
ARTICLE

Received 14 Apr 2016 | Accepted 13 Oct 2016 | Published 17 Nov 2016

Silica deposits on Mars with features resembling
hot spring biosignatures at El Tatio in Chile
Steven W. Ruff1 & Jack D. Farmer1

The Mars rover Spirit encountered outcrops and regolith composed of opaline silica

(amorphous SiO2�nH2O) in an ancient volcanic hydrothermal setting in Gusev crater.

An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring

fluids was suggested previously. However, the potential significance of the characteristic

nodular and mm-scale digitate opaline silica structures was not recognized. Here we

report remarkably similar features within active hot spring/geyser discharge channels at El

Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best

match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica

structures at El Tatio that most closely resemble those on Mars include complex sedimentary

structures produced by a combination of biotic and abiotic processes. Although fully abiotic

processes are not ruled out for the Martian silica structures, they satisfy an a priori definition

of potential biosignatures.
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H
ydrothermal spring deposits of silica (sinter) have long
been targets in the search for fossil life on Mars1 and early
Earth2 because of their ability to capture and preserve

biosignatures. Exposures of opaline silica were first discovered on
Mars in 2007 by the Spirit rover adjacent to the ‘Home Plate’
feature in the inner basin of the Columbia Hills of Gusev crater3.
The silica occurs most commonly in nodular masses that
have a rubbly appearance but are considered outcrops because
of their stratiform expression and resistance to deformation by
the rover wheels4 (Fig. 1). These outcrops are found in a patchy
distribution, commonly overlying a platy bedrock unit dubbed
Halley Subclass that has been interpreted as an altered ash
deposit3. Volcanic lapillistone also is seen to overlie this unit and
is capped by vesicular basalt. The presence of opaline silica in the
context of a succession of basaltic volcanic rocks has been
interpreted as evidence of past volcanic hydrothermal activity3.

On Earth, fumaroles are one manifestation of hydrothermal
activity in addition to hot springs and geysers. Acid-sulfate
steam condensates produced by fumaroles have the capacity to
leach metal cations from basaltic rocks, leaving behind a residue
of opaline silica. This process was hypothesized for the origin
of Home Plate silica in the work of Squyres et al.3, and
favoured over the alternative hypothesis of silica precipitation
from neutral-to-alkaline hot spring fluids. A Ti enrichment in the
silica-rich regolith occurrence was viewed as supporting evidence
for acid leaching because Ti is relatively immobile under such
conditions. The nodular expression of the silica outcrops was
noted but not interpreted in that work.

A subsequent study by Ruff et al.4 presented observations of
the silica outcrops that support a hot spring and/or geyser origin,
including: their typical overlying stratiform relationship with a
local rock unit (Halley Subclass) with no apparent crosscutting or
fracture controlled occurrences; and their unique morphology
and textures that cannot be tied to any of the potential precursor
lithotypes in the exposed stratigraphic section. Additionally, it
was noted that the Ti content of silica-rich materials does not
uniquely constrain their origin to acid-sulfate leaching given that
relatively Ti-rich silica sinters are known to occur on Earth5. The
nodular and digitate structures of the Home Plate silica outcrops
were recognized as common features and tentatively interpreted
as the result of aeolian erosion4.

Thermal infrared emission spectra of the Home Plate silica
outcrops obtained by Spirit’s Miniature Thermal Emission
Spectrometer (Mini-TES; B340–2,000 cm� 1) were used to
identify the opaline silica (opal-A) component3 and distinguish
it from other silica polymorphs4. However, these spectra
commonly display a strong absorption feature near 1,260 cm� 1

that typically is weak or absent in terrestrial opaline silica3,4.
Previous work demonstrated that this feature varies as a function
of viewing geometry6 and that opaline silica measured at high
emission angles (445�) results in a feature that in some cases has
a depth sufficient to match that in some of the Mini-TES
spectra3,4.

Although the mast-mounted configuration of Mini-TES led to
an optical beam path that intersected horizontal surfaces at angles
440� from normal7, in no case were the nodular silica outcrops
smooth and flat lying, especially across the 410 cm diameter
field of view of Mini-TES. Thus the potential for achieving
high emission angle viewing geometry in these observations
was unlikely, making this explanation for the unusual opaline
silica spectra less certain.

New observations of silica sinter deposits from the active
volcanic hydrothermal system at El Tatio provide a basis for
scale-integrated comparisons to the previously identified silica
features at Home Plate, including geologic context, mesoscale
structures in outcrops, mm-scale textures, and spectral signatures.

The physical environment of El Tatio offers a rare combination of
high elevation (B4,300 m), low precipitation rate (o100 mm per
year), high mean annual evaporation rate (132 mm), common
diurnal freeze-thaw8 and extremely high UV irradiance9. Such
conditions provide a better environmental analog for Mars than
those of Yellowstone National Park (USA) and other well-known
geothermal sites on Earth. Our results demonstrate that the more
Mars-like conditions of El Tatio produce unique deposits,
including biomediated silica structures, with characteristics
that compare favourably with the Home Plate silica outcrops.
The similarities raise the possibility that the Martian silica
structures formed in a comparable manner.

Results
Field observations. Hot spring and geyser discharge channels at
El Tatio commonly contain nodular masses of opaline silica sinter
(Fig. 2). Many of these silica nodules display mm-scale digitate
structures that are strikingly similar in overall form to those
adjacent to Home Plate (Fig. 3). Given the volcanic hydrothermal
setting and presence of opaline silica at both sites, the qualitative
similarities in size and shape of the silica nodules and their
digitate structures leads to the hypothesis that they may have
formed through similar processes. Many El Tatio nodules are
silica coated and cemented breccias composed of reworked
pebbles of older, locally derived volcanic rocks and fragments of
silica sinter. Breccia clasts become coated by laminated opaline
silica via silica precipitation during transport along outflow
channels, and are then subject to further fragmentation during
cycles of transport and cementation. This produces pebble
to cobble-sized breccias containing a complex association of
volcaniclastic and silica sinter materials with diverse
internal textures and compositions that reflect local sediment
sources. Breccias that line channel floors and margins provide
the substrate upon which digitate structures form (Supplementary
Fig. 1).

El Tatio discharge channels that host nodular, digitate sinter
typically have shallow (o5 cm depth) flowing water that supports
microbial biofilms and mats containing a diverse assemblage of
diatoms and filamentous cyanobacteria, where water temperature
is o40 �C (ref. 10). Water pH is circum-neutral (B6.5–7.5)
throughout El Tatio11. The aspect ratio, shape, and spatial density
of the nodular and digitate structures vary among different channels
and even along flow paths within a given channel (Supplementary
Fig. 2), likely due to differences in depth, flow direction and velocity
and the microenvironmental conditions created by microbial
communities12. Morphologic variations also are evident among
the Home Plate silica structures (Figs 1 and 3a,c,e), perhaps
indicative of similar variations in depositional conditions.

Some of the mm-scale textural features of El Tatio silica sinters
appear to have counterparts among Home Plate nodular silica
outcrops. One of the Home Plate outcrops was intentionally
disturbed with the rover’s wheel (Fig. 1d), producing broken
and/or overturned fragments with exposed interior and/or
underside surfaces that likely are relatively pristine. These
fragments were investigated using the Microscopic Imager (MI),
a camera mounted on the rover’s arm capable of grayscale
imaging at B30 mm per pixel (ref. 13). As shown in previous
work, one of the fragments, dubbed Norma Luker, displays a
texture suggestive of a sinter breccia4, which is common among
terrestrial sinter deposits including those at El Tatio (Fig. 4a,b).
A second fragment, dubbed Innocent Bystander, displays a
pervasive microporous surface texture with coated grains4 that
together resemble a sample of El Tatio nodular silica sinter
collected from a discharge channel (Fig. 4c,d). At El Tatio, this
precipitated texture is less common than breccia textures and
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appears limited to the underside of sinter nodules there. This may
be consistent with Innocent Bystander representing the now
exposed underside of an overturned fragment of the outcrop.

A porous, sponge-like texture was described previously for the
Home Plate nodular silica outcrop dubbed Elizabeth Mahon,
along with its smoother digitate protrusions4 (Fig. 4e). The
smoother portions were suggested to be the result of aeolian
abrasion, but the porous texture was not interpreted.
Close inspection raises the possibility that the appearance of
porosity may be due in part to fine basaltic sand, evident
elsewhere in the scene, trapped within roughness elements on the

surface of the outcrop. We now recognize a candidate for the
variably textured surfaces of Elizabeth Mahon among samples of
El Tatio sinter, in which sub-mm roughness creates an irregular
pattern that mimics the appearance of mm-scale porosity
(Fig. 4e,f). The protruding features of the El Tatio sample are
smoother, akin to those on Elizabeth Mahon. The variable texture
of the El Tatio sample is actually a surficial fabric rather than a
manifestation of porosity, as readily demonstrated by comparing
this topside surface to the underside of the same sample, which
displays unambiguous microporosity (Fig. 4d). Apparently silica
accumulated on the top surface of the El Tatio sample via
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Figure 1 | Opaline silica nodular outcrops adjacent to Home Plate showing typical stratiform expression. (a) White outline highlights nodular silica

outcrop (Navcam mosaic, sol 1116). Rover wheel tracks are B1 m apart. Rolling wheels did not deform the B15 cm high outcrop (lighter tracks) compared

with the inoperative dragging wheel in a later traverse (darker track). Box indicates approximate location of b; L is lapillistone, VB is vesicular basalt.

(b) Pancam approximate true colour (ATC; sol 778, P2388) of opaline silica nodules from a, before rover traverse. Midfield scene spans B80 cm.

(c) Westerly view toward Low Ridge showing nodular outcrops (white arrows) over light-toned platy outcrop (black arrow) and location where rover

wheels passed over nodular outcrop without disturbing it (yellow arrow); L and VB as in a. Midfield scene spans B3 m (cropped Pancam ATC mosaic, sol

800, P2401). (d) Nodular outcrop with portion intentionally disturbed by rover wheel (whitish hues). Cyan arrow indicates ‘Innocent Bystander’ and

magenta arrow is ‘Norma Luker’, the two pieces investigated with the rover arm instruments and shown in Fig. 4. Scene spans B110 cm (cropped Pancam

ATC mosaic, sol 1234, P2378).
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evaporative precipitation in a manner that obscures the bulk
porosity and created variable roughness. Although this candidate
textural analog does not preclude the possibility that aeolian
abrasion is responsible for the variable texture of Elizabeth
Mahon, it demonstrates that silica deposition alone can lead to a
similar texture.

It is important to recognize that independent of whether we
have identified the correct textural analog for this or other Home
Plate silica outcrops, the presence of mm-scale textural variations
seen among them is a characteristic consistent with what is seen
in terrestrial silica sinter deposits. The varied textures of
terrestrial sinters reflect the diverse depositional environments
of hot spring/geyser systems over a range of spatial scales14–16.
This also is true of the microscale internal textures of silica
sinters (o100 mm), including El Tatio samples for which we
present scanning electron microscopy (SEM) and petrographic
thin section views in a subsequent section. Unfortunately,
the resolution of Spirit’s microscopic imaging capability
precludes our ability to observe any microscale features among
the Home Plate silica structures.

Spectroscopy. We have found that laboratory thermal infrared
emission spectra of some silica sinter samples from El Tatio have a
strong B1,260 cm� 1 feature independent of emission angle. The
presence of this feature in some Mini-TES spectra of Home Plate
silica was assumed to result from high emission angle viewing
geometry3,4 (Supplementary Fig. 3), but some El Tatio samples
produce this feature at 0� emission angle, providing a good fit to
Mini-TES spectra of some Home Plate silica outcrops (Fig. 5a). We
attribute this spectral behavior to a thin (tens of micrometers)
patchy crust of halite (NaCl) that coats sinter surfaces (Fig. 5b).
The spectral contribution of halite is apparent by measuring the
same sample before and after gentle scrubbing with a toothbrush

and deionized water. This action effectively removed halite from
the surface without disturbing the silica, which was confirmed by
SEM (Fig. 5c), elemental analysis using energy dispersive
spectroscopy (EDS; Supplementary Table 1), and taste. Samples
measured after halite removal display a feature shifted to
B1,250 cm� 1 and substantially reduced in contrast, resulting in
spectra notably similar to halite-free silica sinter, for example, from
a hot spring in Yellowstone National Park (Fig. 5a).

Some Mini-TES spectra of Home Plate silica outcrops display a
B1,260 cm� 1 feature with a depth and position not achievable
from the viewing geometry effect alone but evident among halite
encrusted El Tatio sinter samples independent of emission angle
(Supplementary Fig. 4). Given that halite has no absorption
features in this spectral range17, the appearance of a strong
B1,260 cm� 1 feature in halite-encrusted sinter samples is
enigmatic and apparently has not been documented previously.
Halite has an index of refraction of B1.5 near 1,260 cm� 1

(ref. 18) versus B0.5 for amorphous silica, which perhaps
accentuates the known geometric effect.

The B1,260 cm� 1 feature observed in Mini-TES spectra of
Home Plate silica outcrops ranges from strong to absent4. The
presence or absence of a thin, patchy halite crust akin to that of El
Tatio sinter could explain this variability. The detectability of the
Na and Cl in such a crust by Spirit’s Alpha Particle X-ray
Spectrometer (APXS) is unknown, but would be dependent on its
thickness and coverage. Unfortunately, none of the outcrop
targets displaying a strong B1,260 cm� 1 feature was measured
by the APXS, precluding a direct comparison between the two
instruments.

Microscopy. Our investigation of the nodular and digitate silica
structures from El Tatio using high vacuum and environmental
scanning electron microscopy (SEM/ESEM) revealed internal
microlaminations with fenestral porosity and silica encrusted

Figure 2 | A portion of the volcanic hydrothermal system at El Tatio in Chile. Discharge channels emanating from small (B1–3 m) steaming hot springs

behind stone barricades (arrows) deposit silica sinter and efflorescent salts amidst volcanic detritus. Rock hammer is 33 cm long.
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microbial biofilms with filaments, sheaths, and exopolymeric
substances (EPS) on both internal and external surfaces
(Fig. 6a,b). EDS showed C enrichment consistent with the
presence of organic matter (Supplementary Table 1). In cross
section, laminae alternate between non-porous silica, filamentous
sinter, and open fenestrae comparable to microstromatolitic
sinter from Yellowstone19, New Zealand20,21 and Iceland22.
The role of microbial biofilms and their EPS in contributing to
these microtextural features was demonstrated previously for
some New Zealand siliceous microstromatolites23. Among El
Tatio digitate silica structures, we have documented at least one

example where unsilicified EPS film is present in an especially
large (B100� 1,000 mm) fenestra (Supplementary Fig. 5).

Petrographic thin sections of El Tatio silica structures reveal
textural and compositional complexity, reflecting a range of
microenvironmental conditions during their formation. Finely
laminated internal textures are evident, including both flat
laminated and columnar forms of stromatolitic opaline silica
(Fig. 6c) sometimes containing coated grains and pisoliths formed
where silica laminae accreted onto angular clasts of porphyritic
volcanics during transport (Supplementary Fig. 1). Fine laminae
of clear opaline silica cement (tens of micrometers thick) typically
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Figure 3 | Comparison of opaline silica structures adjacent to Home Plate with those of hot spring discharge channels at El Tatio. (a) Home Plate

opaline silica occurs in nodular masses with digitate structures that resemble those at El Tatio (b), at the same scale. Mars scene is cropped from Fig. 1b.

White scale bar in a and b represents 10 cm. (c) Home Plate opaline silica digitate structures resemble those at El Tatio (d) at the same scale. The white

scale bar in c,d represents 5 cm. Insets highlight notably similar structures. Mars scene is a Pancam ATC image (‘Elizabeth Mahon’, sol 1160, P2582).

Reddish hues in Mars scenes are due to thin airfall dust accumulation. (e) Grayscale Microscopic Imager mosaic (sol 1157) of a portion of the ‘Elizabeth

Mahon’ silica outcrop on Mars shown in c has similar structures as those on sample ET1-1A from a hot spring discharge channel at El Tatio (f). The white

scale bar in e,f represents 1 cm.
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lack identifiable microfossils. However, they alternate with thicker
laminae displaying fenestral cavities that contain fine, silica
encrusted filamentous microfossils and empty sheaths. Finally,
columnar forms include discrete laminae that contain a wide
variety of unidentified filamentous and coccoidal biomorphs,
diatom frustrules, and occasionally, local populations of heavily
ensheathed fossil cyanobacteria (Fig. 6d) resembling Calothrix
(family Rivulariaceae)24.

Thin sections of El Tatio sinters commonly display laterally
persistent, lenticular to wavy laminae dominated by distinctive
palisade microtextures oriented roughly perpendicular to laminae
(Fig. 6c,d). The palisades are dominated by heavily ensheathed,
Calothrix-like filamentous cyanobacteria that sometimes alternate
with thinly laminated intervals containing finely filamentous
microfossils with recumbent orientations, parallel to laminations.
The fossiliferous intervals are interpreted to be surface biofilm

a b
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Figure 4 | Comparison of mm-scale textural features of home plate opaline silica rocks and El Tatio silica sinter samples. (a) Fragments dubbed Norma

Luker (MI image, sol 1291) from the disturbed outcrop seen in Fig. 1d display a texture like that of El Tatio sinter breccia in b. (c) Another disturbed outcrop

fragment, dubbed Innocent Bystander (MI image, sol 1251), displays microporosity and possible coated grains like that of the underside of El Tatio silica

nodule in d. (e) The variably textured surfaces of Elizabeth Mahon (MI image, cropped from Fig. 3e) are similar to those of El Tatio silica nodule in f, which

is the topside of the one shown in d. White scale bar represents 1 cm and applies to all images.
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communities (Fig. 6b) that were entombed by opaline silica
and incorporated into stromatolite profiles contributing to
their accretion. In modern siliceous hot springs, such palisade
microtextures have been reported widely from lower temperature,
distal apron environments below B35 �C (ref. 25), as well as
ancient analogs from the Devonian of Australia26. Palisade
microtextures also were documented previously among El Tatio
silica oncoids and crusts10,27. Based on the suite of textural and
microbial features apparent in thin sections and SEM images, we
infer that El Tatio digitate silica structures are microbially
mediated microstromatolites.

Discussion
None of the observations by Spirit uniquely constrains the origin
of the Home Plate nodular silica outcrops. However, the
spectral evidence for encrustation by halite favours the role of
chloride-bearing solutions rather than fumarolic gases. In some
cases, fumaroles are known to produce sublimates of halite
in minor amounts along with native sulfur and sulfur phases in
greater abundance28,29, but the latter have not been observed
among the Home Plate silica outcrops4.

Sodium-bearing alkali chloride waters are common in hot
spring/geyser systems on Earth, with rarer examples of acid-
sulfate-chloride waters also recognized30,31. The precipitation and
accumulation of halite from such solutions requires evaporation
to dryness and meteoric precipitation rates sufficiently low to
avoid subsequent dissolution. These conditions are rare on Earth,
but El Tatio is an example where halite is especially abundant
among the silica sinters in discharge environments32. Conditions
of high evaporation/low meteoric precipitation rates likely were
present on Mars in the Late Noachian.

Based on analogy with El Tatio, the nodular and digitate silica
structures, combined with evidence for halite crusts, substantially
bolster the case for an origin of the Home Plate silica as sinter in a
hot spring/geyser environment with precipitation from silica- and
chloride-bearing waters. Evidence for silica sinter deposits on
Mars is important given the known capacity of such rocks to
capture and preserve microbes, making them ideal targets in the
search for ancient life on Mars33. Furthermore, the fact that the
silica phase at Home Plate has remained as opal-A rather than
transforming to a mature polymorph like microquartz, attests to
negligible diagenesis4,34. On Earth, opal-A is metastable. In
New Zealand for example, the oldest recognized opal-A
dominated sinter deposit dates to B40,000 BP (ref. 35). In this
context, we must consider the preservation history of the Home
Plate opaline silica outcrops.

The Columbia Hills are inferred to be at least Late Noachian in
age36 and are embayed by flood basalts dated at 3.65 Ga based on
crater size-frequency distribution37. Aeolian erosion has been the
dominant geologic process since then38. One explanation for the
preservation of the Home Plate silica outcrops over billions of
years is that they were thinly buried for much of that time and
only recently exposed by erosion. There is clear evidence for a
succession of thin (decimeter scale) volcanic tephra deposits in
the vicinity of Home Plate, including the eponymous feature39,
all capped by vesicular basalt boulders3 (Fig. 1). Perhaps the
silica outcrops formed relatively early in the volcanic succession,
becoming buried first by tephra and then vesicular basalt,
followed by exhumation via aeolian erosion. The lack of
diagenesis of the silica is consistent with minimal burial
and post-depositional conditions dominated by low water
activity34.
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Figure 5 | Spectral effect of halite on silica. (a) Mini-TES spectrum of an opaline silica nodular outcrop adjacent to Home Plate (black, scaled by

2� ; target Clara Zaph4, sol 1168, P3968) displays a strong feature at B1,260 cm� 1 (vertical line) also found in halite encrusted silica sinter from El Tatio

(sample ET3-3A) measured at 0� emission angle (blue; vertically offset). This feature is diminished substantially and slightly shifted after halite is removed

(purple; vertically offset) and also in sinter that was never halite encrusted, like that from Yellowstone National Park (magenta; vertically offset). (b) SEM

view of El Tatio sample with blue spectrum in a displays a patchy halite crust (lighter areas). (c) Same view as in b but with halite mostly removed by

dissolution and scrubbing, yielding the purple spectrum in a. White scale bar represents 1 mm and applies to both b,c.
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On Earth, interbedded volcanic and hot spring/geyser deposits
are common in the rock record and can include textures
preserved following burial and exhumation26,40,41. Recent
results from the Curiosity rover provide an example of buried
sedimentary rocks on Mars having been exposed as recently as
B78 Myr ago (ref. 42). Such observations support a burial and
exhumation hypothesis for the Home Plate silica outcrops.

The morphology of Home Plate digitate silica structures bears a
strong resemblance to the microbially mediated micro-
stromatolites at El Tatio. Siliceous microstromatolites are
common features of hot spring/geyser systems on Earth16,43,44,
and the particular morphology of those at El Tatio might be due
in part to halite accumulation. Although we have no microscale
observations of the interiors of the Home Plate digitate silica
structures, external shape generally is considered to be one of
several distinguishing features of microbialites45, including
stromatolites46. Thus, a plausible hypothesis for the Home Plate
digitate structures is that they are microstromatolites formed in
hot spring/geyser discharge channels like those of El Tatio.
However, determining the relative contribution of biotic and
abiotic influences in the formation of a particular stromatolite can
be quite difficult, and must be assessed on a case-by-case
basis16,47. Entirely abiogenic internally laminated columnar
structures have been synthesized via numerical modeling46 and
laboratory spray-paint deposition experiments47, complicating
the effort to interpret such structures in the Precambrian rock

record on Earth. To fully test for biogenicity of the Home
Plate digitate structures would require microscopic analyses like
those we have applied to El Tatio samples.

Lacking information on internal microscale features of the
Home Plate digitate silica structures, the hypothesis that they are
microstromatolites arises from our interpretation of the
integrated observations of geologic context, mineralogy and
morphology down to mm-scale, all of which are consistent with
a microbialite origin. Given the strong evidence that Home Plate
nodular silica outcrops are sinter deposits, the abiotic production of
digitate structures resembling those known to arise via biosedi-
mentary processes among sinter deposits on Earth would require a
fortuitous combination of constructional and/or erosional pro-
cesses. Aeolian erosion might be a viable process to explain the
digitate structures given the clear evidence for aeolian activity and
erosion at Home Plate38,48, but we have not encountered any
natural or experimental examples of truly comparable structures
produced by erosion. The preservation of a delicate surface texture
like that on the Elizabeth Mahon outcrop (Figs 3e and 4e) seems to
preclude the action of wind abrasion; presumably smoother
surfaces would result from abrasion sufficient to sculpt digitate
structures. Nevertheless, the absence of unequivocal evidence for
life on Mars favours an abiotic origin by default. We note however,
that none of the available observations actually precludes a
biogenic origin for the Home Plate digitate silica structures,
making them worthy of additional investigation.

a b

c d

Figure 6 | Microscopic views of El Tatio digitate silica structures. (a) SEM image from a digitate structure broken off sample ET1-1A (Fig. 3f). Alternating

non-porous and filamentous concentric laminae with fenestral porosity are evident. Inset highlights webs of silica-encrusted filaments within fenestral

cavities. White scale bar represents 1 mm. (b) SEM image of a surface biofilm community showing silica-encrusted microbial filaments and sheaths, and

spindle-shaped diatoms (arrows) occupying the outer surface of another digitate structure from the same sample. White scale bar represents 20 mm.

(c) Photomicrograph of a transverse petrographic thin section through a digitate structure from a second El Tatio sample (ET1-1C). Microtextures include

nonporous and fine-scale laminae, porous laminae with irregular to flattened fenestral cavities, and tufted palisade fabrics formed by silicified populations

of filamentous cyanobacteria resembling Calothrix (family Rivulariaceae). White scale bar represents 500mm. (d) Enlarged view from boxed area in c

showing silicified Calothrix sheaths oriented roughly perpendicular to laminae. Calothrix sheaths (some containing cellular trichomes) have been heavily

permeated by silica and are overlain by laminae containing silica encrusted fine filaments with orientations roughly parallel to laminae. White scale bar

represents 50mm.
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The search for evidence of life on Mars remains a central focus
of upcoming rover missions. In this context, NASA’s Mars 2020
Science Definition Team defined a potential biosignature as ‘an
object, substance and/or pattern that might have a biological origin
and thus compels investigators to gather more data before reaching
a conclusion as to the presence or absence of life’49. Because we
can neither prove nor disprove a biological origin for the
microstromatolite-like digitate silica structures at Home Plate,
they constitute a potential biosignature according to this definition.

A future rover mission could perhaps provide a more definitive
assessment of biogenicity of Home Plate silica structures using
instrumentation capable of identifying the presence or absence of
microlaminations in exposed interiors. In combination with
instrumentation capable of assessing the presence or absence of
organic matter, the positive identification of internal microfabrics
and detection of complex organic compounds would go a long
way toward testing the hypothesis of biogenicity. However,
because of the challenges in obtaining unambiguous evidence
in situ, coordinated microscopic and compositional analyses of
samples returned to laboratories on Earth may be required to
reach a robust conclusion as to the presence or absence of past
Martian life in these rocks.

Methods
Samples. Opaline silica sinter samples used in this study were collected from hot
spring and geyser discharge channels at El Tatio, Chile with permission from park
officials. They were placed in plastic bags for transport without any fixatives or
other preparation.

SEM and EDS microscopy. A scanning electron microscope (FEI XL30) inte-
grated with energy dispersive X-ray spectroscopy was used to characterize sample
micromorphology and semi-quantitative elemental chemistry. Both high vacuum
and environmental SEM techniques were used in this study, with some samples
sputter-coated with Au/Pd and others uncoated. They were attached to stubs using
silver paint, copper tape, or carbon tape. Samples shown in Fig. 6a (uncoated) and
6b (coated) were run in high vacuum at 15 kV. The sample shown in
Supplementary Fig. 5 was uncoated and run at 4.6 Torr at 25 kV.

Thin section petrography. Air-dried silica sinter samples were slabbed using a dry
diamond saw, and transverse cut surfaces were cleaned with compressed air.
Slabs were embedded in epoxy under a vacuum. Epoxy-embedded samples were
sliced with a diamond oil-lubricated saw to produce doubly polished transverse
one-inch round sections. Sections were ground in oil to a thickness of 30 microns
and studied under a Nikon polarizing microscope. Images of key features were
obtained under plane and crossed polarized light at magnifications ranging from
20� to 500� .

Spectroscopy. Laboratory thermal infrared emission spectra shown in Fig. 5a and
Supplementary Figs 3 and 4 were measured with a Nicolet Nexus 670 spectrometer
(modified for emission50) on natural surfaces of field samples except where noted
as ‘scrubbed’ (described in main text). The samples were heated in an oven set to
80 �C for B2 h before measurement and then placed on an apparatus designed to
maintain this temperature during measurement. The ‘field’ spectrum shown in
Supplementary Fig. 4 was obtained using a tripod mounted portable spectrometer
(D&P mFTIR) oriented to measure the surface at an angle B70� from the
surface normal. The field of view included cobble-sized sinter fragments down to
sand-sized particles.

Data availability. All Pancam approximate true colour images51,52 are available
at http://marswatch.astro.cornell.edu/pancam_instrument/true_color.html.
All Microscopic Imager images are available at https://an.rsl.wustl.edu/mera/
merxbrowser/. All other images and spectral data are available from the
corresponding author upon request.
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