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Bone adaptation to spaceflight results in bone loss at weight bearing sites following the

absence of the stimulus represented by ground force. The rodent hindlimb unloading

model was designed to mimic the loss of mechanical loading experienced by astronauts

in spaceflight to better understand the mechanisms causing this disuse-induced bone

loss. The model has also been largely adopted to study disuse osteopenia and therefore

to test drugs for its treatment. Loss of trabecular and cortical bone is observed in

long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have

been shown to play a key role in sensing mechanical stress/stimulus via the ECM-

integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as

SOST and RANKL. Colder experimental environments (∼20–22◦C) below thermoneutral

temperatures (∼28–32◦C) exacerbate bone loss. Hence, it is important to consider the

role of environmental temperatures on the experimental outcomes. We provide insights

into the cellular and molecular pathways that have been shown to play a role in the

hindlimb unloading and recommendations to minimize the effects of conditions that we

refer to as confounding factors.

Keywords: hindlimb unloading, osteocyte, mechanotransduction, bone loss, disuse osteopenia

INTRODUCTION

The organism continuously renews its skeleton, by constantly resorbing and building bone
tissue throughout its life. If bone resorption outpaces its formation, bone mass and strength are
diminished. Bed rest, immobilization, paralysis, and spaceflight all share the common feature of
bone loss, detected as reduced bone density at specific bone sites, potentially leading to osteopenia
and osteoporosis (Takata and Yasui, 2001). The bone loss seen in such conditions is thought to
be primarily caused by loss of mechanical loading (Lau and Guo, 2011). Microgravity causes bone
loss especially, though not exclusively, at the weight-bearing sites (Oganov et al., 1992; Vico et al.,
2000; Linossier et al., 2017). Similarly, in long term bed rest the loss of ground force reaction is
accompanied by reduced muscle contractions and subsequent decrease in bone mineral density at
distal femur, distal tibia and patella (Rittweger et al., 2009).

If bed rest volunteers have been used to understand disuse osteopenia in clinical studies, the need
to better understand the organismal response to microgravity resulted in the development of the
preclinical rodent hindlimb unloading (HLU) model in the 1970s (Morey, 1979) (Figure 1). The
HLU model as such has been extensively detailed by Morey-Holton and Globus (Morey-Holton
and Globus, 1998, 2002; Globus and Morey-Holton, 2016). Briefly, the model encompasses the
unloading of the hindquarters of the rodent via tail suspension while the animal is left free to
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FIGURE 1 | The suspension of the hindlimbs of a C57BL/6J mouse via tail

suspension and the usual protocol durations. The suspension system consists

of the padded rod to which the tail is attached using three tonoplast bandages

wrapped at a distance from each other to not cover the tail completely. The

rod is then hooked to a freely rotating swivel fixed to a pulley sliding on a roller

axis to allow the mouse to freely rotate in 360◦ axis. The mouse is singly caged

and allowed to move on its forelimbs with the support of the grid below. The

angle of unloading is maintained at 30◦ from the ground. The periods of

suspension may vary based on the experimental requirements. The different

periods of suspension allow one to follow the kinetics of bone adaptation to

unloading. At all-time points adaptation can be identified at different levels:

molecular (gene expression profiling), cellular (histomorphometry) and tissular

(X-ray tomography). Although tail traction with orthopedic tape is the preferred

method of suspension, other methods including use of a body harness to

stimulate partial weight bearing have been illustrated (Wagner et al., 2010).

walk on its forelimbs. This position mimics the cephalic fluid
shift and the decrease in mechanical loading on lower limbs
experienced by astronauts during spaceflight (Morey-Holton and
Globus, 1998), with the human equivalent being head-down tilt
bed rest.

The animal analog has now been adopted as a model to study
muscle atrophy and disuse osteoporosis on ground conditions.
Several alternatives to it exist such as tenotomy, neurectomy,
botulin-induced paralysis, and unilateral limb casting (Komori,
2015). HLU has several benefits such as requiring minimal
specialized equipment and not requiring a surgical intervention,
unlike tenotomy or neurectomy. When compared to unilateral
limb casting, HLU also additionally diminishes the mechanical
load (Speacht et al., 2018). Unlike neurectomy, limb unloading
itself is partially reversible with the recovery of bone mass being
achieved to a certain extent when rodents are let free to use the
four limbs again. HLU can be applied to rodents of the age, sex or
genetic make-up of interest, allowing the modeling of the various
complex clinical scenarios of bone loss observed in humans and
the testing of anti-osteopenic drug therapies.

We want to bring to attention of the reader that although the
HLU was developed in rats (reviewed in Morey-Holton et al.,
2005) it has been well-adapted tomice.We have chosen primarily
to focus on mice-based experiments rather than rats as mice
offer certain advantages. Beyond ease of handling, their smaller
weight allowing for smaller cages and for longer suspension
periods. Also, increased availability of transgenic and mutant
strains of mice makes it possible the study of specific molecular
mechanisms (Ishijima et al., 2001; Iwaniec et al., 2005; Maurel
et al., 2016; Yang et al., 2020). Moreover, rats achieve skeletal

maturity toward the end of their life (Roach et al., 2003).
Therefore, adult mice are preferred to adult but continuously
growing rats for suspension models to study skeletal systems, in
growing rats the loss of bone is attributed to a failure in increased
bone formation and growth, where as in adult mice there is
increased bone resorption and net bone loss, which is similar and
more relevant to the case of humans in spaceflight (Globus and
Morey-Holton, 2016).

This review sets to explore the cellular and molecular
underpinnings of the response of bone resident cells to
mechanical unloading in HLU. We examine the involved
pathways and the role played by the different bone cells (with
a particular focus on osteocytes). In addition, we highlight the
effects of several key parameters of the experimental setup (e.g.,
environmental conditions) on the observed outcomes.

BONE TISSUE CHANGES IN HLU

HLU is reported to lead to a number of changes in bone
structure both at the cortical and the trabecular levels. The
majority of the studies adopting HLU have highlighted a more
prominent loss in bone mass and architecture in the trabecular
compartment secondary to increased osteoclastic resorption and
decreased bone formation. Bone loss is reflected by a decrease
in the relative trabecular bone volume (Bone Volume/Total
volume) and it is connected to a disequilibrium in bone
remodeling. This unbalance is apparent when measuring key
static and dynamic bone parameters by histomorphometry, such
as bone surface covered by osteoclasts (osteoclast surface over
Bone surface, Oc.S/BS), osteoclast number per Bone surface
(Oc.N/BS), mineralized trabecular surface per bone surface
(MS/BS), mineral apposition rate (MAR), and bone formation
rate (BFR) (Komori, 2015). HLU results in increased Oc.S/BS and
Oc.N/BS and reduced MS/BS, MAR and BFR. Skeletal unloading
also induces cortical thinning (Iwaniec et al., 2005; Morey-
Holton et al., 2005; Speacht et al., 2018). Altered bone deposition
and resorption patterns contribute to these effects with changes
in both periosteum and endosteum formation rates that are not
uniform along the bone length (Yang et al., 2020).

These results are consistent with those from ex vivo cultures
of bone cells derived from tail suspended rats showing reduced
osteoblasts’ osteogenic potential with a decrease in the number
of alkaline phosphatase (ALP)-positive colonies. Notably, an
increase in tartrate resistant acid phosphatase (TRAP) positive
cells was reported as well, therefore hinting at an increased
osteoclastic activity (Maurel et al., 2016). Table 1 summarizes the
bone trabecular and cortical changes seen in the hindlimbs of tail
suspended mice.

OSTEOCYTE LACUNO-CANALICULAR
SPACE AND MECHANOSENSORS

Frost proposed that bone has an intrinsic regulatory mechanism,
that he called the mechanostat. This regulatory “machinery”
would respond to mechanical stimulation by adapting bone
morphological, biochemical, and physical properties to serve its
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TABLE 1 | Summary of trabecular and cortical changes in mice in HLU.

Experimental condition Trabecular differences Cortical differences References

17-week old

C57BL6 mice

14 days HLU

22◦C

1-week acclimatization

Femoral BV/TV: 15%↓

Femur Tb.Th.: 13% ↓

Not measured Amblard et al., 2003

11-week old

C57BL6 mice

21 days HLU

22◦C

No acclimatization

Tibial BV/TV: 28.2% ↓

Tibial Tb.Th: 11% ↓

Tibial Ct.Th: 21% ↓

Tibial Ct.Ar: 22% ↓

Ellman et al., 2014

12-week old

C57BL6 mice

21 days HLU

22◦C

No acclimatization

Tibial trabecular BMD: ∼18% ↓ No differences reported in

cortical BMD

Kawao et al., 2018

16-week-old

WBB6F mice

14 days HLU

32◦C

12 weeks acclimatization

Femoral BV/TV: ∼20% ↓,

Femoral Tb.Th: ∼9% ↓

Not measured Keune et al., 2017

17-week old

C57BL6 mice

14 days HLU

22◦C

No acclimatization

Femoral BV/TV: >60% ↓

Femoral Tb.Th: ∼30% ↓

Femoral Ct.Th: ∼23% ↓

Femoral Ct.Ar: ∼32% ↓

Lin et al., 2009

7-week old

BALB/c mice

28 days HLU

22◦C

1-week acclimatization

Femoral BV/TV: ∼75% ↓ Femoral bone volume:

∼13%

Saxena et al., 2011

6-month

C57BL6 mice

7, 14 and 28 days HLU

22◦C

Acclimatization not stated

Femoral BV/TV: ∼28% ↓

Femoral Tb.Th: ∼11% ↓

Not measured Shahnazari et al., 2012

52-day old mice

14 days HLU

22◦C

Acclimatization not stated

Trabecular parameters not

measured

Femoral Ct.Th: 25% ↓

Femoral Ct.Ar: 16% ↓

Simske et al., 1992

12-week old

C57BL6 mice

21 days HLU

22◦C

Acclimatization not stated

Femoral BV/TV: ∼29% ↓

Femoral Tb.Th: ∼12% ↓

Femoral Ct.Th: ∼19% ↓

Femoral Ct.Ar: ∼17% ↓

Spatz et al., 2013

8-week old

C57BL6 mice

28 days HLU

Acclimatization not stated

Femoral BV/TV: ∼15% ↓

Femoral trabecular BMD: ∼22%

↓

Femoral Ct.Th: ∼10% ↓ Colaianni et al., 2017

14-week old

C57BL6 mice

14 days HLU

22◦C

Acclimatization 2 weeks

Tibial Tb.Th.: 11% ↓ Tibial Ct.Th: ∼17% ↓ Steczina et al., 2020

8-week old

ddY mice

21 days HLU

23◦C

1-week Acclimatization

Femoral BV/TV: ∼13% ↓

Femoral trabecular BMD: ∼20%

↓

No differences reported in

cortical BMD

Tousen et al., 2020

Details on the experimental procedures are reported in reference to the mouse strain, the temperature, and the acclimatization phase. The arrows pointing downwards correspond to
a reduction in the described parameter. BV/TV, Bone Volume/Total Volume; BMD, Bone mineral density; Tb.Th, Trabecular Thickness; Ct.Th, Cortical Thickness; Ct.Ar, Cortical Area.
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mechanical function in the most economical way. This model
would anticipate an increased net bone resorption below a
threshold of mechanical stimulation/use and net bone formation
above a specific threshold (Frost, 1987). Frost’s mechanostat
theory provided a conceptual framework to rationalize bone
adaptation to mechanical stimuli but it did not clarify which
cells would sense the loading or how this information would be
transmitted to bone forming and bone resorbing cells.

Eventually, osteoblasts, osteoclasts, and osteocytes, the three
key cell types in bone, and their precursors have all been
demonstrated to contribute, directly or indirectly, to bone
homeostasis. In particular, osteocytes stand out as the key
orchestrators of bone remodeling via regulation of osteoblastic
bone mineralized matrix deposition and osteoclastic bone
resorption (Bonewald, 2006, 2011).

Osteocytes reside in cavities called lacunae within the
mineralized matrix, and send extensions called dendrites or
osteocytic processes through the canaliculi (tunnels) crossing
the bone matrix. The lacunae together with the canaliculi form
the lacuno-canalicular space (LCS), that is filled with a fluid
responsible for transporting solutes to and from the osteocyte
(Figure 2). Dye injection into the tail vein of a mouse shows
passage of the dye from circulation into the LCS within minutes
(Knothe Tate et al., 2000; Price et al., 2011). Extravascular
pressure drives the baseline flow of the canalicular fluid, but rapid
alterations can occur in the flow due to changes in themechanical
loading [theoretically modeled by (Weinbaum et al., 1994)]. Later
revisions of such model are detailed in a recent review by Hadida
and Marchat (2020).

In this section we focus on the mechanosensors that have been
explored in conjunction with HLU. The complex architecture of
this space allows the transmission of the mechanical information
from the scale of the fluid movement to the 3D matrix of
the osteocyte cytoskeleton via transmembrane molecules like
the protein Piezo1 (as reviewed in Qin et al., 2020). Piezo
is a family of mechanosensitive cell membrane ion channels
expressed in osteoblasts and osteocytes. It has been demonstrated
that Piezo1 opens in response to mechanical stimuli and
allows the entry of calcium ions into the cytoplasm (Coste
et al., 2010). Mice with osteoblasts and osteocytes deficient
in the Piezo channel show decreased trabecular bone volume,
cortical thickness, and increased osteoclasts. However, these mice
do not undergo bone loss when used in HLU experiments,
highlighting the role of Piezo-1 as a key regulator in the
response to mechanical loading (Sun et al., 2019; Wang
et al., 2020). The ECM-integrin-cytoskeleton axis is crucial
to mechanotransduction (reviewed in Yavropoulou and Yovos,
2016). The pericellular matrix of osteocytes forms hillock
structures called “collagen hillocks” connecting the dendrites to
the matrix (Figure 2). The matrix is in turn connected with the
integrin-focal adhesion complexes in the cell body. Mechanical
strain induces assembly of the focal adhesion molecules in
association with integrins, and activation of the focal adhesion
kinase (FAK) and the Src pathways ultimately resulting in the
activation of the phosphoinositide 3-kinase (PI3K) and the
mitogen activated protein kinase (MAPK) pathways (Marie et al.,
2014). The MAPK pathways then specifically upregulate the

expression levels of runt-related transcription factor 2 (RUNX2),
Osterix, and activating transcription factor 4 (ATF4) promoting
osteoblastogenesis (Franceschi and Ge, 2017). The three major
cytoskeletal components in the osteocyte include actin filaments,
which extend into the dendrites and are essential for osteocyte
integrity, intermediate filaments like vimentin, whose levels are
sensitive to mechanical stimulation, and microtubules, with the
latter extending into the primary cilium (Figure 2) (Tanaka-
Kamioka et al., 1998; Klein-Nulend et al., 2012). Primary cilia
are “solitary” organelles projecting from the cell surface and
mainly functioning as chemo- and mechanosensors. Kwon et al.
explored their way of functioning in osteocytes and demonstrated
that primary cilia bend under physiological levels of flow with
a consequent decrease in cAMP levels mediated by adenylyl
cyclase 6. They speculated that this decrease is transient and
followed by the accumulation of cAMP which subsequently
causes transcriptional changes in cyclooxygenase 2 (COX-2) and
thus prostaglandin 2 (PGE2) expression (Kwon et al., 2010).
PGE2 is a rapidly induced signaling molecule which is released
in response to fluid flow shear stress and further acts via
PKA, β-catenin pathways (Kamel et al., 2010; Kitase et al.,
2010). However, it should be mentioned here that only a small
percentage of bone cells (4%) have been found to carry primary
cilia in vivo, indicating that the primary cilia probably function
with other mechanosensory systems/organelles (Coughlin et al.,
2015). The osteocytes communicate with each other and
with the surrounding cells via gap junctions containing the
protein connexin 43 (Cx43). Gap junctions enable quicker
propagation of secondary messengers to adjacent cells, creating
a functional syncytium throughout the bone (Buo and Stains,
2014). Gap junctions open in response to mechanical stress
with resultant release of PGE2, and activation of the PI3K/AKT
and cyclic adenosine monophosphate/protein kinase A pathways
(cAMP/PKA) (Cherian et al., 2003; Xia et al., 2010). Cx43
knockout mice show an osteopenic phenotype with decrease in
cortical BMD, thickness and increased porosity (Lloyd et al.,
2012). Interestingly, the selective deletion of Cx43 in osteocytes
also desensitized bone to 3 weeks of hindlimb unloading. In these
animals, no increase in osteoclastic resorption was seen resulting
in no decline in trabecular bone volume, thickness and density,
indicating the inability of Cx43−/− osteocytes to efficiently
detect, “communicate” or respond to unloading. Thus, deletion
of Cx43 affects not only the physiological bone phenotype but
also its response to loading (Lloyd et al., 2013).

Therefore, it can be derived that mechanical stimuli exert
their stimulatory role by primarily modifying fluid flow
which can induce matrix deformation, trigger membrane
mechanoreceptors and induce cytoskeletal responses (Kitase
et al., 2010).

Although the fluid flow theory provides a mechanical
framework and allows a mechanistic analysis in terms of cell
responses, it is not the only validated/critical mechanism for
bone adaptation to mechanical loading and is not limited to
the mechanosensors mentioned above. Also, comprehensive
explanation of the biomolecular responses to perturbations in
the fluid microenvironment in the HLU model remain elusive.
To better understand the role played by mechanotransduction
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FIGURE 2 | Illustration of an osteocyte with its lacuno-canalicular system (adapted from Qin et al., 2020). The cytoskeleton consists of microtubules (red) which

extend to the primary cilium, actin (blue) and intermediate filaments (not shown in the figure). The bone osteoid forms collagen hillocks at the canaliculi. Integrins are

present on the cell body and dendrites/osteocyte processes and interact with the pericellular matrix and cytoskeleton via the focal adhesion components (only three

shown for simplicity). (Reproduced with permission: http://creativecommons.org/licenses/by/4.0/).

in bone health, it is important to further review the molecular
pathways it relies on.

YAP/TAZ PATHWAY

YAP (Yes associated protein) and TAZ (Transcriptional factor
with PDZ binding motif) are transcriptional factors that
are increasingly being investigated for their role in cellular

processes and have been found implicated in a number of
physio-pathological conditions (e.g., arthritis, arthrosis, tumor
metastases). Their activity can also be regulated by the rigidity
and deformation of the ECM as it has been demonstrated in
various cell types including the osteoblastic lineage (reviewed
in Panciera et al., 2017). Their function is dependent on the
integrity of actin cytoskeleton and requires Ras homologous
protein (Rho) activity (Dupont et al., 2011). In vitro studies show
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ECM rigidity causes activation of the integrin-Rho pathways in
cells which undergo cytoskeletal reorganization (e.g., increased
polymerization, contractility, and stress fiber pooling) and
consequent nuclear translocation of the YAP-TAZ complex,
promoting differentiation of human mesenchymal stem cells
(Kegelman et al., 2020).

Regarding their role in the regulation of osteoblastogenesis,
data on the effects of YAP/TAZ signaling is contradictory and
it appears that they have opposing effects at different stages
of osteoblast differentiation. The concomitant deletion of YAP
and TAZ in osteoprogenitor cells (Prx-1 Cre targeted mice
lacking two copies of TAZ and one copy of YAP) resulted in
increased osteoblast differentiation, whereas their deletion in
mature osteoblasts/osteocytes in Dmp1-Cre mice reduced bone
formation and also increased osteoclast number (Xiong et al.,
2018). In vivo studies show that Piezo1 regulates YAP pathways
in bone cells: mechanical stimulation transduced by Piezo1 leads
to YAP nuclear accumulation and downstream of Ca2+ influx
and Calcineurin activation, concomitant to Wnt/beta-Catenin
pathway (Zhou et al., 2020). In Piezo1 conditional knockout
mice, reduced nuclear localization of YAP with resultant
osteoporosis. The same knockout mice, when suspended, resist
bone loss (Wang et al., 2020). Atrophied muscle fibers from
suspension do show a decrease in YAP protein which increases
on reloading (Brooks et al., 2018). As such it would be interesting
to look at the changes in YAP/TAZ pathways in bone during
mechanical unloading. It has been shown that the pathway also
interacts withWnt canonical pathways (see below) (Azzolin et al.,
2014).

In vitro studies show that YAP can promote or inhibit
osteogenic differentiation in bone marrow mesenchymal stem
cells (BMSCs) (Sen et al., 2015; Liu et al., 2019), whereas TAZ
was shown to promote osteogenic differentiation in BMSC and
MC3T3 cultures (Kim et al., 2014; Feng et al., 2015).

Overall, the YAP/TAZ pathway seems to be an important
molecular pathway for the translation of mechanical stimuli into
biochemical signals. However, further research in both in vitro
and in vivo models is required to understand its dynamic role in
response to unloading.

WNT PATHWAY

Wingless-related integration site (Wnt) pathways are
evolutionary conserved pathways comprising of a family of
19 glycoproteins which regulate several crucial aspects of cell fate
and migration as well as organogenesis (reviewed in Komiya and
Habas, 2008).

Wnt pathways have been known to positively contribute to
bone mass via a number of mechanisms which include stem cell
renewal, induction of osteoblastogenesis and prevention of both
osteoblast and osteocyte death (Krishnan et al., 2006; Moorer and
Riddle, 2018).

Briefly, in Wnt pathway OFF state, a destruction complex
consisting of APC (Adenomatosis Polyposis Coli), axin, GSK3
(glycogen synthase kinase 3), and casein kinase 1 (CK1) is
formed and it phosphorylates β-catenin therefore leading to its
degradation in the proteasome. In its ON state, Wnt ligand

binds to the frizzled receptors, LRP5/6 (low-density-lipoprotein-
related protein 5/6), causing the inactivation of GSK3 via
Disheveled (Dsh), a key component of Wnt-signaling pathways
(Lerner and Ohlsson, 2015). This results in the accumulation
and nuclear translocation of β-catenin. Here, β-catenin displaces
the transcriptional co-repressors bound to TCF/LEF (t-cell
factor/lymphoid enhanced factor) and recruits co-activators,
regulating the expression of target genes such as cyclinD, c-Myc,
peroxisome proliferator activated receptor (PPAR) and axin2,
which participates in a negative feedback loop and limits the
duration of Wnt signaling pathway (Jho et al., 2002; Krishnan
et al., 2006).

Increased expression of Wnt target genes (i.e., Wnt10B,
SFRP1, cyclin D1) was reported in response to mechanical
loading both in vivo and in vitro (Robinson et al., 2006). On
the contrary, decreased mRNA expression of LRP6 and β-catenin
was seen in rats after 4 weeks of tail-suspension (Jia et al., 2019).
Mice with an activating point mutation in the Wnt coreceptor
LRP5 have high bone mass and they were found to be resistant to
bone loss induced by hindlimb unloading (Niziolek et al., 2015).
Also, artificial stabilization of β-catenin in osteocytes prevented
the disuse-induced bone loss in unloaded mice (Bullock et al.,
2019). These results imply an important role for Wnt/β-catenin
in bone response to mechanical stimulation.

SECRETORY SIGNALING PROTEINS

Sclerostin is a protein encoded by the SOST gene and secreted
mainly by mature osteocytes. SOST knockout mice exhibit a
high bone mass phenotype with increased bone mineral density
and bone strength due to increased bone formation. In humans,
mutations in this gene are associated with rare genetic disorders
associated with high bone mass, as sclerosteosis and van Buchem
disease (Balemans et al., 2001; Li et al., 2008). Sclerostin is an
antagonist of the Wnt downstream signaling pathway and it acts
by binding to the LRP5/6 receptors (Li et al., 2005). Thus, it is a
negative regulator of bone formation and it was shown to respond
to mechanical loading. In vivo mRNA levels of sclerostin are
reduced in the ulnar cortex of mice exposed to loading, whereas
they are increased in the tibia of tail suspended mice at day
3 of suspension but subside to non-significant levels at day 7
(Robling et al., 2008). However, some experiments show a more
complex pattern of SOST expression, with its levels varying with
anatomical site. Unloaded hindlimbs (tibiae) of 3 month old rats
showed a decrease in SOST expression in metaphyseal cortical
bone, and upregulated SOST levels in diaphyseal bone (Macias
et al., 2013).

In vitro experiments demonstrated that osteocyte cell lines,
Ocy454 cells, when subjected to simulated microgravity, as
achieved in the NASA rotating wall bioreactors, showed a
significant increase in SOST expression when compared to the
static controls (Spatz et al., 2015). Inversely, Ocy454 responded
to fluid shear stress (FSS) (Lyons et al., 2017) by reducing SOST
levels, de-repressing the Wnt signaling pathways. This occurs
by a rapid lysosomal degradation of sclerostin within 5min of
exposure to an anabolic stimulus like FSS (Gould et al., 2021).

DKK1 is another antagonist of the Wnt pathway, acting by
binding directly to LRP5/6. Its expression levels in bone were
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found to be reduced upon ulnar loading (Bafico et al., 2001), but
no significant changes were seen on hindlimb unloading (Robling
et al., 2008).

Both SOST and DKK1 antagonism using monoclonal
antibodies has emerged as a therapeutic approach to treat
osteoporosis (Ke et al., 2012). Romosozumab, a humanized
monoclonal antibody against sclerostin, has been shown to
reduce the risk of vertebral fractures in postmenopausal women
and is already in use in United States and European Union (Paik
and Scott, 2020).

RANK-RANKL signaling is necessary for the differentiation
and activation of osteoclasts and subsequent bone resorption
(reviewed in Ono et al., 2020). RANKL was believed to be
secreted primarily by osteoblasts but the deletion of RANKL
in late osteoblasts/osteocytes (Tnfsf11-floxed mice crossed with
Dmp 1-Cre) showed that RANKL was mostly produced at this
stage in adult mice (Xiong et al., 2015). In the cancellous bones
of distal femurs of hindlimb unloaded rats elevated levels of pro-
inflammatory cytokines (e.g., IL-1, TNF-α) were reported to lead
to an increase in RANKL (Metzger et al., 2017). Several authors
have described an increase in RANKL production by osteocytes
neighboring osteocytes that were believed to undergo apoptosis
as a response to loss of mechanical load or conversely excessive
loading with resultant microfractures (reviewed in Xiong and
O’Brien, 2012). Increase in bone resorption following osteocyte
apoptosis has also been reported in cortical bone of OVX mice
(Emerton et al., 2010).

Femurs of suspended mice showed an increase in osteocyte
apoptosis with increase in RANKL and bone resorption
(Cabahug-Zuckerman et al., 2016). However, Plotkin et al. (2015)
demonstrated that bone resorption and bone loss occur even
after blocking of osteocyte apoptosis using the inhibitor of
apoptosis IG9402 (bisphosphate analog that maintains osteoblast
and osteocyte viability). Other studies have also demonstrated
that spaceflight and HLU induced bone loss occurs even in
the absence of osteocyte apoptosis (Blaber et al., 2013; Farley
et al., 2020). Moreover, the results from papers reporting
apoptotic osteocytes should be treated with caution because they
derive from immunohistochemical analyses run on thin (5µm)
sections, potentially leading to false positives when counting
empty osteocyte lacunae (Jilka et al., 2013). False positives have
also been reported for activated caspase 3 immunostaining and
TUNEL staining with certain decalcification and pre-labeling
techniques (Emans et al., 2005).

Also, counting empty lacunae does not give any information
on the process causing cell death. It would therefore not be
possible to distinguish between apoptosis or senescence. Further
research is therefore warranted.

BONE MEDIATORS OF ENERGY
METABOLISM

Altered glucose metabolism, including glucose intolerance and
insulin resistance, has been documented in astronauts in
spaceflight (Stein et al., 1994; Hughson et al., 2016). Similarly,
altered glucose metabolism was also seen in ground-based

analogs such as head-down bed rest and dry immersion (Heer
et al., 2014; De Abreu et al., 2017; Linossier et al., 2017).
In hindlimb unloaded mice, fasting glucose levels are higher
compared to control mice and insulin resistance is seen after 3
weeks from the beginning of the unloading (Wang et al., 2019).
The cause for this metabolic dysfunction is not well-understood
but maybe linked to altered levels/functions of osteokines and
myokines in HLU.

The osteokine osteocalcin (Ocn) is expressed by mature
osteoblasts and considered a marker of bone formation. Its
expression is decreased during tail suspension and upregulated
during mechanical loading (Han et al., 2018). Osteocalcin has
been shown to promote the uptake of glucose in muscles at the
onset of exercise and enhance the oxidation of glucose and fatty
acids to be used by the muscle fibers (Mera et al., 2016). An
Ocn−/− mouse line generated by the Karsenty’s group shows
impaired glucose metabolism, hinting at a role for osteocalcin in
this metabolism (Lee et al., 2007). However, these results were
questioned by two recent, independent studies using different
Ocn−/− mouse lines (Diegel et al., 2020; Komori, 2020). The
studies cast doubt on the metabolic roles of osteocalcin as the
OCN−/− mice generated demonstrate that OCN is involved in
bone quality and collagen maturity but has no effect on glucose
metabolism or body weight (Diegel et al., 2020).

Lipocalin 2 (Lcn2) is expressed in adipose tissue, earning it
the title of an adipokine, but it is also expressed by osteoblasts
and plays a role in energy metabolism. The serum levels of Lcn2
in healthy volunteers in a prolonged bed rest study (15 days) were
found to be elevated (Rucci et al., 2015). In mice, inactivation of
lipocalin 2 in osteoblasts results in glucose intolerance and insulin
resistance following an increase in food intake (Mosialou et al.,
2017). Rucci et al. (2015) demonstrated an increase in lipocalin
mRNA expression in bones (distal femur) of mice that had
been suspended by their tail for 3 weeks, hypothesizing its role
as a novel mechanoresponsive/mechanosensor gene. Transgenic
mice overexpressing LCN2 in bone show a decrease in bone mass
due to a negative effect on growth plate, decreased osteoblast
differentiation and increased osteoclastic resorption (Costa et al.,
2013). However, global deletion of lipocalin 2 demonstrated
an osteopenic phenotype in mice, with lower trabecular bone
volume (Capulli et al., 2018).

The myokine irisin is the cleavage product of the fibronectin
type III domain-containing protein 5 (FNDC5) being secreted
by muscles post exercise and it was identified for its role
in the browning of white adipose tissues (Boström et al.,
2012). Irisin was found to be significantly decreased in
the soleus muscle in HLU mice and this decrease had
a positive correlation to trabecular bone mineral density
(BMD) (Kawao et al., 2018). Treatment of tail-suspended
mice with r-irisin ameliorates disuse-induced osteoporosis,
shown to be due to decrease in osteocyte apoptosis (Colaianni
et al., 2017; Colucci et al., 2020). Irisin upregulated Opg
(osteoprotegerin) in an in vitro 3D co-culture system of
osteoblasts, osteoclasts and endothelial cells and prevented
the downregulation of osteoblastic key transcription factors
induced by microgravity (Colucci et al., 2020). However, Estell
et al. (2020) showed that irisin can also directly act on
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osteoclasts to increase bone resorption. These results were
obtained with lower doses and continuous administration
of irisin when compared to experiments from Grano’s lab
(Colaianni et al., 2015), and they further support its role in
bone remodeling probably as a counter regulatory hormone like
PTH (parathyroid hormone). Thus, dosing and timing of irisin
can be important determinants of its physiological impact on
skeletal tissues.

It should be remembered that the HLU model is inherently
stressful for mice and altered corticosteroids can mediate the
metabolic changes (Pasieka and Rafacho, 2016). There have been
contradictory findings on measures of stress in the HLU model
in different laboratories (Morey-Holton and Globus, 2002). A
few studies show an initial peak in cortisol levels which later
reached basal levels (Steffen and Musacchia, 1987; Sugiyama
et al., 2006). However, there are also studies reporting no changes
in cortisol levels after unloading (Gaignier et al., 2014). The
circadian rhythm of the glucocorticoid peak levels in blood may
be a cause for this variability (Yang et al., 2017).

CONFOUNDING FACTORS AND
RECOMMENDATIONS

Although no model is universal, it is important to consider
the effects of so-called confounding factors while setting
the experimental design to guarantee reproducibility
and repeatability.

Housing Temperature
Ambient temperature can affect net energy balance and lead to
unpredictable outcomes in metabolic data, in isolated animals
especially. An inverse relationship between food intake and
housing temperatures has been reported (DeRuisseau et al.,
2004). In mice, widely used standard vivarium temperature
(20–22◦C) conditions cause an increase in energy expenditure
with a shift toward increased glucose utilization by Brown
adipose Tissue (BAT) for non-shivering thermogenesis (David
et al., 2013). Ideally, for mammals, the housing/environmental
temperatures should be such that the energy expenditure is 1.6–
1.7-fold the basal metabolic rate (Speakman and Keijer, 2012).
Fischer et al. (2017) believe that the energy expenditure in mice
at 21◦C is almost three times higher than the basal metabolic
rate and that, therefore, at this temperature they are under
considerable metabolic stress (Fischer et al., 2017). C57BL/6J
mice show a preference for higher temperatures especially during
maintenance and inactive behaviors (Gaskill et al., 2009). Social
housing at room temperature results in huddling of mice to
conserve heat, or nesting in cases of social isolation, but these
behaviors do not completely alleviate cold stress (Maher et al.,
2015). Thus, housing temperatures are a critical parameter to
consider while conducting these experiments. Cold stress is
a major confounding factor and needs to be addressed and
taken into consideration by the scientific community when
drawing conclusive remarks from experiments carried out in
these conditions. As a consequence, an ideal temperature to allow

mice to alleviate cold-induced thermogenesis would be 28–29◦C
(Škop et al., 2020).

Studies show that housing mice individually at 22◦C results
in premature cancellous bone loss which is not seen in
thermoneutral conditions (28–32◦C) (Patel et al., 2012; Iwaniec
et al., 2016; Martin et al., 2019). HLU experiments that were
conducted at 28–32◦C showed a decrease in cancellous bone
volume in distal femur in suspended mice (Keune et al., 2017,
2019; Farley et al., 2020). Though they did not conduct the same
experiments at standard temperature in parallel, their results
show trabecular bone loss which is lesser than in comparable
experiments at 22◦C (Amblard et al., 2003; Lin et al., 2009).

Environmental temperature can affect bone remodeling, and
exposure of growing mice to higher temperatures has shown
to lengthen long bones (Racine et al., 2018). In a recent paper
by Chevalier et al., warmth exposure (34◦C) was reported to
protect against ovariectomy-induced bone loss in mice. However,
the same authors reported that the protective effect of warmth
exposure was abolished when microbiota was depleted. Similarly,
transplantation of warm-adapted microbiota (i.e., from male
mice exposed to warm temperatures for 4 weeks into young
male mice kept at room temperature) led to a higher cortical
bone volume in the experimental mice (Chevalier et al., 2020).
The increasing volume of research on the microbial-skeletal
axis opens up new perspectives and likely possibility of new
treatments (Behera et al., 2020).

Recommendations
Following are recommendations to consider when setting up
an HLU experiment using mice. Experimental details are
summarized in Figure 3.

Mice Genotype
C57BL/6 (B6) is the most commonly used strain as it
demonstrates a rapid bone loss to tail suspension (Amblard et al.,
2003). It exhibits greater bone mehanosensitiviy and is widely
used in bone loss studies (Kodama et al., 2000). B6 mice have
lower BMD, lower osteoblastic acitivity but higher osteoclastic
resorption when compared to C3H/HeJ mice (Linkhart et al.,
1999).

Age
Mice reach skeletal maturity before 6 months of age and show
a pattern of bone loss with aging similar to that in humans
(Somerville et al., 2004). Mice total bone mass peaks when they
are 4 months old, when it is considered to be representative of the
skeletal maturity in human young adults (Beamer et al., 1996).
Therefore, depending on the research question an appropriate
age of the mice needs to be used. Since the growing skeleton
in younger mice can have confounding effects on the results
from tail suspension (Simske et al., 1990), a basal control group
should be needed and sacrificed at the same time points of the
experimental groups.

Feeding Conditions
During the acclimitization period, the mice are fed ad libitum.
The control mice tend to eat more than the suspendedmice when
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FIGURE 3 | The scheme is reporting pictures of a C57BL/6J mouse during the acclimatization and suspension periods and the conditions and duration of each

phase. Sufficiently long periods of acclimatization with ad libitum food and water have to be guaranteed, followed by the required periods of suspension where the

control mice are pair fed with the suspended ones. Mice are singly housed without straw at thermoneutral temperatures of 28–32◦C with 12-h light and dark cycles.

provided with food ad libitum, at least at the beginning of the
suspension period. Since dietary restrictions can influence BMD
and cause an expansion of the BMAT (Devlin, 2011; Cawthorn
et al., 2016), it is necessary to eliminate a possible difference in
food intake between the suspended and control groups. This is
achieved by pair feeding the control mice to weight matched
suspension group.

Control Conditions
Since we want identical conditions to the experimental group,
the control mice are also housed singly without any straw or
wood. This is not without consequences and can lead to stress in
mice as they cannot huddle to warm up (Tahimic et al., 2019).
A grid is placed over the litter to allow easy mobility for the
suspendedmice and the same should be done for controls as well.
Without the grid, the control mice tend to nest in the litter which
could create a potential difference of environment between the
control and suspended mice. Control mice when attached to the
suspension system without unloading show a tendency to chew
off the tonoplast bandage/tail. It is therefore suggested to avoid
the suspension system in the control groups. Each control mouse
are fed the same amount of food as consumed by the weight
paired suspended mouse on the previous day.

Acclimatization and Experimental Duration
Periods of suspension may vary based on whether early or later
events are being looked at, but usually they vary between 5,
14, and 21 days and in some studies 28 days. It is important
to standardize the experiment wherever possible with proper
acclimatization of the mice, preferably singly housed at the
recommended room temperature of 28◦C for 4 weeks in their
respective cages for 12 h light/dark cycle with food and water
ad libitum to compensate for the comfounding effects of
social isolation. Obernier and Baldwin showed that a sufficient

duration of acclimitization is required to recouperate from
the physiological disturbances caused by transport (Obernier
and Baldwin, 2006). In addition a duration of 4 weeks will
allow the mice to adapt to the social isolation, the HLU cages,
housing temperature.

It is important to monitor cortisol levels after suspension to
ensure that the influence of stress is taken into account.

CONCLUSION

The hindlimb unloading model developed in the 70s’ to gain
better understanding of the organismal response to microgravity,
has then been adopted as a model to study other diseases such as
disuse osteopenia.

The hindlimb unloading model has also contributed to
identify potential drug candidates (e.g., Sclerostin antagonism
using monoclonal antibodies) for the treatment of conditions
such as osteopenia and osteoporosis. However, gaps still
persist in our knowledge and understanding about the cellular
and molecular pathways underpinning body response to
microgravity. We caution on the importance of the experimental
parameters that are adopted when running experiments based
on murine hindlimb unloading. Overall, the murine hindlimb
unloading still represents a key experimental model that
willcertainly benefit the scientific community in the future to
deepen our knowledge on pathophysiological processes that are
of relevance for humans.
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