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ABSTRACT
In mammals, RNA editing events involve the conversion of adenosine (A) in inosine (I) by ADAR enzymes 
or the hydrolytic deamination of cytosine (C) in uracil (U) by the APOBEC family of enzymes, mostly 
APOBEC1. RNA editing has a plethora of biological functions, and its deregulation has been associated 
with various human disorders. While the large-scale detection of A-to-I is quite straightforward using the 
Illumina RNAseq technology, the identification of C-to-U events is a non-trivial task. This difficulty arises 
from the rarity of such events in eukaryotic genomes and the challenge of distinguishing them from 
background noise. Direct RNA sequencing by Oxford Nanopore Technology (ONT) permits the direct 
detection of Us on sequenced RNA reads. Surprisingly, using ONT reads from wild-type (WT) and 
APOBEC1-knock-out (KO) murine cell lines as well as in vitro synthesized RNA without any modification, 
we identified a systematic error affecting the accuracy of the Cs call, thereby leading to incorrect 
identifications of C-to-U events. To overcome this issue in direct RNA reads, here we introduce 
a novel machine learning strategy based on the isolation Forest (iForest) algorithm in which C-to-U 
editing events are considered as sequencing anomalies. Using in vitro synthesized and human ONT 
reads, our model optimizes the signal-to-noise ratio improving the detection of C-to-U editing sites with 
high accuracy, over 90% in all samples tested. Our results suggest that iForest, known for its rapid 
implementation and minimal memory requirements, is a promising tool to denoise ONT reads and 
reliably identify RNA modifications.
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Introduction

Epitranscriptome refers to all chemical modifications affecting 
cellular RNAs, and more than 150 different types have been 
identified up to now [1]. Non-transient epitranscriptome mod
ifications, also known as RNA editing, occur in primary tran
scripts by indels (insertions or deletions) or base substitutions 
[2,3]. In mammals, the most prevalent type of RNA editing 
involves the conversion of adenosine (A) to inosine (I), carried 
out by the adenosine deaminase family of enzymes acting on 
double-stranded RNA (ADARs) [4,5]. To date, millions of A-to- 
I editing events, primarily located in non-coding and Alu-rich 
regions, have been identified in humans by deep transcriptome 
sequencing and ad hoc computational pipelines [6–9].

A second, less frequent, type of RNA editing concerns the 
hydrolytic deamination of cytidine (C) to uridine (U) in single- 
stranded RNAs by members of the AID (activation-induced cyti
dine deaminase)/APOBEC (apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide) proteins [10,11]. C-to-U editing is 
rare in mammalian transcriptomes and is mainly linked to the 
activity of the APOBEC1 enzyme. The only physiologically char
acterized example of C-to-U editing in humans involves the apo
lipoprotein B (apoB) transcript in which tissue-specific RNA 

editing in the small intestine leads to a truncated apoB protein 
(apoB-48) that is essential for the formation of chylomicron lipo
protein particles and the absorption and transport of dietary lipids 
[12,13]. Large-scale investigations based on comparative analysis 
of massive sequence data of murine RNAs from the small intestine 
and liver from wild-type and APOBEC1-deficient mutants 
revealed novel C-to-U editing changes mainly located in AU- 
rich segments of 3’ untranslated regions of mRNA transcripts 
(3’UTRs), characterized by a common sequence motif [14,15].

Beyond APOBEC1, hundreds of additional C-to-U editing 
events have been correlated to APOBEC3A expression in 
human macrophages during M1 polarization and in mono
cytes in response to hypoxia and interferons [16,17]. 
Overexpression of APOBEC3A in human HEK293T cells 
has also revealed C-to-U editing in more than 4200 sites [18].

Deep transcriptome sequencing by short-reads (mostly by 
Illumina technology) has improved genome-wide identifica
tion of C-to-U changes and significantly boosted the number 
of known events and gene targets [14,16]. Nowadays, the only 
feasible strategy to accurately decipher the RNA editing reper
toire is to compare transcriptomes from two conditions (i.e. 
wild type and knockout) sequenced by short-reads with 
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adequate transcript coverage and read depth [14,19]. 
Although the use of knockout lineages allows distinguishing 
RNA editing changes from intrinsic and base-calling errors 
(i.e. background noise), knocking out target genes is not 
always a viable option. As a consequence, deciphering the 
complete C-to-U editing landscape in mammals using short- 
reads and without a comparative approach is still 
a challenging task. Additionally, the error noise of short 
reads combined with the small number of events per sample 
(in physiological conditions) as well as the generally low 
editing level per site hampers a reliable detection of C-to-U 
changes [18,19].

Recent advances in third-generation sequencing technolo
gies now allow direct RNA sequencing by the Oxford 
Nanopore Technology (ONT) [20,21]. The passage of RNA 
molecules through nanometric biological pores generates 
characteristic ionic currents depending on the chemical com
position of the nucleobases [22]. Such currents represented as 
squiggles are recorded and analysed by a variety of computa
tional algorithms to unveil both the sequence and the differ
ent types of RNA modifications, such as N6-methyladenosine 
(m6A), pseudouridine (Ψ), or inosine [23–27]. Direct sequen
cing of native RNA molecules offers also the unique oppor
tunity to profile C-to-U RNA editing at the transcriptomic 
scale and overcome short-reads issues including biases related 
to the RNA-cDNA conversion and to clonal PCR amplifica
tion. Indeed, APOBEC-converted Us at putative RNA editing 
sites should be easily read and identified after base-calling, 
allowing discrimination of real C-to-U events from mistaken 
C-to-T changes due to sequencing errors (or PCR artefacts in 
case of short reads).

Although the release of novel ONT pores has raised read 
accuracy to over 90%, the error rate of native ONT reads is 
still high [28]. The systematic error profile of base calling at 
the DNA level has recently shown that errors at transitions 
are significantly more frequent than those at transversions, 
with C-to-T changes being the second most recurrent base 
change [28,29]. Since direct RNA reads are generally noisier 
than DNA reads, a higher error rate is expected as well 
[27,28].

By using synthetic ONT RNA reads as well as real direct 
RNA reads from APOBEC1 null mutant mouse cell lines, we 
provide compelling evidence that ONT RNA reads are 
affected by a systematic C-to-U base-calling error. This error 
significantly impairs the accurate identification of genuine 
editing events.

In order to overcome the intrinsic ONT noise and unveil 
the APOBEC1 editing signal in direct RNA sequencing 
experiments, here we present a new machine-learning 
approach that uses the isolation Forest (iForest) algorithm 
[30,31] to identify C-to-U editing changes as sequencing 
anomalies and distinguish them from ONT errors, without 
requiring the analysis of ionic currents. We use synthetic 
RNA and real ONT data from human HEK293T cells to 
show the effectiveness of our new approach and reveal, for 
the first time, the feasibility of using direct RNA sequencing 
to detect C-to-U changes. In particular, the iForest algorithm 
is a practical and efficient model to denoise ONT direct RNA 
reads and reveal a full range of C-to-U RNA editing events. 

Additionally, it does not depend on the editing enzyme and is 
expected to properly work on APOBEC1-dependent as well as 
non-APOBEC1-dependent sites.

Results

Challenging detection of C-to-U editing sites by short 
reads

To demonstrate the challenging identification of genuine 
APOBEC1 C-to-U editing events by short reads, we selected 
from the GTEx portal four human tissues: small intestine and 
stomach, expressing APOBEC1 (Supplementary Fig. S1) and 
adipose subcutaneous and lung with no evidence of 
APOBEC1 expression (Supplementary Fig. S1). All tissues 
expressed ADAR (known as ADAR1) and ADARB1 (known 
as ADAR2) genes for the adenosine deamination 
(Supplementary Fig. S2). From SRA (GTEx project), we ran
domly selected and downloaded 50 RNAseq and WGS experi
ments per tissue. After checking the quality and aligning the 
reads, we used our REDItools software with strict parameters 
to call all RNA variants, as previously described [8,32]. All 
four tissues showed a clear and unambiguous A-to-G signal 
(and T-to-C on the reverse strand) corresponding to A-to-I 
RNA editing (Figure 1). However, the C-to-T signal (and 
G-to-A on the reverse strand), which included putative 
C-to-U editing sites, was not evident and indistinguishable 
from the background error noise in all tissues (Figure 1). This 
was true regardless of APOBEC1 expression, suggesting that 
artifactual C-to-T changes might mask C-to-U modifications 
and prevent the detection of real editing events (Figure 1).

Error noise of direct RNA sequencing prevents the call of 
C-to-U editing

Direct RNA sequencing technology by ONT should enable C-to- 
U editing detection, as base-calling of raw current signals should 
easily identify U bases. To prove this statement, we sequenced 
RNA molecules from a wild-type macrophagic mouse cell line 
(RAW 264.7) physiologically expressing APOBEC1 (WT) and 
a derived APOBEC1 knockout cell line (KO) [33]. Raw ionic 
currents were converted in fastq by guppy (see Materials and 
Methods for details), aligned onto the reference mouse genome 
and base changes were called by our REDItools software. 
Focusing on known editing sites in the 3’UTR of the Beta- 
2-Microglobulin (B2m) gene (Figure 2) [33], we found unex
pected C-to-U signals in KO reads, however, at a lower fre
quency than in WT reads. This trend was also confirmed by 
exploring additional editing sites from a previous large-scale 
transcriptome investigation (data not shown) [14,33]. To 
exclude a background activity of APOBEC1 in KO cells, we 
deep sequenced an aliquot of the same WT and KO RNAs by 
Illumina technology, producing an average of 202,649,982 reads 
per sample. Short reads were quality checked and aligned to the 
mouse genome. We detected base changes by using the 
REDItoolDnaRna.py script of the REDItools package [32] in 
which KO reads were used in place of genomic reads (generally 
from WGS or WES experiments). This gave us a simple and 
unique output table with variants from WT and KO samples. At 
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known editing positions, short reads (with an average coverage 
of over 150 reads per site) confirmed C-to-U editing only in WT 
cells and were absent in KO cells at known editing positions. 

This ruled out any background APOBEC1 activity at those sites 
and suggested that C-to-U changes in ONT reads were likely due 
to systematic error noise.

Figure 1. Distribution of RNA variants in four GTEx tissues.

Figure 2. Snapshot of a ±3 region surrounding the known editing site chr2:121983221 of the B2m gene. A graphical representation of the frequencies of aligned 
bases along with deletions and insertions. Data were retrieved from both KO (on the top) and WT (on the bottom) from Illumina (a, c) and ONT (b, d) runs.
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Exploratory data analysis of the ground-truth set of 
editing sites

To better characterize ONT systematic errors, we performed an 
exploratory analysis of base-calling and ionic current features at 
editing sites detected by Illumina short reads analysis. Traversing 
the previously generated REDItools table, we retained only posi
tions supported by at least 50 high-quality short reads, showing no 
base change in the KO sample and displaying a C-to-U editing 
level of at least 5% in the WT sample. On the whole, we identified 
687 bona fide C-to-U editing events (due to APOBEC1 deamina
tion), defined as our ground-truth set of editing sites. Of these, 631 
resided in 3’ UTR regions, 17 in intronic long non-coding RNA 
regions, 12 in coding exonic regions, and the remaining 27 in 
downstream, intergenic and 5’ UTR regions (see Table S1 in 
Supplementary material). Considering the 20-nt sequence region 
around the editing site, we found that the typical sequence motif 
already identified for APOBEC1 target sites characterized by an 
enrichment of adenosines or uridines at positions immediately 
adjacent to the edited cytidine [14]. This analysis confirmed the 
quality of our ground-truth set of editing sites (Figure 3).

Next, we examined the aligned ONT reads of the KO sample at 
the editing sites detected by Illumina. We found that incorrectly 
called C-to-U changes were closely correlated with indels or con
secutive mismatches. This is similar to what has been observed in 
the case of other RNA modifications [26,27]. To investigate the 
inefficient base-calling behaviour at putative C-to-U changes, we 
extracted for each ground-truth editing site the base quality of the 
edited U bases and the mean quality and the number of indels and 
mismatches (excluding C-to-U mismatches at the edited position) 
for the surrounding ±3 nucleotides, taking into account that the 
base-calling of ONT RNA reads is performed at the pentamer level 
[34]. The resulting features were stratified by condition (WT or 
KO) and analysed. Globally, the base quality of edited Us and the 
mean quality of surrounding bases were significantly higher in WT 
than in KO (17.10 ± 8.70 vs 7.51 ± 4.54, p-value MW test: 
2.96 × 10–195 and 17.63 ± 5.85 vs 11.97 ± 4.48, p-value MW test: 
5.09 × 10–141), while the number of mismatches and indels was 
significantly increased in KO (Chi2 test p < 0.01, Figure 4b).

As depicted in the pairplot of Figure 4b, base-calling features 
of C-to-U mismatches showed a slight overlap between WT and 
KO positions, also confirmed by a linear and non-linear dimen
sionality reduction analysis through the PCA and t-SNE, respec
tively (Figures 4a and 5). PC1 and PC5 components of the PCA 
analysis clearly showed that C-to-U changes of the KO sample 

were in overlap with a small subset of the same base change of 
the WT sample (Figure 4a).

Several clusters with overlapping C-to-U changes appeared 
in the t-SNE graph, suggesting two different C-to-U popula
tions. The first one from the WT sample, with real C-to-U 
editing events, and the second one from both WT and KO 
samples containing mistaken C-to-U changes (Figure 5).

The origin of the small t-SNE clusters could not be ascer
tained, but it was not due to the presence of specific 
C-containing pentamers (as shown in Supplementary Fig. S3).

In parallel, we investigated the ionic currents at editing 
sites of the ground-truth set after resquiggling the raw signals 
by means of Tombo [35] and Nanopolish eventalign [36] 
(through the fast f5c implementation) [37]. Currents of pen
tamers including the edited U base resulted quite divergent 
from those containing the unedited C base in the WT sample. 
In contrast, currents at putative edited U bases of the KO 
sample appeared much closer to those from unedited C bases, 
a trend already observed for base-calling features. As an 
example, we report here the analysis of ionic currents for 
the well-known editing site chr2:121983221 located on the 3’ 
UTR of the B2m gene in mice [33]. In the WT sample, 153 out 
of 366 reads supported the C-to-U editing at position 
chr2:121983221; however, in the KO sample, only 19 out of 
346 reads showed putative C-to-U changes at the same site. 
The currents around the chr2:121983221 site per sample were 
plotted as kernel density estimates histograms. In the WT 
sample, we found that current distributions for pentamers 
carrying the edited U base were shifted from those of unedited 
pentamers (Figure 6a). However, in the KO sample, the cur
rent distributions for putative edited and unedited pentamers 
overlapped (Figure 6b).

Interestingly, current distributions of pentamers with unedited 
bases were almost identical in both WT and KO samples 
(Figure 6c). However, currents from pentamers carrying the 
U base diverged (Figure 6d). This suggested that KO currents of 
putative C-to-U editing were likely artifactual. The analysis of 
current intensities at the per read level as well as the PCA also 
confirmed this trend. We found that currents from edited penta
mers at the position chr2:121983221 in the WT sample clustered 
differently from currents of unedited pentamers at the same posi
tion, suggesting a clear RNA editing signal (Figure 6e). In contrast, 
currents of unedited and putatively edited pentamers in the KO 
sample did not show any remarkable difference (Figure 6f).

Figure 3. Average alignment profile of Illumina ‘ground-truth’ sites putatively related to the APOBEC1 enzyme signature (U bases are shown here as T).
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Figure 4. a) Pairplot of the principal component analysis summarizing basecalling features (central U base quality, mean quality, mismatches, insertion and deletion 
count) extracted from Illumina ‘ground-truth’ sites of WT (blue) and KO (orange) CU-context reads. The first three components explain more than 80% of the total 
variance of the data. b) Pairplot describing CU context reads retrieved from Illumina ‘ground-truth’ sites of both WT (blue dots) and KO (orange dots) ONT runs. 
A total of five features are shown: T_qual is the quality of the uridine central base; mean_qual is the average quality of bases on an interval of ±3 nucleotides; 
mism_count is the number of mismatches with respect to the reference expected bases on the same interval; ins_count and del_count are the total numbers of 
insertions and deletions within the interval, respectively.

Figure 5. Dimensionality reduction by t-SNE of basecalling features (central U base quality, mean quality, mismatches, insertion and deletion count) extracted from 
Illumina ‘ground-truth’ sites of WT (blue) and KO (orange) CU-context reads.
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Taken together, our exploratory analysis of base-calling 
and ionic current features in direct ONT RNA reads at estab
lished editing sites revealed a clear systematic error during the 
ONT base-calling process. This error subsequently impacts 
the reliability of C-to-U RNA editing events (Supplementary 
Figs. S4 and S5).

C-to-U ONT error is systematic

Alterations of ionic currents and base-calling features are 
generally linked to RNA modifications. In C-to-U RNA 
editing (a non-transient modification), C deamination 
involves only canonical nucleotides (Cs and Us) that should 
be easily detectable through conventional base-calling. Our 
results, based on the comparison of ONT reads from a real 

WT and KO sample at known editing sites, indicate an 
ONT-specific systematic error during the base-calling of 
Cs with the guppy basecaller. To verify if this type of error 
was affecting the entire dataset or was limited to selected 
RNA editing positions, we analysed ONT RNA reads from 
two biological replicates of four in-vitro transcribed syn
thetic constructs (about 10kb in total) in which no editing 
or chemical modifications were present. These synthetic 
sequences (equal in length), taken from Liu et al. 2019 
[26], are designed to include all possible pentamers and to 
minimize RNA secondary structures through the curlcake 
software and were sequenced on an R9.4.1 flow cell. 
Remarkably, we found C-to-U mismatches at positions in 
which only Cs were expected, proving the presence of 
a systematic error during the base calling of Cs. In the 
first replicate (synt1), run on a MinION instrument, 98% 

Figure 6. Analysis of the ionic current features for the site chr2:121983221 residing in the 3’UTR of the mouse B2m gene locus. (a) and (b) are shown the distributions 
of C and U currents for WT and KO samples, respectively. (c) is reported the distribution of U currents only from WT and KO samples, while (d) is depicted the same 
distribution for C currents only. PCA of current features (intervals of ±2 nucleotides) for WT and KO samples are shown in (e) and (f), respectively. Each dot in PCA 
graphs represents an aligned C (blue) or a U (red).
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of the 2521 reference Cs showed evidence of C-to-U mis
matches with an average 0.025 ± 0.036 C-to-U mismatches 
per site and a maximum of 0.416. In the second replicate 
(synt2), run on a GridION instrument, the same percentage 
of Cs was affected by the C-to-U mismatch with average 
0.024 ± 0.035 mismatches per site and a maximum of 0.409. 
These mistaken C-to-U changes showed a significantly 
reduced base quality at U bases and in the surrounding 
regions (±3 nt) (Mann-Whitney Pvalue < 0.01) as well as 
an increased proportion of indels than the unchanged 
bases containing the C (Chi2 p-value <0.01). Additionally, 
ionic currents of pentamers carrying the miscalled U were 
in complete overlap with those from pentamers with the 
correct C base (Figure 7), meaning that current patterns of 
mistaken C-to-U changes were not distinguishable from the 
patterns of the real bases.

Machine learning models to polish mistaken C-to-U 
modifications in ONT sequencing

In the last few years, several machine learning approaches have 
been applied to reliably detect RNA modifications in ONT direct 
RNA reads. Most models are based on Support Vector Machine 
(SVM) or Convolutional Neural Network (CNN) algorithms 
trained on synthetic data sets. Since we are interested in reducing 

the noise due to wrongly attributed Us to reveal genuine editing 
events, currently available tools for investigating RNA modifica
tions are not suitable. Therefore, we implemented a novel CNN 
algorithm based on ionic currents and dwell times collected at 
specific sites containing only Cs or Us without any C-to-U 
alterations. This approach was used to train a model to predict 
the most likely nucleotide at C to U mismatches. For each 
synthetic and real dataset, 300k observations (ionic currents 
supporting only Cs or Us) were extracted and divided into 
training, validation and test sets. The performance of each set 
was evaluated in terms of global accuracy, precision, recall and 
F1 score (see Methods). Overall, the metric values exhibited 
a high degree of similarity, averaging around 0.80 
(Supplementary Fig. S6). The training step required about 190 
epochs, with a mean time of 186 s/epoch, and took approxi
mately 10 hours for each experiment.

Subsequently, the CNN model was exclusively employed 
on sites displaying C-to-U mismatches within an independent 
intra-sample dataset that included synthetic and real data 
(WT and KO). This evaluation aimed to assess the algorithm’s 
performance in reducing C-to-U noise. On the synthetic 
sample synt2, 93% of mistaken C-to-U changes were removed 
and mismatches per site (frequency of Us per site) dropped 
down from 0.0224 ± 0.033 to 0.0029 ± 0.007. When the CNN 
model was used on the ground-truth set of editing sites, global 

Figure 7. PCA analysis of ionic current features extracted from synthetic constructs dataset. Each dot in PCA graphs represents an aligned C (blue) or a U (orange).
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accuracy and precision raised from 0.59 and 0.55, measured 
on the native uncorrected dataset, to 0.63 and 0.82, calculated 
after the correction. In addition, the C-to-U editing levels 
decreased from 0.035 ± 0.035 to 0.0035 ± 0.0096 in the KO 
sample and from 0.124 ± 0.083 to 0.022 ± 0.0292 in the WT 
sample. In general, the number of putative editing sites was 
reduced by about 68% in the WT sample and 92% in the KO 
sample. Although the CNN model worked as expected, with 
the great benefit to be trained on subsamples of input data 
(requiring only currents from Cs and Us), its behaviour 
appeared too aggressive. This was likely due to the reduced 
number of real editing sites for the training procedure, along 
with the minimal differences in current levels when compared 
to the high levels of noise (Supplementary Figs S4 and S5). 
Indeed, when we compared the editing levels calculated by the 
Illumina platforms with those corrected by the CNN model, 
we found a decreased correlation (Spearman) from 0.74 
(p-value: 1.61e-61) to 0.49 (p-value:5.55e-22). Furthermore, 
the CNN model also discarded most of the known editing 
sites in the WT sample. Starting from the observation that 
altered base-calling features are associated with mistaken 
C-to-U changes, we explored alternative models that are 
easy to implement, train and apply, while also computation
ally less intensive. Since C-to-U editing changes are rare 
events, they can be considered as sequencing anomalies and 
can be modelled through the isolation forest (iForest). This 
approach has been successfully employed in several anomaly 
detection applications but has never been applied to ONT 
sequencing data. iForest identifies anomalies by isolating 
them from the dataset, without the need to build a model of 
normal instances. Moreover, this algorithm is very fast and 
demands minimal memory resources [30,31]. Indeed, the 
training of the final iForest model took only 10 seconds (on 
a 32 CPUs computer cluster), while the prediction of ~70k 
training instances was completed in about 5 seconds.

To initially test the suitability of the iForest model, we 
extracted base-calling features from the synthetic dataset 
synt1 taking into account only C-to-U mismatches. For each 
position, we included quality of the U, mean quality of the 
surrounding nucleotides, mismatches and indels. These fea
tures were encoded for the iForest model and used in the 
training process (see Methods for further details about encod
ing strategies). When the model was applied to the synthetic 
dataset synt2, it reached an overall accuracy of 0.95 suggesting 
a great efficiency of the algorithm in mitigating the false- 
positive rate and reducing the C-to-U noise (Figure 8.).

The iForest works only on C-to-U changes and classifies 
Us at each C position as mistaken or real. This polishing 
behaviour is independent of the downstream calling of editing 
events. Indeed, our strategy is based on the removal of false 
Us affecting the identification of genuine RNA editing sites. 
For testing purposes, and when not expressly indicated, we 
assumed as edited a site if supported by at least 50 reads (of 
which at least two Us) and showing a minimum editing level 
of 0.01.

When the iForest model was applied to the ground-truth 
set of editing sites in both WT and KO samples, the global 
accuracy and precision raised from 0.69 and 0.62, measured 
on the uncorrected dataset, to 0.88 and 0.95, calculated after 

the correction, while the specificity increased from 0.40 to 
0.96. Additionally, the correlation (Spearman) between 
Illumina measured editing levels and the corresponding 
ONT corrected values increased from 0.749 (p-value = 2.57e- 
67) to 0.824 (p-value = 2.10e-92), while 60% of the ground- 
truth set of sites in the KO sample were misclassified as 
edited, after the correction only 4% of them were miscalled.

iForest to detect C-to-U editing in human direct RNA 
reads

Although the efficiency and superior performance of iForest 
over CNN, we noticed that the behaviour of the iForest model 
changed by its contamination parameter, defined as the 
expected proportion of anomalous instances. Our model was 
trained on in vitro synthesized data without editing events 
and, thus, no anomalies were present. To correctly set the 
contamination value, we retrained the iForest model using 
sites from synthetic RNA (synt1) as well as real editing sites 
from the mouse ground-truth set. The novel updated model, 
iForest+, was initially applied to the synthetic dataset synt2 
and to a completely novel dataset from human HEK293T 
cells. In the dataset obtained from synthetic RNA, iForest+ 
reached an overall accuracy close to 1 with only two mistaken 
C-to-U changes. In humans, we tested the iForest+ model on 
direct RNA reads from wild-type HEK293T cells (WThek) 
and from cells expressing APOBEC1 and RBM47 (OVhek). 
Two replicates were prepared for the WThek sample, while 
four replicates were prepared for the OVhek sample. In both 
cases, ONT reads were basecalled by guppy, and resulting 
fastq sequences were aligned onto the hg38 assembly of the 
human genome by minimap2. In parallel, total RNA from 
both samples was deep sequenced by an Illumina platform 
to create a human ground-truth set of editing sites comparing 
RNA variants obtained by REDItools. We selected only sites 
supported by at least 50 reads, not showing mismatches in the 
WThek sample and displaying C-to-U changes in the OVhek 
sample (with a minimum level of at least 0.05). On the whole, 
we obtained 17,066 bona fide C-to-U sites. Of these 12,471 
resided in 3’UTRs, 3940 in coding exons and the remaining in 
non-coding regions (ncRNAs, intronic and intergenic 
regions). Considering the 20-nt sequence region around the 
editing site, we found that editing events resided in AU-rich 
regions, which are typical for APOBEC1 editing and already 
identified in the mouse ground-truth set of editing sites 
(Supplementary Fig.7).

The denoising capabilities of the iForest+ algorithm were 
assessed using ONT reads from both sample groups. The 
model’s performances were calculated against the human 
ground-truth set of editing sites. Remarkably, we obtained 
an accuracy of 0.95 and a specificity of 0.99. The precision 
improved from 0.60, which was calculated using the iForest 
model trained solely on the synt1 sample, to 0.82 determined 
by the iForest+. This indicates the remarkable efficiency of 
our model in reducing C-to-U error noise, making it easier to 
identify authentic RNA editing sites.

To further demonstrate the capabilities of our iForest+ 
model, we applied the algorithm to each group of samples 
independently. After correction, only C-to-U variants covered 
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by at least 50 reads and showing a variation level of 0.04 (at 
least 2 Us) were retained.

In the parental cell line, comprising a mean of 1,765,249 
RNA reads per sample, we obtained 1553 C-to-U corrected 
variants (out of 1,489,215 uncorrected sites) supported by 
both replicates. Of these, 943 sites were classified as SNPs. 
Comparing bases surrounding the remaining positions with 
the human APOBEC1 sequence motif, we found that 35 out 
of 610 sites showed RNA editing evidence, and 30 of them 
appeared edited in at least two of the Illumina sequenced 
samples overexpressing APOBEC1, possibly due to back
ground editing activity of endogenous APOBECs. 
Nonetheless, the iForest+ correction dramatically removed 
most of the erroneous C-to-U variants.

In the OVhek cell lines, including a mean of 425,898 reads 
per sample, we obtained 657 C-to-U corrected variants. Despite 
the reduced coverage per site due to the low number of reads per 

sample, after the removal of known SNPs, we obtained 335 
putative C-to-U RNA editing sites. Of these, 249 (74%) appeared 
edited in Illumina samples and 121 of them showed a sequence 
motif compliant with the human APOBEC1 sequence motif, 
proving that the denoising approach through our iForest 
model improves identification of RNA editing events.

Discussion

Deep transcriptome sequencing by short reads has remarkably 
improved detection of RNA editing events in eukaryotic gen
omes [9,38,39]. In humans, short reads have revealed the 
pervasive nature of RNA editing with more than 15 million 
events distributed across 55 different body sites [7]. Despite 
these findings, RNA editing profiling at the genome scale is 
still challenging. Physiologically rare but biologically relevant 
events such as C-to-U deamination by APOBEC enzymes are 

Figure 8. iForest model for the training, validation, testing, and prediction of C-to-U editing events at the “per-read” level and then, after the aggregation step on the 
“genome-space” level. On the top, the workflow used for the training of the model, starting from encoded base-calling features. On the bottom, schematization of 
the encoding strategy used to compress base-calling feature information that is provided to the model.

RNA BIOLOGY 121



difficult to identify by short reads because masked by the 
background error noise [19]. In this context, direct RNA 
sequencing by ONT, the de facto sequencing strategy to unveil 
RNA modifications, should easily detect C-to-U events just 
through the conventional base-calling because Us and Cs are 
canonical RNA bases and basecaller programs like guppy 
implement specific machine learning models to convert raw 
RNA signals (ionic currents in fast5 format) to fastq 
sequences.

Analyzing mouse direct RNA reads from APOBEC1 
knockout RAW 264.7 cells, we found many wrongly attribu
ted Us at C positions, occurring at both known editing sites 
and other sites indicating an ONT systematic error. This was 
confirmed also on sequencing data generated from in vitro 
synthesized RNA devoid of RNA modifications. Interestingly, 
an in-depth characterization of base-calling and ionic current 
features at known editing sites revealed biases associated with 
mistaken Us.

To overcome this issue and enable detection of real 
C-to-U editing events in direct RNA reads, we have devel
oped a novel computational strategy based on the iForest 
algorithm [30,31] in which C-to-U editing sites are treated 
as sequencing anomalies. Our model uses base-called fea
tures only, comprising the quality of the Us and the mean 
quality of the surrounding nucleotides. Since raw current 
signals are not required because the parsing of fast5 files is 
avoided, the iForest is easy-to-train and fast. It works on 
aligned reads from fastq converted reads and distinguishes 
corrected from erroneous Us at each C position. We used 
Illumina short reads to find known editing sites (so-called 
ground-truth sets). Comparing wild type and APOBEC1 
knockout mouse cells or wild type and APOBEC1 over
expressing human HEK293T cells, we have proven that the 
iForest is an efficient algorithm to mitigate C-to-U error 
noise and unveil authentic RNA editing sites.

Since C-to-U deamination involves canonical bases, exist
ing computational tools based on SVM or CNN models for 
detecting chemical RNA modifications are not applicable in 
this context. Conversely, bioinformatics pipelines that do not 
rely on machine learning models and complex training pro
cedures but depend on the direct comparison between mod
ified and unmodified sequences, are susceptible to the 
influence of systematic errors. Our iForest model overcomes 
the limitations of existing tools in dealing with C-to-U 
editing.

Interestingly, once the error correction has been performed 
by iForest, our methodology allows RNA editing profiling at 
a single read level.

Although accuracy of the RNA editing identification pro
cess depends on the denoising step that, in turn, is related to 
the training of the model, false positives could originate from 
other error sources. The quality of the input RNA, the 
sequencing process, and the choice of base-calling methods 
are just a few examples of factors that should be considered. 
The alignment strategy on the reference genome (or tran
scriptome) and the aligner itself are additional factors to 
consider for minimizing erroneous editing detections.

Given the low complexity of iForest and the simplicity of 
its training and updating, we think that it might represent 

a promising and flexible model to denoise direct RNA reads 
and improve the quality and accuracy of the variant calling. 
Since it does not require currents or dwell times, it could also 
be applied to reads generated by other sequencing platforms, 
thus enhancing downstream analyses. Nevertheless, 
a significant innovation introduced by this proposed method 
is its ability to easily detect C-to-U events using ONT long- 
read technology. This technology integrally retains positional 
data across the entire original transcript and this information 
could also be combined with other types of epitranscriptomic 
modifications that are potentially detectable using this 
sequencing technology.

Materials and methods

Cell lines, library preparation and sequencing

Total RNA from WT and APOBEC1 KO cell line RAW 264.7, 
a murine macrophage cell line, was supplied by the 
Papavasiliou lab (at the German Cancer Research Centre, 
Heidelberg, Germany) and prepared as described in Lerner 
et al. [33].

For the Nanopore libraries, the ONT SQK-RNA001 kit was 
used for Direct RNA library preparation, starting from 200 ng 
of input polyA + RNA and following ONT instructions. The 
libraries were then sequenced on a MinION instrument using 
R9.4 flow cells with the relevant MinKNOW script (v. 3.1.19) 
to generate fast5 files.

The Illumina libraries were prepared from 500 ng of total 
RNA, using Illumina’s TruSeq Stranded Total RNA Sample 
Preparation Kit (Illumina, San Diego, CA, USA), according to 
the manufacturer’s protocol. The cDNA libraries were then 
checked on the Bioanalyzer 2100 and quantified by fluorime
try using the Quant-iTTM PicoGreen® dsDNA Assay Kit 
(Thermo Fisher Scientific) on NanoDrop™ 3300 
Fluorospectrometer (Thermo Fisher Scientific). Sequencing 
was performed on a NextSeq 500 platform using the paired- 
end approach (2 × 75 bp) with 180–232 million reads per 
sample.

HEK293T (Human Embryonic Kidney) cells were main
tained in DMEM supplemented with 10% FBS, 2 mM 
Glutamine and 1 mM penicillin/streptomycin in 5% CO2 
at 37°C.

In order to create inducible APOBEC1 and RBM47 
expressing cell lines, we employed Tet-inducible APOBEC1 
and RBM47 lentiviral expression vectors in HEK-T cell lines 
expressing rTTA3. The APOBEC1 expression construct 
bores an EGFP coding sequence downstream the 
APOBEC1 one, connected through an IRES element. Cells 
were transduced sequentially with the lentiviral constructs 
and sorted after induction of the EGFP to obtain single 
clones. hAPOBEC1 expression was induced by doxycycline 
(2 ug/ml doxycycline for 48 hours [Sigma-Aldrich #D9891]). 
Two days post-induction the cells were collected and the 
RNA was extracted to verify induction (Suplementary 
Table S2).

The RNA was extracted using the Directzol RNA mini
prep kit (Zymo Research), and RNA integrity was assessed by 
utilizing the Agilent 2100 Bioanalyzer RNA Nano assay 

122 A. FONZINO ET AL.



(Agilent Technologies, Santa Clara, CA, USA). Following 
quality and integrity verification, 1 µg of total RNA was 
used for library preparation with the “TruSeq Stranded 
Total RNA-Zero Gold” (Illumina, San Diego, CA, USA). 
The final step involved sequencing the libraries on an 
Illumina NextSeq 550 with the Nextseq 550 high- 
throughput kit (v2) (IGA Technology Services, Italy; www. 
igatechnology.com).

For direct RNA sequencing, RNA samples were pro
cessed into libraries using the ONT SQK-RNA002 kit, fol
lowing the protocols provided by the manufacturer. Each 
library was subsequently loaded onto an individual R9.4.1 
flow cell, and the sequencing runs were carried out using 
the ONT MinKNOW software (v3.4.12) to monitor and 
generate the data. The sequencing runs were terminated 
after 72 hours, and the resulting data was saved in FAST5 
format.

Illumina “ground-truth” sets of editing sites

Raw Illumina RNAseq data were quality-checked via 
FastQC [40] and trimmed to remove adapters by means 
of fastp [41]. Cleaned reads were aligned to the mm39 or 
hg38 reference genomes using the ultrafast STAR mapper 
[42]. Next, aligned reads were deduplicated with Picard, 
and BAM files were sorted and indexed by SAMtools 
[43]. The REDItoolDnaRna.py script from the REDItools 
[32] package was used to detect RNA variants. Reads from 
murine APOBEC1 KO samples or from human samples 
overexpressing APOBEC1 were used in place of genomic 
reads (generally from WGS or WES experiments) to obtain 
unique and easy-to-traverse output tables. Only positions 
supported by at least 50 high-quality short reads, displaying 
a C-to-U editing level of at least 5% in the WT samples and 
showing no base change in the murine APOBEC1 KO 
sample or in the human samples overexpressing 
APOBEC1 were included in the ground-truth sets for down
stream analyses. Both mouse and human sets were anno
tated using ANNOVAR [44].

To identify the APOBEC1 sequence binding motif, con
sensus sequences at ground-truth sets of editing were retrieved 
and a 51 nt-long sequence was extracted per each site to 
calculate base frequencies. In parallel, the same steps were 
performed on a random set of non-edited sites. The resulting 
two 4 × 51 frequency matrices were used to compute log- 
likelihood ratio tests on real data. These tests were performed 
under the H0 hypothesis that the query site does not resemble 
the APOBEC1 signature. A chi2 test was performed on the 
log-likelihood ratio values to assess the significance. Only sites 
with a p-value <0.01 were selected.

In vitro synthesized RNA sequencing data

Artificial constructs were generated by Liu et al. [26] and 
sequencing data downloaded in the fast5 format from SRA 
using the following acciession numbers: SRS4184285 for the 
synthetic curlcake 1 (sequenced on a MinION instrument) 
(synt1) and SRS4184287 for the synthetic curlcake 2 

(sequenced on a GridION instrument) (synt2). All sequences 
in a given dataset are equal in length.

Processing of ONT reads

Raw fast5 files from ONT direct-RNA sequencing runs were 
base-called by Guppy (version 5.0.11) (guppy_basecaller -c 
rna_r9.4.1_70bps_hac.cfg -i [FAST5_Dir] -s [Save_Path] -r – 
fast5_out -x ‘cuda:0’) and reads passing the quality control 
step were merged into a unique fastq file before the mapping. 
For synthetic data, the reference fasta file was downloaded 
from the GitHub repository of the curlcake sequences through 
the public URL https://github.com/novoalab/EpiNano/blob/ 
master/Reference_sequences/cc.fasta. For mouse and human 
data, the mm19 and hg38 genome assemblies were used, 
respectively. All high-quality reads were mapped onto the 
corresponding reference by minimap2 using the options -ax 
splice -uf -k14 –secondary=no. In the exploratory data analy
sis, instead, minimap2 was set with -ax map-ont flag. 
Unmapped reads were filtered out by SAMtools [43]. 
Custom scripts for downstream analyses are available as 
Jupiter notebooks (see below).

The current resquiggle was performed by Tombo [35] 
(version 1.5.1) according to the software documentation. 
The signal data were aligned to the reference by nanopolish 
eventalign through the fast f5c [37] (version 0.7) implementa
tion following the software documentation. After the indexing 
of fast5 and fastq files, the eventalign command was launched 
with the following parameters: –rna – scale-events – print- 
read-names – samples –signal-index to produce eventalign 
tables containing aligned events to reference k-mers. Output 
tables were parsed by the custom Python script eventalign_s
plitter.py to recover the mean values of the current intensities 
and the dwell times. Further custom scripts were created to 
analyse collected data and are available as jupyter notebooks 
(see below).

Basecalling features and the iForest model

Base-calling features for the iForest model were extracted 
from BAM files by Python custom scripts making use of the 
Pysam (v. 0.18) module. Aligned reads were traversed indivi
dually and every time a C-to-U mismatch or a C-to-C and 
T-to-T (U) match was encountered, base qualities as well as 
mismatches and indels in the surrounding interval of ±3 bases 
were collected and encoded using a custom vectorization 
strategy (consisting of an 8-long vector), as shown in 
Figure 8.. Only reads in multi-alignments with a depth higher 
than 50 were used.

Base-calling features at C-to-U mismatches in the syn
thetic dataset synt1 were treated as background errors and 
employed to train the iForest model. The training, valida
tion and testing of the iForest models were performed 
using Python3 and the scikit-learn package by the use of 
the sklearn.ensemble.IsolationForest class working with the 
maximum number of available threads (32 for our machine 
setup, see ‘Basecalling features and the CNN model’ for 
further information about hardware configuration). The 
trained iForest model was applied to the synthetic dataset 
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synt2 to detect mistaken C-to-U mismatches. Multiple 
alignments of uncorrected (native ONT data) and corrected 
reads were finally traversed position by position to retrieve 
the frequency of C-to-U mismatches per site. A study of the 
residual error after the iForest correction was also per
formed, and the 99th percentile of C-to-U frequencies was 
selected as the minimum cut-off to classify a site as edited 
(or, in general, not related to base-calling errors). For the 
final iForest+ model, basecalling features were further 
reduced, retaining only the quality of the central base and 
the average quality. Thus, all the intervals with indels and/ 
or mismatches were discarded and classified as ‘errors’. The 
iForest+ model was trained on basecalling features 
extracted from the synt1 dataset in combination with fea
tures from known editing sites (the Illumina ground-truth 
sites) supported by murine reads of both WT and KO 
samples. This mixed training dataset enabled the fine- 
tuning of the contamination hyperparameter of the iForest 
+. Genomic positions with a C-to-U substitution rate above 
the 0.01 after correction were considered as edited. All the 
performances and metrics were calculated using the follow
ing formulas and computed via the scikit-learn package:

Accuracy ¼ TP þ TNð Þ= TP þ FP þ FN þ TNð Þ

Precision ¼ TP= TP þ FPð Þ

Recall ¼ TP= TP þ FNð Þ

F1Score ¼ 2 � Precision � Recallð Þ= Precisionþ Recallð Þ

Specificity ¼ TN= TN þ TPð Þ

where TP: True Positives, TN: True Negatives, FP: False 
Positives and FN: False Negatives.

Basecalling features and the CNN model

Currents and dwell time features of reads mapping on T or 
C bases (G for the reverse strand) of the reference were 
extracted from the output of the eventalign program (through 
the f5c implementation) to train the CNNs models by means 
of custom scripts. Only positions with a coverage higher than 
50 were taken into account. For each T or C base, currents 
and dwell times were collected in an interval of seven sur
rounding bases and encoded as a 1-d vector (including contig/ 
position/read-name).

Three tables containing currents and dwell times for 
known reference context of interest (TU, CC and CU con
texts) were obtained and used to train the model in an 
intra-experiment fashion and make predictions on CU con
text reads. As shown in Supplementary Fig. S6, CC and TU 
context reads related currents features were encoded in 
a bivariate time-series where the 1st dimension was com
posed of mean current intensities and the 2nd dimension of 
dwell times. These bivariate time series were used to train 
the CNN model, which was implemented as a Python 
instance of the sequential model class of the open-source 
Keras deep-learning library. CNNs were designed by the 
use of a simplified version of the CNN wavenet architecture 
with a total of 13,597 parameters (13407 trainable) with the 
following schematic layer composition:

To avoid overfitting 4 batch normalization layers were inter
posed to 1D-convolutional and dense layers. In addition, two max 
pooling layers with a pool-size of 2 were used to scale-back the 
complexity of the signal throughout the network. A final dropout 
layer of 0.2 was used after the last batch normalization layer and 
before propagating the signal to the SoftMax activation output 
layer. In addition, the whole dataset of CC and TU context reads 
was split into a training set (300k observations), a validation set 
used to monitor loss and accuracy metrics over epochs and to stop 
iterations, and an independent test set. The maximum number of 
epochs was set to 1000, the batch size to 1024 observations for 
each backpropagation step, the loss function was the ‘categorical 
cross entropy’ and the Adam optimizer with a learning rate of 0.08 
was used. Training procedures were stopped by the use of an 
early-stopping strategy with a patience of 100 epochs and 
a minimum delta of 0.01 on the selected monitored metric (vali
dation accuracy). The best model of the training phase was 
selected based on the maximum value reached on the validation 
monitored metric. Evaluation of the best selected model was then 
performed on the whole training and validation dataset and on the 
independent test sets composed of TU and CC context reads. 
Eventually, CU context reads current features were thus classified 
as ‘C’ or ‘U’ by the use of the trained CNN of the same run, and 
a probability for the CU context reads to have a C or U central 
base is retrieved and saved. Analogously to what performed for 
basecalling features, per-read predictions were aggregated to gen
ome-space level, and computations of CU frequencies for each 
C site with sufficient coverage were performed before and after the 
algorithm correction. Also in this case, in order to call a site as 
edited after the model correction, a study of CU frequency resi
dual errors was done on synthetic curlcake runs, choosing the 95th 

percentile (about 0.01) of residual errors as basal threshold and 
selecting a custom cut-off value for each 5-mer in curlcake data 
with a residual frequency above the basal value. If a site, after the 

Layer (type) Output Shape Param #

conv1d (Conv1D) (None, 7, 20) 100
conv1d_1 (Conv1D) (None, 7, 20) 820
conv1d_2 (Conv1D) (None, 7, 20) 820
conv1d_3 (Conv1D) (None, 7, 20) 820
conv1d_4 (Conv1D) (None, 7, 20) 820
conv1d_5 (Conv1D) (None, 7, 20) 820
conv1d_6 (Conv1D) (None, 7, 20) 820
conv1d_7 (Conv1D) (None, 7, 20) 820
conv1d_8 (Conv1D) (None, 7, 20) 820
conv1d_9 (Conv1D) (None, 7, 20) 820
batch_normalization (BatchN ormalization) (None, 7, 20) 80
max_pooling1d (MaxPooling1D) (None, 3, 20 0
conv1d_10 (Conv1D) (None, 2, 50) 2050
max_pooling1d_1 (MaxPooling 1D) (None, 1, 50) 0
flatten (Flatten) (None, 50) 0
dense (Dense) (None, 50) 2550
batch_normalization_1 (Batc hNormalization) (None, 50) 200
dense_1 (Dense) (None, 20) 1020
batch_normalization_2 (Batc hNormalization) (None, 20) 80
dense_2 (Dense) (None, 5) 105
batch_normalization_3 (Batc hNormalization) (None, 5) 20
dropout (Dropout) (None, 5) 0
dense_3 (Dense) (None, 2) 12
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correction, still shows a CU substitution frequency above the 
custom threshold, then it is probably a site where CU substitutions 
are not due to basecaller-mapper background noise but to other 
biological phenomena (i.e. C-to-U editing or genomic variations 
like SNPs). All computations were performed on a computer 
cluster equipped with 32 CPUs, 272 GB of RAM and several 
GPU NVIDIA A100 GPUs (each one with 40 GB of RAM).

Filtering of reliable C-to-U sites

After the application of iForest and CNN models, reliable 
C-to-U sites, associated with the putative APOBEC1 signature 
(calculated by Illumina data), were filtered to remove known 
SNPs and m5C sites. Known mouse and human SNPs were 
downloaded from UCSC using the following links https:// 
hgdownload.soe.ucsc.edu/goldenPath/mm10/database/ 
snp142.txt.gz, https://hgdownload.soe.ucsc.edu/goldenPath/ 
hg38/database/snp151.txt.gz, respectively. Known m5C posi
tions, instead, were downloaded from the m5C-Atlas database 
[45] https://www.xjtlu.edu.cn/biologicalsciences/m5c-atlas.
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