0.81 0.83

Three categories of connection distances: 0–50mm, 50–100mm and 100–200mm. The reported values are obtained by averaging the normalized connectivity over the
five subjects.
doi:10.1371/journal.pone.0075061.t004

Comparison of Diffusion MRI Schemes

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e75061



In contrast, the inferior longitudinal fasciculus and the cingulum

are mapped consistently across scans (Figure 5), with an averaged

normalized connectivity above 75% for all diffusion encoding

schemes, as shown in Table 5. Looking at the corresponding

distributions of connection distances in Figure 6, we notice that the

inferior longitudinal fasciculus mainly consists of connections lying

in the range 20–100mm, and most of the connections that form

the cingulum have a distance shorter than 50mm.

Discussion

Earlier work has shown that high angular resolution diffusion

techniques improve the mapping of fiber pathways in complex

crossing areas as compared to DTI [12]. It has been also suggested

that QBI and DSI schemes increase the sensitivity of tractography

[13]. Recently, Yo et al. have compared several reconstruction

techniques (DTI, CSD, ball-and-stick, persistent angular structure)

by using connection matrices resulting from tractography on a

selected set of regions of the human brain [35]. They have shown

that fiber crossing models reveal more connections than the simple

tensor model. The present study aims at gaining a better

understanding of the influence of the diffusion encoding scheme

on the performance of whole-brain tractography.

Our first finding is that DSIq5 scans, acquiring 258 encoding

directions in the q-space, maximize the number of connections in

Figure 5. Mapping of some associative fiber pathways. Mapping of the primary motor cortex projections (red), inferior longitudinal fasciculus
(violet), superior longitudinal fasciculus (orange), arcuate fasciculus (blue) and cingulum bundle (yellow), for the various diffusion encoding schemes
(subject 1).
doi:10.1371/journal.pone.0075061.g005
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the connection matrices when comparing with other diffusion

schemes employing fewer encoding directions at lower angular

resolution. These findings have to be interpreted with care as we

have no means to assess the underlying specificity of the

connections. The observation of more fibers cannot be interpreted

as a better description of the underlying brain structure. However,

correlations between brain connectivity measures using DSI and

fMRI suggest a high specificity of the fibers detected with DSI

Figure 6. Connection distance distributions for the selected associative fiber pathways. Distribution of connection distances for the
primary motor cortex projections (A), inferior longitudinal fasciculus (B), superior longitudinal fasciculus (C), arcuate fasciculus (D) and cingulum (E).
These results are averaged over the five subjects.
doi:10.1371/journal.pone.0075061.g006

Table 5. Normalized connectivity as a function of the diffusion encoding scheme for the selected association fiber pathways.

DSIq5 b8000(1) DSIq5 b8000(2) DSIq5 b8000(3) DSIq5 b6400 DSIq4 QBI DTI65 DTI21

PMC proj. 1.02 1.01 0.97 0.81 0.71 0.73 0.05 0.04

Inf. long. fasc. 1.00 0.96 1.04 1.03 0.81 0.77 0.83 0.80

Sup. long. fasc. 1.08 0.98 0.94 0.92 0.48 0.51 0.14 0.25

Arcuate fasc. 1.00 0.99 1.01 0.87 0.47 0.54 0.23 0.28

Cingulum 1.04 0.99 0.97 0.99 0.95 1.04 0.75 0.76

The reported values are obtained by averaging the normalized connectivity over the five subjects.
doi:10.1371/journal.pone.0075061.t005
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[37]. Moreover, the analysis of several well-known associative fiber

pathways strongly suggests that the added connections correspond

to real anatomical fiber tracts and lead to improved tracking

accuracy, rather than solely adding noise. These results suggest

that the DSI technique may provide a higher sensitivity to map the

fiber pathways in brain white matter. The level of sensitivity

improvements, however, depends on the fiber pathways under

investigation. As the higher diffusion encoding directions provide

the strongest advantage for pathways in the 50–100mm range,

differences between the diffusion encoding schemes naturally will

taper off in pathways that extend beyond this range.

On the other hand, we show that the performances of the DTI

scans are strongly limited by the underlying Gaussian model:

about one fourth of the connections obtained with the DSIq5 scan

are not mapped with DTI, even as high as 40% in the distance

range 50–100mm. The consequences are important, since even

well-known association bundles, such as the arcuate fasciculus or

the superior longitudinal fasciculus, are not as comprehensively

mapped. The additional diffusion schemes, namely the DSIq4 and

QBI, exhibit intermediate results.

Interestingly, the QBI and DSIq4 scans perform similarly

although the diffusion schemes are fundamentally different: the

HARDI scheme used for QBI is based on the acquisition of the

diffusion signal on a single shell in the q-space at a moderate b-

value (typically 3000mm/s2) [38], whereas the DSIq4 scheme

acquires the signal on multiple shells with a high maximum b-

value. In theory, the higher b-value used for DSIq4 scans may

provide a higher angular resolution as compared to HARDI

acquisitions, at the cost of an increased amount of noise. Our

results tend to indicate that the potential gain associated to the

additive orientational information is counteracted by the higher

level of noise and potentially motion, i.e. with longer acquisition

durations. Moreover, we notice that the addition of a fifth shell in

the q-space (yielding a DSIq5 scan) substantially increases the

resulting connectivity. Small to moderate changes of the maximum

b-value seem, however, to have only a limited impact on the

connection matrices, as supported by the comparison of the

DSIq5b8000 and DSIq5b6400 scans.

Our second finding is that the biggest differences between the

diffusion encoding schemes are found for mid-range connections,

i.e. connections with a length between 50 and 100 mm. Those

connections consist mainly in 1) neighboring association fibers

connecting pair of regions inside the same lobe, and 2) long-range

associative, striatal and commissural fiber tracts [39,40]. Neigh-

boring association fibers are precisely non-dominant fiber popu-

lations, which high angular resolution is theoretically capable of

disentangling. The long-range association fibers are composed of

relatively big and tightly packed axonal bundles, and are

consequently dominant compared to the smaller fiber tracts that

may cross their trajectory. However, we know from anatomy that

many long-range connections also cross each other in large fiber

crossing areas, such as the centrum semi-ovale. This is the case of

the primary motor cortex projections, the arcuate fasciculus and

the superior longitudinal fasciculus. Our results show that those

tracts are only partially mapped with the DTI scans. This suggests

that HARDI and DSI acquisitions are not only required to map

non-dominant fiber populations, they also improve the mapping of

the major associative fiber pathways.

In contrast, the connectivity in the range 0–50mm is found to be

similar for all the diffusion schemes. These connections mainly

consist in short association fibers, connecting pairs of regions inside

the same or adjacent gyrus. In a previous study, we showed that

short-range connectivity (typically in the range 0–40mm) is

partially due to random effects, which arise in any tractography

experiment independent of the diffusion scheme [36]. Due to the

lack of anatomical knowledge about the short associative fiber

pathways, we are not able to infer whether the produced fibers

reflect the true underlying connectivity or noise. Consequently, it

is not possible for this category of connections to evaluate the

differences that may exist between the various diffusion encoding

schemes.

Our third finding is that the complex averaging of diffusion

acquisitions, as applied for the DSIq4 and DTI scans, does not

improve the resulting tractography. The connectivity is even

significantly decreased for the averaged DSIq4 scans as compared

to the single scans (p = 3.85e-4), although the signal-to-noise ratio

is better. The negative impact of the averaging in the case of the

DSIq4 scans may be explained by a presumably mild bulk subject

motion that is not taken care of due to the low signal in the

diffusion weighted images at the highest b-values despite the fact

that the background noise is found to be successfully reduced.

More recent technology developments will allow to overcome

those limits in future studies [41].

Indeed, it should be noted that the acquisition duration was

25.5 minutes. Thus even mild bulk subject motion and also

physiologic noise arising from cardiac and respiration cycle, that

will lead to residual phase cancellations, may affect the scans,

where the same q-space point is sampled repetitively. When

applying complex averaging, these effects will lead to phase

cancellation artifacts that could be responsible for the observation

of decreases in connectivity measures when averaging data.

For DTI scans, our results suggest that the number of encoding

gradients (20 for a single DTI21 data set) already acts as a

sufficient averaging factor when reconstructing the tensors. Jones,

and Papadakis et al., had shown that the minimum number of

unique sampling orientations required for a robust estimate of

anisotropy and mean diffusivity was 20 and 30, respectively

[42,43]. Jones however recommended the use of 30 directions or

more to estimate the principal direction of diffusion. The results

we obtained tend to show that although we might have a higher

uncertainty on the tensor orientation with DTI21 scans, the

impact at the level of whole-brain tractography is limited: the

number of connections produced is similar between DTI21 and

DTI65, and the analysis of the major associative fiber pathways

did not reveal any differences. The added encoding gradients

available with a DTI65 scan would thus provide no benefit at the

level of whole-brain tractography. Further work would however be

required to understand this phenomenon in detail.

Nevertheless, this observation is of high significance in our

study. First, it shows that if a long acquisition time is available, the

acquisition of an additional shell in the q-space (i.e. a DSIq5 scan)

is preferable to an averaging of several DSIq4 scans. Second, a

DSIq4 experiment requires a scan time of 12–13 minutes and a

single-average DTI21 scan can be performed in 2 minutes. This is

clinically more realistic than a full DSIq5 of more than 25 minutes

acquisition time. Consequently, we want to emphasize that the

choice of the optimal diffusion scheme strongly depends on the

application.

For clinical applications for which the acquisition time is an

issue and which aim at creating scalar maps such as fractional

anisotropy maps, a DTI scan can be the most adequate solution.

Similarly, to answer some basic questions using tractography

results, DTI can produce credible-appearing tracks. However, it is

necessary to be extremely cautious when considering fiber tracts

running through large fiber crossing areas, such as the arcuate

fasciculus or the superior longitudinal fasciculus. In that case, a

DSIq4 scan with an acquisition time of approximately 12 minutes

should provide enough contrast to accurately identify the major
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bundles of the brain, and may turn out to be an advisable

compromise between angular resolution and acquisition time.

As shown in this work, particular caution with respect to the

choice of the diffusion scheme has to be used when investigating

tracts of mid-range distance, which partly consist in non-dominant

fiber populations. For example, the neighboring association fibers

are of high interest in the study of plasticity, in the case of specific

networks involving areas nearby, e.g. motor circuits in patients

after stroke [44]. In this context, HARDI-based approaches and

DSI may be promising techniques to investigate the modification

of the connectivity. For such studies, our observations show that

the use of a DSI scan with 258 or more encoding gradients is

preferable, though this needs more careful control of data quality.

Due to the particularly long scan time of this technique (25

minutes and more), it becomes very prone to motion artifacts that

may degrade the accuracy and the sensitivity of the method.

1 Methodological Considerations
A huge variability of protocol settings including the number of

encoding gradients or the maximal b-value is reported in the

literature: for DTI, a b-value between 700 and 1300s/mm2 and a

number of encoding gradients ranging from 32 to 64 are

commonly used and reported [45–47]. For QBI, a b-value

between 2500 and 3000s/mm2 is recommended [38], with

approximately 250 directions [22,48]. Typical DSI scans are

achieved with 258 (DSIq5) encoding gradients with a maximum b-

value ranging between 8000 and 9000s/mm2 [28,49,50]. Al-

though changes in the protocols may slightly affect the results, it is

highly likely that our observations remain valid for the range of

typical settings, as suggested by the similar results obtained for the

DSIq5b8000 and DSIq5b6400 scans.

Due to the long acquisition time used in this study, the subjects

are scanned on three separate days, which lets us assess also certain

aspects of the scan-rescan reproducibility. To this purpose, a

DSIq5 scan is performed during each scanning session. We

remember that the proposed methodology processes each scan

independently. The measures obtained on the three DSIq5 scans

thus allow us to measure the variability across scans. The results

show that 1) the normalized connectivity only varies by 2% on

average across the scanning sessions and 2) the scan-rescan

variability is smaller than the inter-subject variability (s= 229 vs.

s= 533). This demonstrates excellent scan-rescan reproducibility

and indicates that we have high quality data at each time point.

Consequently, none of the reported results can be accounted for

by the variability across scanning sessions.

The approach that we propose for the partition of the cortical

surface deserves comment. As previously mentioned, this partition

is based on an atlas-based cortical registration method that has

already been extensively validated [29]. The original atlas is then

further subdivided into many small ROIs. The Freesurfer

framework maintains the topological constraints when applying

the cortical registration, ensuring that the small ROIs are located

in the same gyral-based region of the original Freesurfer atlas for

every subject. It is nevertheless not guaranteed that each small

ROI exactly corresponds to the same anatomical location in every

subject, as recently shown by our group [27]. Several factors are

responsible for this variability, such as natural inter-subject

variations and methodological limitations. However, the present

study exclusively relies on network measures which average the

connectivity information globally. In this context the proposed

approach is not a limiting factor, as suggested by the powerful

analyses already performed with a similar methodology [28,37].

The choice of the tractography algorithm is also crucial, since

several constraints have to be considered. First, as we wanted the

tractography algorithm to be the same for all diffusion scans, we

chose an algorithm that is suited for all diffusion schemes and that

does not favor a specific type of input data. Second, we need an

algorithm whose parameterization is simple, i.e. 1) it does not

require adaptation depending on the type of diffusion schemes,

and 2) it has no major influence on the sensitivity and specificity of

the tractography. The chosen streamline algorithm meets all those

requirements while being computationally very simple. Thirdly,

we used a methodology that is freely available to the research

community.

It is likely that more advanced tractography algorithms will

emphasize differences between the diffusion encoding schemes. At

the same time, ongoing research indicates that more efficient

diffusion encoding schemes could be employed [21,51–53], that

may themselves influence results in addition to any effects of

reduced motion sensitivity with shorter scan time. However, with

those approaches being strongly dependent on the input data type,

it would be very difficult to perform an objective and fair

comparison across the range of encoding schemes employed in this

study. Moreover, the use of such complex methods for whole-brain

connectivity studies is far from straightforward, because of the lack

of efficient selection methods to discard the fibers arising from

partial volume effects or noise.

In this work, we restrict to the analysis of DSI, QBI and DTI.

However, other reconstruction schemes have been proposed; in

particular, in contrast to the ‘‘model free’’ approaches of DSI and

QBI, a number of model based methods have been proposed.

Assaf and Basser have developed CHARMED [54], a composite

hindered and restricted model of diffusion. Tournier et al. have

proposed the CSD method [21], which estimates the fiber

orientation distribution by using constrained spherical deconvolu-

tion, and which has been reported to achieve improved angular

resolution and reduced orientation bias compared to QBI using

water phantom data [55]. Such characteristics are likely to be due

to the fact that CSD provides a direct estimate of the fiber

orientation distribution (FOD, i.e. the object that is required as

input to tractography algorithms) rather than an estimate of the

diffusion orientation distribution function (ODF, the radial

projection of the spin propagator), as provided by DSI and QBI.

The latter methods estimate fiber orientations by identifying peaks

in the ODF, which is inherently relatively broad.

Model based methods such as the ones mentioned above tend to

build a bridge between the tensor model and model-free

reconstructions, and therefore have a great potential for optimized

application-driven selection of a diffusion methodology. The

acquired HARDI data from this study indeed fulfill the

requirements for the CSD method and may provide an interesting

alternative to classical QBI that may be trimmed to reach similar

or perhaps even higher sensitivity as reported here with the DSIq5

scheme. Similarly, a corrected QBI model was recently proposed

to reduce the uncertainty in the orientation of the local maxima of

diffusion [56,57], and might also enhance the sensitivity of the

HARDI scheme. However, due to the higher sensitivity induced

by those methods, the resulting connection matrices would be in a

different regime of sensitivity/specificity ratios which renders a

direct comparison with DTI and DSI results difficult.

This effect is demonstrated in Figure 7, which compares the

number of connections obtained with DSI q5, QBI (same as

Figure 4) and the corrected QBI model [56,57]. With the

corrected QBI computation, the number of connections is

increased by a factor two compared to the conventional QBI

reconstruction, which is in line with the theoretical consideration

that the incorrect computation leads to a ‘‘smoothing’’ of the

distribution function and thus to a reduction in fiber connections.
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However, in combination with the streamline algorithm we expect

an amplification of false positive connections, which is apparent in

the short distance connections (,40 mm). These connections are

considered to be largely noisy fibers [36] and the fact that we

observe a strong increase in those connections with the corrected

QBI model indicates that the sensitivity and specificity in the

detection of fiber connections is modulated in the updated

reconstructions/tracking procedure. On the contrary, with the

DTI, QBI and DSI schemes as evaluated in this investigation the

number of connections in the short distance range is rather

constant, indicating a good match of obtained sensitivities and

specificities.

It should be noted that improvements in technology and

software, including the corrected QBI and the CSD methodology,

should be further explored as they may provide tremendous

advantages for an optimized clinical application. However, without

any ground truth information about the produced connections, any

cross-comparison between reconstruction techniques without

introducing normalizations between methods might be misleading

due to the differences in sensitivity and specificity measures. These

considerations explain why we restrict our comparison to the DTI,

QBI and DSI schemes and their reconstruction and tractography

within the matched processing pipeline that is expected to provide

similar levels of sensitivity and specificity in fiber connections.

Finally, we should note that in this study a 32-channel head

matrix coil was used and that all imaging experiments were

performed with a two-fold acceleration (iPAT = 2). It is well known

that the MR images exhibit a spatially inhomogeneous SNR and

noise distribution when multiple channel coil arrays and parallel

imaging is used for image acquisition and reconstruction [58–60].

In our settings, the SNR in the cortex may appear 2–3 fold higher

than the SNR obtained in the center of the brain. This may raise

the question whether the employed tractography algorithms are

operating in a SNR limited regime. Surprisingly, our result did not

show any improvements when averaging individual scans,

indicating that other mechanisms such as a subtle brain and/or

subject motion limit the gain in SNR. We conclude that with the

given experimental setting (3T, 32-channel head coil, imaging

protocol) sufficient input raw SNR is provided for stable processing

and tractography analysis.

Conclusions

In this study, we use structural connection matrices produced by

tractography to assess the performance of various diffusion

encoding schemes. These investigations aim at providing a

framework to compare different diffusion schemes, to support a

better understanding of the methodological limitations in the

mapping of the human connectome. Whereas all diffusion

schemes, from the classical DTI to the high angular resolution

DSI, produce a biologically meaningful mapping of the human

connectome, the degree of complexity of the diffusion scheme has

a non-negligible influence on the sensitivity of tractography. The

differences are particularly striking for non-dominant fiber

populations, such as neighboring association fibers, as well as for

fiber tracts that run through complex fiber crossings. For this

particular type of connection, a DSI scheme with 258 encoding

gradients appears most advantageous. However, depending on the

application, an alternative approach that has a shorter acquisition

time may be required, and indeed may be preferable due to

reduced sensitivity to motion degradation of the fiber mapping.
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Figure 7. Connection distance distribution for DSIq5, QBI and the corrected QBI model. Number of connections obtained with DSIq5, QBI
and the corrected QBI model as a function of the connection distance. These results are obtained by averaging over the five subjects.
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