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Abstract: Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and
other organic acids are involved in a myriad of metabolic pathways owing to their high polarity
and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart
disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to
certain metabolic pathways and changes in the concentrations of the compounds involved in those
pathways. Therefore, the quantification of such compounds provides useful information pertaining to
diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous
analytical methods for this purpose. This review article addresses analytical methods for the
quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and
glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids
and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples
from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence,
mass spectrometry, and electrochemical detection were summarized.
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1. Introduction

Quantification of low-molecular-weight compounds, as exemplified by metabolomics studies,
has become increasingly important in the life sciences. Metabolite analysis provides metabolic and
biochemical status of particular biological systems and valuable insights into disease development
and diagnosis [1–6]. There are numerous classes of low-molecular-weight compounds, and they
are categorized based on their functional groups, including amine, thiol, and carboxylic groups.
Low-molecular-weight carboxylic acids are involved in various metabolic pathways. For example,
the tricarboxylic acid (TCA) cycle, which is the principal energy-producing process in cells, involves
nine carboxylic acid compounds. Fatty acids are integral components of lipids, and consist of carboxylic
acids with long aliphatic chains.

Hence, highly sensitive and selective methods for the determination of biologically important
carboxylic acids are required for biological investigations, and, thus far, numerous analytical methods
have been developed. For selective determination, solid-phase extraction or solvent extraction
pretreatment is commonly performed, followed by separation techniques such as liquid chromatography
(LC), gas chromatography (GC), and capillary electrophoresis. The choice of detection method is
important for trace amounts of carboxylic acids in biological samples. Ultraviolet absorbance detection
is rarely implemented due to the absence of chromophores in carboxylic acids. Fluorescence detection
following derivatization and mass spectrometry has the advantage of high sensitivity.

This review focuses on analytical methods for carboxylic acids developed since 2000 until March
2020. The aim of this review is to summarize pretreatment and LC separation methods for carboxylic
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acids in biological samples, such as blood, plasma, urine, and tissue and thus provide a reference for
further studies. The review is arranged according to compound classes, namely, fatty acids, TCA cycle
and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids (PFCAs),
α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous. Detailed
analytical conditions for each carboxylic acid class are summarized in Tables 1–7.
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Table 1. Analytical methods for fatty acids in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

7 Fatty acids Human serum Acid extraction APF RPLC FL: 467/512 nm 0.1–6.4 nM 93–105% [7]
3 Fatty acids Human plasma Acid extraction NOEPES RPLC FL: 235/366 nm 56 fmol – [8]
6 Fatty acids Human plasma Acid extraction HEC RPLC FL: 293/365 nm 38–57 fmol 102–106% [9]
6 Fatty acids Human plasma Acid extraction HEC RPLC FL: 335/365 nm 45–68 fmol 102–105% [10]
5 Fatty acids Human serum Acid extraction DBD-ED RPLC FL: 450/560 nm 2.29–4.75 fmol 108–113% [11]
8 Fatty acids Rat plasma Acid extraction DBD-ED RPLC FL: 450/560 nm – – [12]

4 Epoxyeicosatrienoic acids Bovine endothelial cells Solid phase extraction NT RPLC FL: 259/395 nm <2 pg 83–89% [13]
25 Fatty acids Mouse serum Acid extraction AMPP RPLC MS/MS 50–100 fg (LOQ) – [14]

11 Fatty acids Mouse serum, bronchial
epithelial cells Solid phase extraction AMPP RPLC MS/MS 200–900 fg (LOQ) – [15]

20 Fatty acids Breast cancer cells Solvent extraction Aminoxy TMT RPLC MS/MS 40 fmol – [16]
8 Fatty acids Rat plasma Acid extraction DBD-PZ-NH2 RPLC MS <0.1 µM – [17]
9 Fatty acids Rat plasma Solvent extraction DAABD-AE RPLC MS 6.5–21 fmol – [18]

MePZBD-AE RPLC MS 8.8–32 fmol – [18]
APZBD-NHMe RPLC MS 35–150 fmol – [18]

56 Fatty acids Human plasma Centrifugation Choline HILIC MS 50 ng/mL – [19]
38 Fatty acids,
acylcarnitines Human plasma Centrifugation Dansyl-hydrazine RPLC MS/MS 76–152 pM – [20]

18 Fatty acids Human urine Solid phase extraction d0-DMPP, d6-DMPP RPLC MS/MS 5–15 pM – [21]
60 Fatty acids Human serum Acid extraction DMED, d4-DMED RPLC MS – – [22]
6 Fatty acids Human blood Acid extraction None RPLC MS low pg range – [23]
4 Fatty acids Human serum, plasma Solvent extraction None RPLC ECD 50 pmol 92–102% [24]
6 Fatty acids Human plasma Solvent extraction None RPLC ECD 50 pmol 92–102% [25]

11 Fatty acids Human plasma Solvent extraction AEMP, NAPP RPLC Electrogenerated
chemiluminescence 70 fmol – [26]

APF: 6-oxy-(acetyl piperazine)fluorescein, NOEPES: 2-(2-naphoxy)ethyl 2-(piperidino)ethanesulfonate, HEC: 9-(2-hydroxyethyl)-carbazole, DBD-ED: 4-N,N-dimethylaminosulfonyl-
7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole, NT: 2-(2,3-naphthalimino)ethyl trifluoromethanesulfonate, AMPP: N-(4-aminomethylphenyl)pyridinium, AminoxyTMT: aminoxy
tandem mass tags, DBD-PZ-NH2: 7-(N,N-dimethylaminosulfonyl)-4-(aminoethyl)piperazino-2,1,3-benzoxadiazole, DAABD-AE: 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-
7-(2-aminoethylamino)-2,1,3-benzoxadiazole, MePZBD-AE: [4-(4-N-methyl)piperazinosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole, APZBD-NHMe: [4-(4-N-aminoethyl)
piperazinosulfonyl]-7-methylamino-2,1,3-benzoxadiazole, DMPP: 2,4-dimethoxy-6-piperazin-1-yl pyrimidine, DMED: 2-dimethylaminoethylamine, AEMP: 2-(2-aminoethyl)-1-
methylpyrrolidine, NAPP: N-(3-aminopropyl)pyrrolidine.
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Table 2. Analytical methods for TCA cycle and glycolysis-related compounds in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

Fumaric acid Rat liver, spleen and urine Centrifugation None RPLC PDA: 215 nm 0.01 µg 89–92% [27]
Maleic acid Rat serum and urine Centrifugation None RPLC MS/MS 0.2 µg/L 94–111% [28]

Methylmalonic acid Human plasma Centrifugation None HILIC MS 0.03 µM 90–93% [29]

Lactic acid Human urine and saliva Centrifugation 9-CMA RPLC UV: 365 nm,
FL: 365/410 nm 50 nM 92–106% [30]

Oxalic acid Mouse urine and hepatocyte Centrifugation None Ion exclusion chromatography MS/MS 2 µM – [31]
6 TCA metabolites Rat urine Centrifugation DBD-PZ RPLC FL: 450/560 nm 2–15 fmol 80–96% [32]

9 Organic acids Yeast Centrifugation None Ion exclusion chromatography UV: 210 nm 0.6–29.3 g/L 98–103% [33]
32 Organic acids Human urine Solvent extraction None Ion exclusion chromatography UV: 220 nm 0.002–2.2 g/L – [34]
13 Organic acids Mouse urine Centrifugation 1-Pyrene methylamine RPLC FL: 345/375, 345/475 nm 4–22 fmol – [35]
30 Organic acids Mouse serum, urine, and tissue Centrifugation None HILIC, Ion pair RPLC MS/MS <5 µM – [36]
59 Organic acids Human melanoma cells Centrifugation Phenylhdrazine Ion pair RPLC MS – – [37]
138 Organic acids Yeast Centrifugation None RPLC MS/MS 0.001–3.7 µM – [38]
TCA metabolites Human red blood cell Centrifugation None RPLC MS – – [39]

9-CMA: 9-chloromethyl anthracene, DBD-PZ: 7-(N,N-dimethylaminosulfonyl)-4-piperazino-2,1,3-benzoxadiazole.

Table 3. Analytical methods for amino acid metabolites in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

Kinurenic acid Rat plasma Centrifugation None RPLC FL: 251/398 nm 0.16 nM 97–98% [40]
3 Trp metabolites Mouse plasma and brain Centrifugation None RPLC UV, FL 0.03–1.33 µM 83–116% [41]
6 Trp metabolites Pig urine, plasma Centrifugation None RPLC MS 10–100 ng/mL (LOQ) – [42]

Glycated Trp Chicken plasma Solvent extraction None RPLC MS – – [43]
PHP-THβC Chicken plasma Cation-exchange resin None RPLC MS – – [44]

5 Trp and Tyr
metabolites Human urine Centrifugation None RPLC UV: 220, 280 nm, FL:

280/350, 315/425 nm – – [45]

DOPAC, HVA Rat kidney Microdialysis Ethylenediamine Ion exchange
chromatography FL: 417/495 nm 50, 100 fmol – [46]

Nicotinic acid Human plasma Solvent extraction None RPLC MS/MS 6.57 ng/mL (LOQ) 70–72% [47]
Glutaric acid, 3-HG Human urine Centrifugation DAABD-AE RPLC MS/MS 20–25 nM 94–121% [48]

64 amino acid
derivatives

Human urine, pancreatic
cancer cells Centrifugation DmPABr RPLC MS/MS 0.11–2192 nM – [49]

PHP-THβC: (1R, 3S)-1-(D-gluco-1, 2, 3, 4, 5-pentahydroxypentyl)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, DOPAC: 3,4-dihydroxyphenylacetic acid, HVA: homovanillic acid, 3-HG:
3-hydroxyglutaric acid, DAABD-AE: 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole, DmPABr: dimethylaminophenacyl bromide.
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Table 4. Analytical methods for perfluorinated carboxylic acids (PFCAs) in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

3 PFASs Human tissues and blood Solid phase extraction None RPLC MS 3 µg/L 80–101% [50]
10 PFASs Two bivalves shells, soft tissues Solid phase extraction None RPLC MS/MS 0.05–0.43 ng/g 92–104% [51]
18 PFASs Human urine and serum Solid phase extraction None RPLC MS/MS 0.1 µg/L 94–104% [52]
21 PFASs Human serum Solid phase extraction None RPLC MS/MS 0.008–0.19 µg/L 85–114% [53]
6 PFASs Human plasma µ-SPE None RPLC MS/MS 21–65 ng/L 88–102% [54]
6 PFASs Human serum Deproteinization MASH RPLC MS/MS 0.07–0.42 µg/L 96–100% [55]
11 PFASs Human blood Solvent extraction None RPLC MS/MS 0.06–0.14 µg/L 67–112% [56]
20 PFASs Human plasma, BCS Centrifugation None RPLC MS/MS 0.024–0.096 µg/L (LOQ) 83–103% [57]

PFASs: polyfluoroalkyl substances, MASH: 10-methyl-acridone-2-sulfonohydrazide.

Table 5. Analytical methods for α-keto acids and 2-hydroxyglutaric acid (2-HG) in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

4 α-Keto acids Human serum Centrifugation OPD RPLC FL: 350/410 nm 1 µM 86–109% [58]
7 α-Keto acids Human neutrophil Centrifugation OPD RPLC FL: 360/415 nm 0.035–0.125 µM 79–108% [59]
3 α-Keto acids Human CML cell Gel extraction OPD RPLC FL: 360/415 nm 18–40 nM 84–96% [60]
6 α-Keto acids Human CML cell Centrifugation DMB RPLC FL: 367/446 nm 1.3–5.4 nM 86–118% [61]
3 α-Keto acids Mouse tissue Acid extraction OPD RPLC MS 5 nM 76–95% [62]

10 α-Keto acids Rat plasma Centrifugation O-PFBO RPLC MS/MS 0.01–0.25 µM 96–109% [63]
3 α-Keto acids Human plasma Centrifugation None RPLC MS/MS 0.04 µg/mL 81–98% [64]

(R)-2-HG Human serum Solid phase extraction DATAN RPLC MS/MS 0.060 µM 31–32% [65]
(R)-2-HG Human urine, cancer tissues Solvent extraction TSPC RPLC MS/MS 1.2 fmol 88–109% [66]

OPD: o-phenylenediamine, DMB: 1,2-diamino-4,5-methylenedioxybenzene, O-PFBO: O-(2,3,4,5,6-pentafluorobenzyl)oxime, DATAN: (+)-o,o’-diacetyl-l-tartaric anhydride, TSPC:
N-(p-toluenesulfonyl)-L-phenylalanyl chloride.

Table 6. Analytical methods for 2-aminothiazoline-4-carboxylic acid (ATCA), 2-methylthiazolidine-4-carboxylic acid (MTCA), and 2-thiothiazolidine-4-carboxylic acid
(TTCA) in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation Mode Detection Method LOD Recovery Ref.

ATCA Rat plasma and organ Solid phase extraction None RPLC MS/MS – – [67]
ATCA Human urine MISBSE None RPLC MS/MS 5 µg/L – [68]
ATCA Rat plasma Solid phase extraction None RPLC MS/MS 12 µg/L – [69]
ATCA Human postmortem blood Solid phase extraction None HILIC MS/MS 2.5 µg/L 81–89% [70]
ATCA Human postmortem blood Solid phase extraction None HILIC MS/MS 9 µg/L (LOQ) 88–96% [71]
ATCA Human postmortem blood Liquid-liquid extraction None HILIC MS/MS 0.43 µg/L 86–101% [72]
MTCA Human blood and urine Centrifugation Acetic anhydride RPLC MS/MS 0.1 mg/L – [73]
TTCA Urine Acid extraction None RPLC UV: 271 nm 35 µg/L 78–87% [74]

MISBSE: molecularly imprinted stir bar sorption extraction.
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Table 7. Analytical methods for other carboxylic acids in biological samples.

Target Compounds Biological Sample Sample Treatment Derivatization Reagent Separation
Mode

Detection
Method LOD Recovery Ref.

7 Bile acids Human saliva SPE and solvent extraction 2-Picolylamine RPLC MS/MS 1.5–5.6 fmol – [75]
3 Bile acids, 8 fatty acids Human plasma and saliva Solid phase extraction APBQ RPLC MS/MS 0.19–0.51 fmol – [76]
7 Bile acids, 9 fatty acids Human serum Solvent extraction DBCETS RPLC FL: 300/395 nm 0.28–0.70 ng/mL 92–102% [77]

4 Bile acids C. bovis Centrifugation 2-bromo-4′-nitroacetophenone RPLC UV: 263 nm 0.25–0.31 ng 94–99% [78]
7 Bile acids Human feces Solid phase extraction Phenacyl bromide RPLC UV: 254 nm 1.22–1.46 pmol 72–102% [79]

Human feces Solid phase extraction None PRLC MS/MS – – [79]
Dihydroxyoxocholestenoic

acids Human CSF and plasma Solid phase extraction Isotope-labeled Girard’s P Reagent RPLC MS 0.02–0.05 ng/mL – [80]

7 THGC glucuronides Human urine Centrifugation Isotope-labeled DAPPZ RPLC MS/MS 0.008–0.16 µg/mL
(LOQ) – [81]

Orotic acid Urine Dilution None RPLC MS/MS 0.15 µM – [82]
Metabolome Human urine Centrifugation Isotope-labeled DmPABr RPLC MS – – [83]
Metabolome Human urine Centrifugation Isotope-labeled dansylhydrazine RPLC MS – – [84]

APBQ: 1-(3-aminopropyl)-3-bromoquinolinium bromide, DBCETS: 2-(7H-dibenzo[a,g]carbazol-7-yl)ethyl 4-methylbenzenesulfonate, DAPPZ: 1-[(4-dimethylaminophenyl)-carbonyl]
piperazine, DmPABr: dimethylaminophenacyl bromide.
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2. Analytical Methods for Carboxylic Acids in Biological Samples

2.1. Fatty Acids

2.1.1. Analysis of Fatty Acids

Fatty acids consisting of hydrophobic carbon chains and hydrophilic carboxylic acids are
classified into three types depending on the saturation level of the carbon chain moiety (saturated,
monounsaturated, and polyunsaturated). A number of fatty acids play critical roles in the body.
For example, docosahexaenoic acid (DHA) and eicosapentanoic acid (EPA) (Figure 1), both of which
are omega-3 polyunsaturated fatty acids, are not only effective for lowering blood pressure, but are
essential for maintaining brain function [85]. Furthermore, fatty acids are related to certain human
diseases, such as arteriosclerosis and ischemic heart disease [86,87]. Hence, numerous analytical
methods have been developed for fatty acids to elucidate pathological conditions, disease mechanisms,
and aid in diagnosis.
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Figure 1. Chemical structures of docosahexaenoic acid (DHA) and eicosapentanoic acid (EPA).

Because some fatty acids are unstable at higher temperatures, LC is generally implemented
for analysis instead of GC. In addition, physical properties, such as polarity and molecular weight,
vary among fatty acids depending on chain length, necessitating optimization according to target
compound properties. LC methods for fatty acids in biological samples are classified based on the
detection methods described below.

2.1.2. Fluorescence Detection

Fluorescence combined with HPLC is a commonly utilized technique for fatty acids detection,
having the advantage of high sensitivity. However, the majority of fatty acids are not fluorescent,
necessitating derivatization.

Du et al. designed 6-oxy-(acetylpiperazine)fluorescein (APF), comprised of a fluorescein fluorophore
and a piperazine reactive moiety, for carboxylic acid labeling. As shown in Figure 2, seven fatty acids
(lauric, myristic, arachidonic, linoleic, palmitic, oleic, and stearic acid) were determined in human
serum [7]. APF has the advantages of a relatively straightforward derivatization procedure, high
stability, and sensitivity, wherein LODs of 0.1–6.4 nM are attainable.

2-(2-Naphoxy)ethyl-2-(piperidino)ethanesulfonate (NOEPES) was developed for the quantification
of docosaoic (C22), tetracosanic (C24), and hexacosanic (C26) acids [8]. NOEPES is readily removable
following derivatization to water-soluble ammonium species, which enables minimal interference
when separated by HPLC. The method has been applied to human plasma, and the average levels of
C22, C24, and C26 acids were determined to be 566, 398, and 93 nM, respectively.

Other methods have been developed employing 9-(2-hydroxyethyl)-carbazole (HEC) as the
derivatization reagent [9,10]. After addition of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)
and 4-dimethylaminopyridine (DMAP) as condensation reagents, derivatization was performed at
60 ◦C for 30 min. The use of N,N’-carbonyldiimidazole (CDI) instead of EDC improved LODs to
38–57 fmol for C14–C20 fatty acids and even lower for <C14 fatty acids.

4-N,N-Dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole (DBD-ED)
derivatization was reported by Nishikiori et al. [11]. The LODs were in the range of 2.29–4.75 fmol for
free fatty acids, and it was applied to measure fatty acid contents in human serum with acid extraction.
Recently, DBD-ED was used for the analysis of EPA and DHA in human serum [12]. The DBD-ED
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approach is attractive in terms of sensitivity, but it requires a relatively long reaction time (120 min)
compared to other derivatization reagents.

Nithipatikom et al. developed a microbore column LC method using 2-(2,3-naphthalimino)ethyl
trifluoromethanesulfonate (NT), for the quantification of endogenous epoxyeicosatrienoic acids from
endothelial cells at quantities as low as 2 pg [13].
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Figure 2. Chromatograms of seven 6-oxy-(acetylpiperazine)fluorescein (APF)-derivatized fatty acids
in (a) healthy human serum and (b) sample containing 0.2 µM fatty acid standards. Peaks: 1, lauric
acid; 2, myristic acid, 3, arachidonic acid; 4, linoleic acid; 5, palmitic acid; 6, oleic acid; 7, stearic
acid. [7]—Reproduced with the permission of Elsevier.

2.1.3. Mass Spectrometry

Mass spectrometry is another common detection method for fatty acids. For ESI-MS detection
of fatty acids, the negative mode is often practiced with negatively charged fatty acids. However,
in general, the negative mode is less sensitive than the positive.

Bollinger et al. developed a method for fatty acid detection by ESI-MS in the positive mode,
using N-(4-aminomethylphenyl)pyridinium (AMPP) as a derivatization reagent and accomplished a
64,000-fold increase in sensitivity compared with that of nonderivatized fatty acids [14,15]. Aminoxy
tandem mass tags (aminoxyTMTs) have likewise been used for positive mode detection [16].
This method was applied for the quantification of palmitic acid (C16:0) and docosapentaenoic
acid (C22:5) in breast cancer cells. In both minimally and highly invasive cancer cells, levels of C22:5
are markedly higher compared to those in benign breast cells. Several benzofurazan derivatization
reagents have been developed for positive ESI-MS detection of fatty acids in rat plasma [17,18]. LODs
were in the range of 6.5–150 fmol.

2-Fluoro-1,3-dimethyl-pyridinium (FDMP) is utilized for converting fatty acids to choline
derivatives, which remains permanently ionized in both acidic and basic mobile phases, as shown
in Figure 3. The LOD for palmitic acid was 50 ng/mL in hydrophilic interaction chromatography
(HILIC)-ESI-MS [19].
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pyridinium (FDMP).

Chen et al. employed dansylhydrazine to label free fatty acids and acylcarnitines resulting in
MS detection of 25 fatty acids and 13 acylcarnitines in human plasma within 12 min (Figure 4a) [20].
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The derivatization method based on deuterated 2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)
has the advantage of rapid labeling, being executed within 15 sec [21]. 2-Dimethylaminoethylamine
(DMED) and d4-DMED derivatization enabled the successfully monitoring of metabolic changes
in the unsaturated fatty acid biosynthesis pathway in human serum [22]. Nagy et al. employed a
partially miscible solvent and stepwise gradient to achieved rapid analyses of fatty acids without
derivatization [23]. Figure 4b displays the chromatogram of C16–C26 fatty acids separated via this
method within 2 min.
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Figure 4. (a) LC-MS/MS chromatogram of derivatized fatty acids and acylcarnitines in the standards
sample and plasma extract. [20]—Reproduced with the permission of Springer Nature; (b) LC-MS
chromatogram of six non-derivatized fatty acids. [23]—Copyright (2004) American Chemical Society.

2.1.4. Electrochemical Detection

Although fluorescence detection has merit in terms of sensitivity, it suffers several disadvantages,
including the requirement for sample pretreatment and derivatization. To overcome these drawbacks,
HPLC-electrochemical detection methods have been developed [24,25]. Such protocols require merely
20 min for the complete analysis process of fatty acids without derivatization, wherein separation
is achieved within 10 min (Figure 5). The LOD of 50 pmol renders this technique for application in
biological samples, such as serum, plasma, and urine.Molecules 2020, 25, x FOR PEER REVIEW 5 of 22 
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Figure 5. Fatty acid chromatograms of (A) sample with standards and (B) human serum. Peaks:
1, arachidonic acid; 2, palmitoleic and linoleic acids; 3, myristic acid; 4, oleic acid; 5, palmitic acid;
6, margaric acid (IS); 7, stearic acid. [25]—Reproduced with the permission of Elsevier.
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2.1.5. Electrogenerated Chemiluminescence

An electrogenerated chemiluminescence (ECL) system has been utilized for the sensitive and
selective detection of tertiary amine or diketone moieties. Morita et al. extended the HPLC-ECL
technique to myristic acid analysis in human plasma with an LOD of 70 fmol by using N-(3-aminopropyl)
pyrrolidine (NAPP), which converts fatty acids into tertiary amine derivatives [26].

2.2. TCA Cycle and Glycolysis-Related Compounds

Glycolysis and the subsequent TCA cycle are the principal metabolic pathways via which ATP
is synthesized by substrate level phosphorylation. Metabolic disorders occurring in these pathways
are intrinsically and directly associated with numerous diseases, such as diabetes, kidney disease,
and cancer [88,89]. The quantification of metabolites is beneficial for clinical diagnoses and quality
assurance of organic products. Therefore, simpler, more sensitive and accurate quantification methods
have been developed to meet these requirements.

As typified by citric acid, the TCA cycle and glycolysis involve numerous low-molecular-weight
high-polarity carboxylic acid metabolites. Moreover, variations in the physical properties of
these compounds complicate simultaneous analysis. Therefore, various separation conditions
(reversed-phase (RP)LC, ion–pair chromatography, ion–exclusion chromatography, and HILIC),
and detection methods (UV, fluorescence, and MS) have been combined to overcome this drawback.

Fumaric acid was quantified with an LC-photodiode array (PDA) to investigate the dynamics
of fumaric acid-constitutive drug nanocarriers [27]. Trace levels of maleic acid in healthy rat serum
and urine were analyzed with LC-MS/MS [28]. Methylmalonic acid in human plasma was quantified
by HILC-MS [29], lactic acid in human urine and saliva with LC-UV and fluorescence detection after
fluorescence derivatization (two detection methods were compared) [30], and oxalic acid in mouse
urine and hepatocyte samples with ion–exclusion chromatography–MS/MS [31]. These methods were
developed for sensitive and selective detection with simple operation.

Simultaneous analysis of numerous carboxylic acid metabolites has been performed by several
groups. Kubota et al. quantified six compounds via 4-N,N-dimethylaminosulfonyl-7-piperazino-2,1,3-
benzoxadiazole (DBD-PZ) derivatization and fluorescence detection [32]. Ion exclusion chromatography–
UV detection was implemented for the quantification of 9 and 32 carboxylic acid metabolites, to obtain
carboxylic acid profiles of cultured yeast samples [33] and human urine [34]. Figure 6 illustrates the
separation of 32 carboxylic acid standards with single-run chromatographic conditions.
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Figure 6. Chromatogram of simultaneous separation of carboxylic acids under single-run
chromatographic conditions. Peaks: 1, oxalic; 2, tartaric; 3, malic; 4, malonic; 5, lactic; 6, acetic;
7, maleic; 8, citric; 9, succinic; 10, fumaric; 11, propionic; 12, levulinic; 13, methylsuccinic; 14, pyromellitic;
15, gallic; 16, protocatechuic; 17, 3,5-dihydroxybenzoic; 18, trimellitic; 19, phthalic; 20, 4-hydroxybenzoic;
21, 2,4-dihydroxybenzoic; 22, vanillic; 23, syringic; 24, 2-methoxybenzoic; 25, trimesic; 26, benzoic;
27, ferulic; 28, salicylic; 29, 3-methoxybenzoic; 30, 2-methylbenzoic; 31, cinnamic; 32, 3-methoxycinnamic
acid. [34]—Reproduced with the permission of Springer Nature.
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Similarly, comprehensive analyses including that of carboxylic acid metabolites of the TCA cycle
and glycolysis have been conducted with various separation and detection methods: 13 compounds via
HPLC-fluorescence detection aided by 1-pyrenemethylamine derivatization [35], 30 compounds with
HILIC or ion-pair chromatography-MS/MS [36], 59 compounds with ion-pair chromatography-MS [37],
and 138 compounds with UHPLC-MS/MS [38]. Nemkov et al. comprehensively analyzed TCA cycle
metabolites to elucidate the effects of hypoxia on carboxylic acid metabolism in red blood cells [39].

2.3. Amino Acid Metabolites

Amino acid analysis is immensely important, as they are essential structural units of protein.
Recent analytical methods for the quantification of amino acids have been summarized in our previous
review [90]. These methods contribute to the diagnosis and elucidation of disease mechanisms, such as
diabetes, kidney disease, and liver disease. Measurement of amino acid metabolite levels is likewise
beneficial for understanding diseases.

Among amino acid metabolites, tryptophan and tyrosine metabolites are most commonly
analyzed (Figure 7). Kynurenine and kynurenic acid, which are tryptophan metabolites that are
intricately related to diseases such as schizophrenia [91], Parkinson’s disease, and Alzheimer’s
disease [92], have been quantified using HPLC-fluorescence detection. Indole derivatives and glycated
tryptophan in rat plasma, mouse plasma, and brain were analyzed with fluorescence detection [40,41],
and those in livestock urine and plasma were analyzed with LC-MS to monitor their health [42–44].
Valko-Rokytovska et al. quantified melanin-related carboxylic compounds in human urine by
HPLC-UV for the diagnosis of melanoma cancer, and found that homovanilic acid and tryptophan
levels increased in the initial clinical stage of the disease [45]. Catechol-bearing carboxylic acids were
separated by ion exchange chromatography, followed by derivatization with ethylenediamine and
fluorescence detection [46]. The concentrations of dopamine metabolites, 3,4-dihydroxyphenylacetic
and homovanillic acid were determined as 131 and 404 nM in rat kidney samples, and the LODs per
injection were 50 and 100 fmol, respectively. Huang et al. quantified nicotinic acid in human plasma by
LC-MS/MS to examine its side effects, as it is administered as a potent vitamin at milligram doses [47].
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Figure 7. Chemical structures of amino acid metabolites.

Glutaric and 3-hydroxyglutaric acid were analyzed in urine samples by UHPLC-MS/MS
via derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-
benzoxadiazole (DAABD-AE), capable of selectively reacting with dicarboxylic compounds [48]. Levels
of both compounds increased significantly in glutaric acidemia type I patients, and it was concluded
that glutaric acid analysis was beneficial for the precise diagnosis of the disease.

Comprehensive analysis of amino acids, N-acetylated amino acids, and other organic acids
in human urine and human pancreatic cancer cells was conducted via derivatization with
dimethylaminophenacyl bromide (DmPABr) for MS/MS [49]. DmPABr labels carboxylic acids, thiols,
and amines simultaneously, resulting in the appearance of several labelling patterns (Figure 8).
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The LODs of a total of 64 compounds ranged between 0.11 and 2192 nM, and, importantly, it was
below 10 nM for approximately half of them.
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Figure 8. LC–MS/MS chromatogram of 64 metabolites after dimethylaminophenacyl bromide (DmPABr)
derivatization in SUIT-2 cells. DmPA labeling patterns are also included (* = labeled once; † = labeled
twice; # = labeled thrice). [49]—Reproduced with the permission of Elsevier.

2.4. Perfluorinated Carboxylic Acids

Perfluorinated carboxylic acids (PFCAs) are synthetic substances used in numerous products
such as food packaging paper and impregnation sprays. They are widespread organic pollutants and
have been reported to accumulate in the human body because they are resistant to metabolism [93].
Although critical adverse effects of PFCAs on human health have not been reported, evaluation of
their accumulation in the body is critical for further investigation of PFCA effects.

Several sample pretreatments, such as solid-phase extraction (SPE), liquid–liquid extraction
(LLE), or solvent precipitation can be performed, the most common method being SPE. Maestri et al.
analyzed perfluorooctanoic acid using a C18 disposable SPE cartridge [50]. Oasis WAX cartridges,
wherein extraction is conducted in a mixed mode of RP and weak anion exchange, have likewise been
used [51,52]. Prior to SPE operation, a mixture of HCl and HNO3 was added to eliminate the matrix,
in the case of bivalve samples, leading to improved recoveries (92–104%) and selectivity. The developed
method was applied to shell and soft tissues, and no significant relationship was found between PFCA
levels in shell and soft tissues.

Gao et al. established an online SPE-LC-MS/MS method for 21 per- and polyfluoroalkyl substances
including 13 PFCAs, featuring a rapid processing time (20 min per sample) and favorable peak
shapes [53]. Perfluorobutanoic and perfluorooctanoic acid concentrations were found to be significantly
higher in the serum of employees of fluorochemical manufacturing plants than those in the general
population. Micro-solid phase extraction (µ-SPE) can determine trace levels of PFCAs in human
plasma [54]. Zhang et al. precipitated proteins using acetonitrile and derivatized PFCAs with
10-methyl-acridone-2-sulfonohydrazide (MASH) to eliminate the matrix effect [55]. Chromatograms of
MASH-derivatized PFCAs in serum samples are shown in Figure 9.
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2.5. α-Keto Acids and Their Metabolites

2.5.1. α-Keto Acids

α-Keto acids are synthesized from α-amino acids via transamination. Some biological α-keto
acids (α-ketoglutaric acid, α-ketoisovaleric acid, α-ketoisocaproic acid, and α-keto-β-methylvaleric
acid, Figure 10) are assembled from α-amino acids by branched-chain amino acid transferase (BCAT),
and others are likewise found in amino acid metabolic pathways. We found that BCAT1 plays a
significant role in the development of chronic myeloid leukemia [94]. In addition, disorders of α-keto
acid levels in biological fluids are related to diseases such as diabetes mellitus, maple syrup urine
disease, and ketoacidosis [95,96]. Therefore, the analysis of α-keto acids is attracting increasing interest.
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As α-keto acids are not fluorescent, their detection was accomplished with fluorescence
detection after derivatization. Derivatization reagents such as o-phenylenediamine (OPD) and
1,2-diamino-4,5-methylenedioxybenzene (DMB) can execute an α-keto-acid-selective reaction through
the recognition of two conjugated carbonyl groups.

Quantification entailing OPD derivatization and fluorescence detection has been reported by
several groups, wherein LODs were between 18 nM and 1 µM [58–60]. DMB was developed to improve
the sensitivity of fluorescence detection, and has a structure similar to that of OPD. As shown in
Figure 11, we quantified α-keto acids in chronic myeloid leukemia cells to investigate the role of
BCAT1 [61]. The concentrations of six α-keto acids were between 1.55 and 316 pmol per 106 cells and
LODs were within 1.3 and 5.4 nM, being three-fold higher than that of OPD.
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Figure 11. Chromatogram of 1,2-diamino-4,5-methylenedioxybenzene (DMB)-α-keto acids in K562
cell sample. Peaks: 1, DMB-α-ketoglutaric acid; 2, DMB-pyruvic acid; 3, DMB-α-ketobutyric acid, 4,
DMB-α-ketvaleric acid; 5, DMB-α-ketoisovaleric acid; 6, DMB-α-ketoisocaproic acid; 7, DMB-α-keto-β-
methylvaleric acid. [61]—Reproduced with the permission of The Royal Society of Chemistry.

OPD derivatization was also employed for MS, resulting in a lowered LOD of 5 nM. Tissue samples
from PP2Cm knockout mice had 22–86 times higher branched-chain α-keto acids than wild-type
mice [62]. Ten α-keto acids were analyzed with O-(2,3,4,5,6-pentafluorobenzyl)oxime (O-PFBO)
derivatization and MS/MS. The method was applicable to the comprehensive analysis of α-keto acids
in rat plasma [63]. Li et al. analyzed branched-chain α-keto acids and α-amino acids simultaneously by
MS/MS without derivatization and found significant differences in the concentrations of six compounds
in patients with cerebral infarction and those of healthy individuals [64].

2.5.2. 2-Hydroxyglutaric Acid

2-Hydroxyglutaric acid (2-HG, Figure 12) is an oncometabolite produced from α-ketoglutaric
acid. Because 2-HG is chiral and only (R)-2-HG is a cancer metabolite, it is necessary to separate
the enantiomeric isomers. One of the strategies for separating enantiomeric isomers is the chiral
derivatization method. (+)-O,O’-Diacetyl-L-tartaric anhydride (DATAN) [65] and N-(p-toluenesulfonyl)-
L-phenylalanyl chloride (TSPC) [66] are two reagents developed for this purpose. Both reagents
have been used for RPLC-MS/MS analysis. Whereas TSPC was superior to DATAN in sensitivity
(LOD of (R)-2-HG was 1.2 fmol with TSPC and 115 fmol with DATAN), DATAN enabled faster
separation than TSPC (23 min for TSPC, 6 min for DATAN). Figure 13 illustrates the separation of
enantiomers by TSPC derivatization [66]. It was revealed that levels of both (R)- and (S)-2-HG in
human urine were comparable among patients with type 2 diabetes mellitus, lung cancer, colorectal
cancer, and nasopharyngeal carcinoma. On the other hand, both isomers of 2-HG in human tissue
were significantly increased.
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2.6. Carboxylic Acids Containing a Thiazole Ring

2-Aminothiazoline-4-carboxylic acid (ATCA, Figure 14) is a cyanide metabolite and is expected
to be a biomarker of cyanide-related diseases due to its thermal and long-term stability in biological
samples. In forensic cases, whole blood is the preferred biological sample, and it is necessary to purify
ATCA from blood because of its high viscosity and complex composition. Purification methods using
cation-exchange SPE [67] and molecularly imprinted polymer-stir bar sorptive extraction (MISBSE) [68]
have been proposed, to be followed by LC-MS/MS. SPE offered adequate precision of 5.9% RSD,
but interferences derived from whole blood were detected near the ATCA peak. On the other hand,
MIP-SBSE produced a single peak derived from ATCA, but the capacity was insufficient and the
method suffered from low recoveries [69]. Lulinski et al. synthesized a novel imprinted material
in a dispersive SPE, providing a rapid (35 min for extraction) and low-cost clean-up technique [70].
After investigation of the surface morphology, interferences were significantly reduced. A robust SPE
was developed for hydrophilic interactions, allowing for a high accuracy of 96% [71]. Furthermore, it is
environmentally benign and entails a simple procedure. Analysis of human postmortem blood from
individuals who died due to oral cyanide exposure established that ATCA is an adequate cyanide
exposure marker.
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Figure 14. Chemical structures of 2-aminothiazoline-4-carboxylic acid (ATCA), 2-methylthiazolidine-4-
carboxylic acid (MTCA), and 2-thiothiazolidine-4-carboxylic acid (TTCA).

Although LLE offered good accuracy and sensitivity with an LOD of 0.43 ng/mL, derivatization of
interference compounds (secondary amino acids) was required to remove interference peaks [72]. It was
applied to human blood and revealed that ATCA concentrations in blood from a cyanide-poisoned
person were approximately four-fold higher than those from non-poisoned persons.

2-Methylthiazolidine-4-carboxylic acid (MTCA, Figure 14) is produced by the reaction of
acetaldehyde and cysteine, and it is a biomarker for recent alcohol consumption. MTCA has been
derivatized with acetic anhydride and then analyzed by reversed-phase LC-ESI-MS [73]. Free MTCA
is unstable under physiological conditions as it is readily hydrolyzed. Hence, the quantification of
MTCA was enabled by N-acetylation.
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2-Thiothiazolidine-4-carboxylic acid (TTCA, Figure 14) is a urinary metabolite derived from
carbon disulfide. Methyl t-butyl ether and diethyl ether have been utilized as extraction solvents
for TTCA, the former being superior in terms of TTCA recovery (78–87% against 67–80%) as well as
storage stability as it produces less peroxides during storage [74]. After extraction, TTCA was analyzed
by reversed-phase LC-UV.

2.7. Miscellaneous

Other biological carboxylic acids not discussed in the above sections are described here.
The detection method was optimized for the physical properties of each compound.

Bile acids and their metabolites have been analyzed using several different derivatization reagents.
Higashi et al. developed an analytical method employing 2-picolylamine derivatization and MS/MS
detection and monitored these compounds in human saliva [75]. Sensitivity in MS/MS was improved by
approximately ten-fold by 1-(3-aminopropyl)-3-bromoquinolinium bromide (APBQ) derivatization [76].
Concentrations of deoxycholic acid and chenodeoxycholic acid (Figure 15) in human plasma were 91
and 445 nM, respectively. 2-(7H-Dibenzo[a,g]carbazol-7-yl)ethyl 4-methylbenzenesulfonate (DBCETS)
derivatization was also performed for fluorescence detection to determine bile acid concentrations in
human serum [77]. Derivatization with 2-bromo-4′-nitroacetophenone and phenacyl bromide was also
used for UV detection [78,79].
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As intermediates of bile acid biosynthesis, dihydroxyoxocholestenoic acids were quantified using
LC-MS [80]. It was found that concentrations of 7α,24- and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic
acids (Figure 15) in cerebrospinal fluid were reduced in patients with hereditary spastic paraplegia type 5.
Tetrahydroglucocorticoid glucuronides in human urine were quantified with 1-[(4-dimethylaminophenyl)-
carbonyl]piperazine (DAPPZ) to diagnose diseases caused by abnormal cortisol secretion [81].

Orotic acid, which is useful for diagnosing urea cycle disorder or hereditary orotic aciduria,
was analyzed by LC-MS/MS. with an LOD of 150 nM [82].

Metabolome analysis is challenging because a variety of carboxylic compounds with a wide
range of concentrations in complex biological samples need to be simultaneously detected. Guo et al.
implemented isotope-labeled DmPABr derivatization and LC-MS, resulting in the identification of
51 carboxylic compounds in urinary samples [83]. Isotope-labeled dansylhydrazine was also used to
identify 81 compounds in the urinary sample [84]. The research was conducted as a demonstration;
therefore, further application of the method is expected.
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3. Conclusions

In this review, LC methods for the quantification of carboxylic acids in biological samples, such as
plasma, serum, and urine, were summarized. In general, a practical analytical method is achieved when
several aspects are promoted: high sensitivity, high selectivity, rapid analysis, minimal reagent and
equipment requirements, and simple operation. Numerous analytical methods have been developed
to improve upon the existing ones.

The most commonly employed detection methods include fluorescence and MS. Fluorescence
detection achieves a relatively better detection limit with simple equipment, but required fluorescence
derivatization. For MS analysis, various types of compounds could be analyzed simultaneously without
derivatization. Derivatization reagents for MS have been used not only for improved separation but
also for enhancing sensitivity and selectivity. In addition, short-time analyses have been developed
with optimized derivatization reagents and separation conditions.

Practical and efficient analytical methods are continually being developed to meet the requirements
of quantifying various compounds in diverse samples. The utilization of these methods is beneficial
for elucidating disease mechanisms, and further contributions to disease diagnosis and treatment
are anticipated.
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