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I n t r o d u c t i o n

One of the major functions of proteins is to bind other 
molecules. These binding reactions serve a variety of 
cellular functions, including buffering, transport, and 
signal transduction. Protein-binding ligands include a 
wide variety of chemical species, such as metal ions, 
peptides, other proteins, nucleotides, neurotransmit-
ters, hormones, and nonbiological targets such as 
pharmaceuticals.

In some situations, such as high-throughput screen-
ing studies of protein–drug interactions, it may be suf-
ficient to characterize protein–ligand binding using 
an empirical factor obtained directly from the binding 
curve, such as K1/2, the half-saturating ligand concen-
tration. However, for the large and important class of 
proteins containing multiple ligand-binding sites, the 
binding mechanism may be complex, and its elucida-
tion may require quantitation of factors such as dif-
ferences in the intrinsic ligand affinities of the sites, 
dependence of the site affinities on the conformation 
of the macromolecule, and cooperative interactions 
between the sites. These mechanistic parameters 
cannot be measured directly, but rather must be esti-
mated by fitting a quantitative model to binding and/
or conformation data.

For systems composed of multiple coupled equilib-
ria, parameter estimation may be compromised by 

correlations between the parameters. For some combi-
nations of model and data, parameter compensations 
during fitting may be sufficiently effective that mul-
tiple parameter sets provide equally good fits to the 
experimental data. If the range of parameter values 
spanned in these sets is large enough, then little or 
no knowledge is gained about the system under study. 
In such situations, progress requires either improve-
ments in the data quality or else the adoption of alter-
native experimental approaches that provide stronger 
constraints on the parameter values.

An example of failed parameter estimation is shown 
in Fig.  1. The simple cooperative binding model 
(Fig. 1 A) represents a receptor that occupies a single 
conformational state and contains two (possibly non-
identical) binding sites. The three model parameters 
are the microscopic association equilibrium constants 
KI and KII for binding to sites I and II and an interaction 
(cooperativity) factor f that quantifies the fold change 
in a site-binding constant when the adjacent site is occu-
pied by ligand. Detailed balance requires that KI f KII = 
KII f KI, so there is only one cooperativity factor for this 
model. (Cooperative interactions caused by unequal li-
gand affinities of a site in different conformations of a 
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macromolecule are also possible but are not considered 
in the model in Fig. 1 A.)

Many commonly used techniques, such as those based 
on uptake of radioactive ligands and calorimetric meth-
ods, do not provide distinguishable signals when ligands 
bind to distinct sites in a protein, but rather yield the 
total binding relation: the mean number of ligands 

bound to the protein as a function of ligand concentra-
tion. The total binding relation is the ratio of the con-
centration of bound ligands to the concentration of 
protein (Fig. 1 B, top). For the model in Fig. 1 A, this 
relation can be reexpressed in terms of the model pa-
rameters (Fig.  1  B, bottom). The binding curve in 
Fig.  1 C (top) was calculated from this relation using 

Figure 1.  Parameters of two-site allosteric model are not SI when constrained by total binding data. (A) Diagram of two-site 
allosteric model. Large circles represent ligation states of the system. Small circles represent binding sites I (left) and II (right). States 
are designated by symbols Rij, where i (j) is equal to 1 or 0 depending on whether site I (site II) is bound or not bound by ligand, 
respectively. States with zero, one, or two bound ligands are color coded black, red, and blue, respectively. Closed and open circles 
represent bound and unbound sites, respectively. Model parameters are the microscopic association equilibrium constants KI and 
KII for sites I and II, respectively, and cooperativity factor f. (B, top) Equation relating mean number of bound ligands, v, to concen-
trations of the ligated states. (bottom) Equation relating v to free ligand concentration, x, and model parameters. In the top and 
bottom, terms arising from states with zero, one, and two bound ligands are color coded black, red, and blue, respectively. (C, top) 
Simulated binding curve computed from the top equation in B using parameter values {f, KI, KII} = {10.017, 1.0034 × 106 M−1, 1.99 
× 108 M−1}. Parameters were chosen to produce a relatively “unstructured” binding curve. (bottom) Locus of all parameter triples {f, 
KI, KII} that yield total binding curve identical to the curve shown above. The curve was computed using Eqs. 12a and 12b. Param-
eter triples are determined by taking vertical lines, which determine the value of f, and their intersections with the bold and light 
green curves, which determine parameters KI and KII. Because of the symmetric appearance of KI and KII in the binding equation (B, 
bottom), the bold and light curves may correspond to either KI and KII or KII and KI, respectively. Dashed lines marked “A,” “B,” and 
“C” correspond to parameter triples {0.2, 108 M−1, 108 M−1}, {1.0086, 1.0462 × 107 M−1, 1.8954 × 108 M−1}, and {100.86, 99,193 M−1, 
2.0 × 108 M−1}, respectively. Arrows on abscissa delineate regions of negative (f < 1), zero (f = 1), and positive (f > 1) cooperativity. 
(D, top) Simulated total binding curve computed from the top equation in B using parameter values {f, KI, KII} = {0.10086, 1.999 × 
1010 M−1, 9.9193 × 106 M−1}. Parameters were chosen to produce a more “structured” binding curve than the one in the top of C. 
(bottom) Locus of all parameter triples that yield total binding curves identical to curve shown above. The curve was computed using 
Eqs. 12a and 12b. Dashed lines marked “D,” “E,” and “F” correspond to parameter triples {0.0002, 1010 M−1, 1010 M−1}, {1.0017, 2.0 
× 1010 M−1, 9.9837 × 105 M−1}, and {100.17, 2 × 1010 M−1, 9,983.2 M−1}, respectively.
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specific values of the model parameters. However, an 
infinite set of parameter triples {f, KI, KII} (Fig. 1 C, bot-
tom) yield total binding curves identical to this curve. 
(Note that the x axis of Fig. 1 C [bottom] is truncated; 
the locus of parameter triples continues to infinitely 
large values of f.) The dashed lines A, B, and C identify 
three parameter triples from this set that correspond to 
very different binding mechanisms. For parameter set 
A, sites I and II have identical affinities and interact with 
moderate negative cooperativity (f < 1); for parameter 
set B, the affinities differ by ∼20-fold, with no interac-
tion between the sites (f ∼1); for parameter set C, the 
site affinities differ by a factor of 2,000 and interact with 
strong positive cooperativity (f = 100). Because KI and 
KII appear symmetrically in the equation for total bind-
ing (Fig. 1 B, bottom), there is a further ambiguity in 
the relative magnitudes of the site affinities: the simu-
lated curves are unaffected if the values of KI and KII 
are interchanged.

It might be argued that the curve in Fig. 1 C (top) is a 
“pathological” case that places anomalously poor con-
straints on the parameters. However, there is also an in-
finite locus of parameter values (Fig.  1  D, bottom) 
corresponding to the more highly structured synthetic 
binding curve in Fig. 1 D (top). The curves in Fig. 1 (C 
and D, bottom) indicate that, at best, fits to binding 
data can place a lower limit on f and an upper limit on 
the larger of KI and KII. The infinite range of parameter 
values yielding identical binding curves means that little 
or no mechanistic insight can be gained from total 
binding data analyzed using the two-site allosteric 
model (Fig. 1 A).

The simulations in Fig.  1 show that obtaining a 
good fit of a model to binding data provides no as-
surance that the estimated parameters are accurate 
or unique, even for simple models with a small num-
ber of parameters. In these situations, the parameters 
are deemed “not identifiable” (Ljung, 1987; Walter 
and Pronzato, 1997). It is useful to distinguish two as-
pects of parameter identifiability (Raue et al., 2009). 
Structural identifiability is an intrinsic mathematical 
property of a given model and the data to be fitted 
(Bellman and Åström, 1970; Audoly et al., 2001; 
Hengl et al., 2007; Chis et al., 2011). Parameters are 
structurally identifiable (SI) if they can be estimated 
accurately and uniquely from noiseless, bias-free data 
of a specified type. For example, the parameters of 
the model in Fig. 1 are not SI when constrained by 
total binding data because the synthetic data curves 
are fit exactly by an infinite number of parameter tri-
ples, for which the model parameters span infinite 
ranges. The unavoidable presence of noise in real ex-
perimental data adds to the uncertainty in fit-derived 
parameter values; parameters are practically identifi-
able (PI) if this added uncertainty is of an acceptable 
magnitude (Raue et al., 2009).

Several methods can be used to rigorously quan-
tify the uncertainty in parameters estimated by fit-
ting models to data. These include simulations, as 
in Fig.  1 (see also Colquhoun [1969]) and calcula-
tions of likelihood intervals (Colquhoun and Sig-
worth, 1983; Colquhoun and Ogden, 1988; Edwards, 
1992) or Bayesian posterior distributions (Hines et 
al., 2014; Epstein et al., 2016). However, these ap-
proaches have important limitations. First, the “black 
box” nature of numerical methods tends to obscure 
the underlying features of the model and data that 
determine whether parameters are identifiable, par-
ticularly when there are multiple, correlated param-
eters. Second, the brute-force approach of mapping 
the entire error surface becomes computationally un-
reasonable for models with more than a few param-
eters. Finally, the estimation of parameters and their 
uncertainties must be repeated for each of the (possi-
bly large number of) models under consideration. To 
overcome these limitations, we develop in this study 
and in a companion paper (see Middendorf and Al-
drich in this issue) a simple, systematic, and essen-
tially model-independent approach to assessing and 
understanding parameter identifiability for macro-
molecule–ligand binding systems at equilibrium.

Our goal in this paper is to understand the factors 
that determine the structural identifiability of binding 
parameters. The method presented in this study gen-
erates as output a set of fit parameters that are SI by 
construction, given two simple inputs: the number (n) 
of ligand-binding sites on the protein and the num-
ber of protein conformational states. The approach is 
general, as the SI parameter set is not derived from a 
specific model but directly from the conserved math-
ematical structure of the binding relation itself. The 
method can be applied to macromolecules with any 
number of binding sites.

Our analytical approach focuses on the question of 
the solvability of the system of equations that yields the 
parameter values, without actually requiring the solu-
tions to be computed (as is done when numerical meth-
ods are used). By approaching the question in this way, 
we derive simple, general rules that govern binding pa-
rameter SI: (a) the parameters of any model consisting 
of any combination of bimolecular ligand–protein asso-
ciation reactions can be converted to a set of n SI fit 
parameters, {p1, p2, …, pn}, because the form of the 
binding relation is conserved for all such models; and 
(b) models that also include protein conformational 
change are treated similarly, except that the SI parame-
ter set comprises n + 1 fit parameters {p0, p1, p2, …, pn}.

The conserved form of the total binding relation for 
all models satisfying these criteria is

	 ​v  = ​ 
​p​ 1​​ ​x​​ 1​ + 2 ​p​ 2​​ ​x​​ 2​ + ... + n ​p​ n​​ ​x​​ n​

  ____________________   
1 + ​p​ 0​​ ​x​​ 0​ + ​p​ 1​​ ​x​​ 1​ + ​p​ 2​​ ​x​​ 2​ + ... + ​p​ n​​ ​x​​ n​

 ​​� (1)
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(Klotz, 1997), where v is the mean number of occupied 
sites at free ligand concentration x, n is the number of 
ligand-binding sites in the protein, and the parameters 
{p0, p1, …, pn} are model-independent parameters. (Pa-
rameter p0 in Eq. 1 is zero if the protein is assumed to 
occupy a single conformation.) Using matrix algebra 
methods, we show that each fit parameter pb in Eq. 1 is 
obtained from the model parameters corresponding to 
all states with b bound ligands.

It is important to first establish, as we do here, that a 
set of parameters is SI before assessing whether they are 
PI because structural identifiability of parameters is a 
necessary (but not sufficient) condition that they are 
PI. Only when the parameters of a model are both SI 
and PI does one have confidence that analysis of bind-
ing data will yield meaningful estimates of molecular 
properties. A general approach to understanding the 
factors underlying the practical identifiability of the SI 
parameter sets described in this study is developed in 
the companion paper (Middendorf and Aldrich, 2017).

M at e ria   l s  a n d  m e t h o d s

Numerical calculations of binding isotherms (Fig. 1, C 
and D, top; and Fig. 2 C), perfect fit loci (Fig. 1, C and 
D, bottom; and Fig. 3), and design matrix determinants 
were performed using Igor Pro version 6.37 (WaveMet-
rics). Analytical derivations were performed by hand 
and checked using the symbolic mathematics software 
Maple 18 (Maplesoft).

R e s u lt s

In the next section, the mathematical structure of the 
total binding relation for the two-site, one-conforma-
tion model (Fig. 1 A) is derived, and the structural iden-
tifiability of its parameters is assessed and analyzed. In 
the following sections, it is shown that the results ob-
tained for this simple system are readily generalized to 
all binding models comprising any combination of bi-
molecular association reactions and conformational 
equilibria, for proteins with any number of binding sites.

Structural nonidentifiability of model parameters for 
two-site allosteric model
By definition, the mean number of occupied bind-
ing sites, v, is the ratio of the concentration of 
ligand-bound sites to the total concentration of pro-
tein. For the model in Fig. 1 A, this ratio is given by 
the equation in Fig. 1 B (top). The symbols Rij refer 
to ligation states with i ligands bound to site I and 
j ligands bound to site II (i, j = 0 or 1; Fig. 1 A) or 
to the concentration of those states (Fig.  1  B, top). 
(Which definition applies will be clear from the con-
text.) The states and the terms derived from them are 
color coded black, red, and blue for zero, one, or two 

bound ligands, respectively. The reason for the color 
coding will be made clear shortly.

All of the elementary transitions in this model are li-
gand–protein association or dissociation processes, 
which are modeled as bimolecular reactions, such as

	 ​​R​ 00​​ + Ligand ​​K​ I​​   ↔ ​ ​R​ 10​​,​� (2)

which quantifies ligand binding to site I when site II is 
unoccupied. The equilibrium microscopic association 
constant KI is given by the standard relation (Wyman 
and Gill, 1990; Winzor and Sawyer, 1995):

	 ​​K​ I​​  = ​  ​R​ 10​​ ____ ​R​ 00​​ x
 ​.​� (3)

The quantities R10, R00, and x in Eq. 3 denote concentra-
tions (which are used to approximate the activities of 
the corresponding species). The concentration of state 
R10 relative to the reference state (here the unliganded 
state R00) is obtained by rearranging Eq. 3: R10 = R00 KI 
x. The concentrations of states R01 and R11 are obtained 
similarly. Substituting these expressions into the equa-
tion in Fig. 1 B (top) yields the total binding relation 
(Fig. 2 A), which is not linear with respect to the model 
parameters. For real data, these parameters are prop-
erly estimated using nonlinear regression fitting (Seber 
and Wild, 2003; Jaqaman and Danuser, 2006). However, 
structural identifiability of parameters is assessed assum-
ing noiseless data, allowing an important simplification: 
in the absence of a noise term, the binding relation 
(Fig. 2 A) can be cross-multiplied, yielding the equation 
in Fig. 2 B. This equation is linear with respect to the 
parameter set {KI, KII, f KI KII}. Here the quantity f KI KII 
can be considered a “compound” parameter. The three 
equations required to determine the three unknown 
parameter values are obtained by evaluating the mean 
number of bound ligands (v1, v2, and v3) at three ligand 
concentrations (x1, x2, and x3; Fig. 2 C), yielding a sys-
tem of linear equations (Fig. 2 D). The matrix represen-
tation of this system (Fig. 2 E) has the form 

	 ​Mp  =  v,​� (4)

where M is the design matrix, p is the parameter vector, 
and v is the vector of predicted values.

The power of the matrix algebra approach becomes 
apparent at this point, as the difficult question of 
whether the parameters of the two-site allosteric model 
are SI is replaced by the equivalent, but much simpler, 
question of whether there is a unique solution to Eq. 4. 
Left-multiplying each side of this equation by the in-
verse of the design matrix, M−1, yields p = M−1 v. This 
system has a unique solution only if M is invertible or, 
equivalently, if the determinant of M is nonzero, which 
requires that the columns of M be linearly independent 
(Strang, 2003). This determination can be made by in-
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spection, without performing any computations: M is 
not invertible because the two red columns enclosed in 
the dashed box in Fig. 2 E are identical (and thus lin-
early dependent). This analysis indicates that the system 
does not have a unique solution, and hence the param-
eters of the two-site allosteric model are not SI, consis-
tent with the simulation results in Fig. 1.

Structural identifiability of fit parameters for the two-
site allosteric model
An advantage of the analytical approach used in this 
study is that the mathematical structure of matrix M re-
veals the exact cause of the identifiability failure and 
suggests a way to “repair” the parameter set (in the 
sense of restoring it to a condition of structural identifi-
ability). Because the columns of the design matrix mul-
tiply the rows of the parameter vector in Fig.  2  E, 
combining KI and KII into a single parameter, KI + KII, 
merges the two identical red columns of M into a single 
column (Fig. 2 F). This reparameterization condenses 
the three-row by three-column (3 × 3), noninvertible 
design matrix (Fig. 2 E) into a “reduced” 2 × 2 design 
matrix (Fig. 2 F). The invertibility of the reduced design 
matrix is proved in the next section (Invertibility of re-
duced design matrix for the two-site allosteric model).

It is significant that the parameters in the first and 
second rows of the modified parameter vector (KI + KII 
and f KI KII, respectively) are the parameters derived 
from the states with one and two bound ligands in 
Fig.  1  A. A final relabeling of the elements of this SI 
parameter set with subscripts denoting the number of 
bound ligands yields the set of SI fit parameters {p1, 
p2} (Fig. 2 G):

	 ​​p​ 1​​  = ​ K​ I​​ + ​K​ II​​​� (5a)

and

	 ​​p​ 2​​  =  f ​K​ I​​ ​K​ II​​.​� (5b)

With the introduction of fit parameters, the binding re-
lation in Fig. 2 A assumes the form of the general bind-
ing relation (Eq. 1) for the case of two binding sites:

	 ​v  = ​ 
​p​ 1​​ x + 2 ​p​ 2​​ ​x​​ 2​

 _________ 
1 + ​p​ 1​​ x + ​p​ 2​​ ​x​​ 2​

 ​.​� (6)

Thus, there are as many SI parameters as there are 
unique powers of ligand concentration in the total 
binding relation, which, in turn, is just the number of 
binding sites (n) in the protein. Fit parameters become 
particularly useful when analyzing proteins with a larger 

Figure 2.  Structural identifiability analysis of parameters for 
two-site binding models. (A) Relation between mean number 
of bound ligands (v) and free ligand concentration (x) for two-
site allosteric model from Fig. 1. Terms are color coded as in 
Fig. 1 B (bottom). (B) Linearized form of binding equation from 
A. (C) Synthetic total binding curve. The symbols v1, v2, and v3 
represent the mean number of bound ligands at free ligand 
concentrations x1, x2, and x3. (D) System of equations obtained 
by evaluating equation in B at three ligand concentrations, as 
illustrated in C. (E) Matrix form of system of equations in D. 
Dashed red boxes indicate two identical columns in design 
matrix and corresponding parameters in parameter vector. (F) 
Reduced matrix equation obtained by combining parameters 
KI and KII into a single parameter: KI + KII. This procedure col-
lapses the two identical red columns in the design matrix into 
a single column. (G) General form of reduced matrix equation 
in F, in which model-specific parameters {KI + KII, f KI KII} are 
replaced by model-independent fit parameters {p1, p2}. (H) Ex-

pressions for state populations for model in Fig. 1 A and rela-
tion between model parameters and fit parameters: p1 = KI + 
KII and p2 = f KI KII.
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number of binding sites because of the rapid increase 
in the number of model parameters.

An important consequence of Eq. 2 is that the expres-
sions for state populations in binding models have a 
simple, conserved mathematical form. For each li-
gand-binding step, an additional power of ligand con-
centration (x) is accumulated in the expression. Thus, 
the concentration of any state with b bound ligands is 
proportional to the product of the reference state con-
centration (here the unliganded state R00) and the free 
ligand concentration raised to the power b (Fig. 2 H). 
When considering the sum of the concentrations of all 
states with b bound ligands, the proportionality con-
stant is just the fit parameter pb. Thus, another advan-
tage of introducing fit parameters is that identifiability 
can be treated without reference to a particular model. 
The form of Eq. 3 guarantees that SI analysis of any 
other two-site binding model consisting solely of bimo-
lecular association reactions will yield the equation in 
Fig. 2 G after the appropriate combinations of model 
parameters have been converted into fit parameters.

Invertibility of reduced design matrix for the two-site 
allosteric model
We now show that the 2 × 2 “reduced” design matrix 
(Fig. 2 G), given by

	 ​M  = ​ [​​​
(​​1 − ​v​ 1​​​)​​​​x​ 1​​​  ​​(​​2 − ​v​ 1​​​)​​​​​x​ 1​​​​ 2​​  
​​(​​1 − ​v​ 2​​​)​​​​x​ 2​​

​ 
​​(​​2 − ​v​ 2​​​)​​​​​x​ 2​​​​ 2​

 ​]​,​� (7)

is invertible. The matrix elements in Eq. 7 can be simpli-
fied using Eq. 6, yielding

	 ​M  = ​

⎡

 ⎢ 
⎣
​ 
​ 

​​(​​1 − ​p​ 2​​ ​​x​ 1​​​​ 2​​)​​​​x​ 1​​ __________  
1 + ​p​ 1​​ ​x​ 1​​ + ​p​ 2​​ ​​x​ 1​​​​ 2​

 ​
​ 

​ 
​​(​​2 + ​p​ 1​​ ​x​ 1​​​)​​​​​x​ 1​​​​ 2​ __________  

1 + ​p​ 1​​ ​x​ 1​​ + ​p​ 2​​ ​​x​ 1​​​​ 2​
 ​
​   

​ 
​​(​​1 − ​p​ 2​​ ​θ​​ 2​ ​​x​ 1​​​​ 2​​)​​​θ ​x​ 1​​  ____________  
1 + ​p​ 1​​ ​x​ 2​​ + ​p​ 2​​ ​​x​ 2​​​​ 2​

 ​
​ 

​ 
​​(​​2 + ​p​ 1​​ θ ​x​ 1​​​)​​​​θ​​ 2​ ​​x​ 1​​​​ 2​  ____________  
1 + ​p​ 1​​ ​x​ 2​​ + ​p​ 2​​ ​​x​ 2​​​​ 2​

 ​
​

⎤

 ⎥ 
⎦
​.​� (8)

In Eq. 8, we have assumed, without loss of generality, 
that x2 = θx1, where θ > 1 (Fig. 2 C). The determinant of 
this matrix can be expanded in the usual way, which, 
after simplification, yields

	 ​Det​​(​​M​)​​​  = ​ 
​​x​ 1​​​​ 3​ θ​​(​​θ − 1​)​​​​​[​​2 + ​​(​​θ + 1​)​​​​p​ 1​​ ​x​ 1​​ + 2θ ​p​ 2​​ ​​x​ 1​​​​ 2​​]​​​   _________________________   

​​(​​1 + ​p​ 1​​ ​x​ 1​​ + ​p​ 2​​ ​​x​ 1​​​​ 2​​)​​​​​(​​1 + ​p​ 1​​ ​x​ 2​​ + ​p​ 2​​ ​​x​ 2​​​​ 2​​)​​​
 ​ .​� (9)

The right-hand side of Eq. 9 is greater than zero for all 
physically allowed (i.e., positive) values of p1, p2, and x. 
Thus, matrix M is invertible, the system in Fig. 2 G has a 
unique solution, and the fit parameters p1 and p2 are SI.

It is important to note that there is a cost to the 
process of “repairing” the original parameter vec-
tor (Fig.  2  E): by transforming the parameter set to 
achieve a condition of structural identifiability, the 
number of estimable parameters is reduced from three 
to two. None of the fundamental mechanistic parame-
ters of the model in Fig. 1 A—the site affinities or the 
magnitude of the cooperative interaction between the 
sites—can be extracted from the values of the two fit 

parameters. The SI analysis indicates that less knowl-
edge can be gained from the binding measurement 
than was anticipated by the model.

Infinite locus of model parameters yielding identical 
two-site binding curves
Having established that the fit parameters p1 and p2 
completely specify any two-site binding curve (Eq. 6), 
we can now derive a general expression for calculating 
zero-error parameter contours (as in Fig. 1, C and D, 
bottom) for such curves.

Let {f, KI, KII} and {p1, p2} represent arbitrary sets of 
model and fit parameters related by Eqs. 5a and 5b. 
Similarly, let the sets {f*, KI*, KII*} and {p1*, p2*} desig-
nate the correct values of the model and fit parameters 
for a given protein. Eq. 6 indicates that all parame-
ter sets for which

	 ​​K​ I​​ + ​K​ II​​  = ​ p​ 1​​  = ​ p​ 1​​ *​� (10a)

and

	​ f ​K​ I​​ ​K​ II​​  = ​ p​ 2​​  = ​ p​ 2​​ *​� (10b)

will yield binding curves identical to the true binding 
curve for this molecule. Solving Eq. 10a for KII and sub-
stituting this expression into Eq. 10b yields a quadratic 
equation in parameter KI:

	 ​f ​K​ I​​ ​​​​ 2​ − ​​(​​f ​p​ 1​​ *​)​​​​K​ I​​ + ​p​ 2​​ * = 0.​� (11)

The two solutions of Eq. 11, given by the qua-
dratic formula, are

	​​ K​ I​​  = ​ 
​p​ 1​​ * ____ 2 ​  ± ​​[​ 

​​(​​ ​p​ 1​​ * ​)​​​​ 2​
 ______ 4 ​  − ​ 

​p​ 2​​ * ____ f ​ ]​​​ 
1/2

​.​� (12a)

Combining Eqs. 10a and 12a yields a similar ex-
pression for KII:

	​​ K​ II​​  = ​ 
​p​ 1​​ * ____ 2 ​  ∓ ​​[​ 

​​(​​ ​p​ 1​​ * ​)​​​​ 2​
 ______ 4 ​  − ​ 

​p​ 2​​ * ____ f ​ ]​​​ 
1/2

​.​� (12b)

Eqs. 12a and 12b can be used to compute the locus of 
all triples {f, KI, KII} yielding two-site binding curves that 
are identical to the “true” curve with fit parameters {p1*, 
p2*} (Fig. 3). Because KI and KII appear symmetrically in 
Eqs. 10a and 10b, there is an ambiguity in the values of 
KI and KII in Fig. 3, which is indicated by the signs in 
front of the square root terms in Eqs. 12a and 12b. If a 
triple {f, KI, KII} is on the curve in Fig. 3, then the triple 
{f, KII, KI}, in which the values of the two association con-
stants are switched, is also on the curve.

The salient features of the “perfect-fit” loci can be 
characterized by analyzing the mathematical properties 
of Eqs. 12a and 12b. Because KI and KII must be real-val-
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ued, the quantity under the square root in Eqs. 12a and 
12b must be greater than or equal to zero, which leads 
to the inequality

	 ​f  ≥ ​ 
4 ​p​ 2​​ * ______ 

​​(​​​p​ 1​​ *​)​​​​ 2​
 ​.​� (13)

Thus, there is a minimum possible value of the cooper-
ativity factor f for specified values of p1* and p2*. Substi-
tuting Eq. 13 into Eqs. 12a and 12b indicates that, at this 
minimum value of f, association constants KI and KII are 
equal. Finally, from Eq. 5a, the maximum possible value 
for the larger of KI and KII is p1*. These features are in-
dicated on the generic curve in Fig. 3.

Curves like the one in Fig. 3 provide insight into how it 
is possible for many different sets of model parameters to 
yield the identical binding curve line shape. The curve in 
Fig. 1 D (bottom) illustrates the “push/pull” effect of co-
operativity that underlies parameter nonidentifiability. 
For two sites with the same affinity (dashed line “D”), two 
distinct binding phases are apparent in the binding curve 
(Fig.  1 D, top) if there is strong negative cooperativity 
(i.e., binding to one site “pushes” the affinity of the adja-
cent site toward a lower value). For two sites with very 
different affinities (dashed line “F”), two binding phases 
with this same separation are obtained if there is strong 
positive cooperativity (i.e., binding to the high-affinity 
site “pulls” the very low-affinity site to higher affinity). 
The structure in the binding curve is the net result of two 
factors: (1) the ratio of the intrinsic affinities of the sites 
and (2) the magnitude of the cooperative interaction be-
tween the sites. An infinite number of combinations of 
values for these two factors yield the identical binding 
curve line shape (Fig. 1 D, top).

Structural nonidentifiability of parameters for three-
site binding curves
The SI assessment strategy described in this study is 
readily applied to models of proteins with more than 

two binding sites. For example, the one-conformation 
model in Fig. 4 A comprises all possible ligated states for 
a receptor containing three binding sites. The model 
includes distinct microscopic association constants for 
all sites and distinct cooperative interactions between 
all pairs of sites. The nomenclature for the cooperativity 
factors highlights the conditional probabilistic nature 
of such models (Ben-Naim, 2001). For example, the 
equilibrium constant for the reaction in which state R001 
binds ligand to form state R011 is fII(III) KII. The symbol 
fII(III) represents the fold effect on binding to site II 
caused by occupancy of site III. Similarly, the symbol 
fI(II,III) represents the fold effect on binding to site I, 
given that sites II and III are occupied. After removing 
parameters that are redundant based on detailed bal-
ance considerations, the seven independent model pa-
rameters indicated in Fig. 4 A remain.

The procedure for estimating these unknown param-
eters is analogous to that for the two-site case (Fig. 2). 
The binding relation (Fig. 5 A) is obtained from the ex-
pressions for the concentrations of all ligated states of 
the system (Fig.  4  B). Seven constraint equations are 
obtained by evaluating the linearized form of the total 
binding relation (Fig. 5 B) at each of seven ligand con-
centrations, x1 through x7. The matrix representation 
of this system of equations (Fig. 5 C) has the same form 
as for the two-site case (Fig. 2 E): design matrix * param-
eter vector = vector of predicted values. The design ma-
trix in Fig. 5 C is not invertible because it contains two 
sets of identical columns. Therefore, the set of seven 
model parameters is not SI when constrained by 
total binding data.

The identical red columns and the identical blue col-
umns in Fig. 5 C arise from the three states with one 
bound ligand and the three states with two bound li-
gands, respectively. A clear pattern emerges when the 
matrix equations for three sites (Fig. 5 C) and two sites 
(Fig. 2 E) are compared: parameter nonidentifiability 

Figure 3.  Locus of points {f, KI, KII} yield-
ing perfect fit to a two-site binding curve 
calculated using correct values of model 
parameters {f*, KI*, KII*}. Correct values 
of fit parameters are then p1* = KI* + KII* 
and p2* = f* KI* KII*. Curve was computed 
using Eqs. 12a and 12b. Upper (bold) and 
lower (normal) arms of curve correspond to 
values of either KI and KII or KII and KI. Mini-
mum value of cooperativity parameter, fmin, 
and maximum value of the larger of KI and 
KII are also indicated.



Structural identifiability of binding parameters | Middendorf and Aldrich112

caused by identical columns in the design matrix is en-
countered whenever there is more than one state with a 
given number of bound ligands. The number of identi-
cal columns in the design matrix for a given value of b 
is equal to the number of ligated states with b bound li-
gands. This latter quantity is the number of ways of ar-
ranging b ligands on n nonidentical sites and is given by 
the binomial coefficient

	 ​​(​n​ b ​)​  = ​   n ! _______ b !​​(​​n − b​)​​​ ! ​.​� (14)

The non-SI parameter set in Fig.  5  C can be trans-
formed into one that is SI using the same strategy as in 
the two-site case (Fig. 2). The three model parameters 
for b = 1 (see Eq. 14) are condensed into a single fit 
parameter, p1 = KI + KII + KIII, and the three (compound) 
parameters for b = 2 (see Eq. 14) are condensed into a 
single fit parameter, p2 = fI(II) KI KII + fI(III) KI KIII + fII(III) 

KII KIII (Fig.  5, C–E). This process merges the three 
identical red columns into a single column and the 
three identical blue columns into a single column, re-
ducing the original 7 × 7 design matrix to a 3 × 3 matrix. 
Again, the cost of achieving structural identifiability is a 
loss of knowledge regarding the molecular system be-
cause, at best, only three parameters, rather than the 
full seven of the model, can be estimated from fitting 
three-site binding curves. Also, it is not possible to eval-
uate any of the seven model parameters from knowl-
edge of the three fit parameters.

Invertibility of reduced design matrix for three-site 
allosteric model
The “reduced” design matrix of Fig. 5 E is invertible, but 
obtaining a general proof of this issue is cumbersome for 
n > 2. We have adopted the alternative strategy of numer-
ically evaluating the determinants of design matrices for 
a wide variety of three- and four-site binding curve line 
shapes. Although the determinants are always greater 
than zero, and therefore invertible, their magnitudes are 
often very small. Such matrices are “ill-conditioned” 
(Watkins, 1991), and inference for the linear system M p 
= v (Fig. 5 E) is problematic: small changes in one of the 
elements in M or v may cause large changes in the solu-
tion for p. This property of design matrices for total bind-
ing indicates that, for real experimental conditions, 
small uncertainties in the measured binding site occu-
pancy or in the ligand concentration (the vi and xi terms 
in Fig. 5 E) may cause large errors in the estimated values 
of one or more of the fit parameters (the pi terms in 
Fig. 5 E). Thus, although the fit parameters {p1, p2, p3} are 
SI, we anticipate that there may be many cases for which 
they are not PI. This latter issue is the subject of the com-
panion paper (Middendorf and Aldrich, 2017).

Structural identifiability of parameters for models of 
macromolecules with any number of binding sites
We have described a simple procedure for generating 
SI parameter sets for models of proteins containing 
two or three ligand-binding sites. The process consists 
of setting up a system of equations based on the linear-
ized total binding relation, transforming the system 
into matrix form, and eliminating any identical col-
umns in the design matrix by combining parameters 
derived from states with the same number of bound 
ligands. This process yields a matrix equation contain-
ing a “reduced” design matrix and a vector of fit pa-
rameters; some of the fit parameters are functions of 
multiple model parameters. Because of the conserved 
form of the total binding relation (Eq. 1), this ap-
proach can be extended to proteins with any number 
of ligand-binding sites.

Examples of the reduced design matrices for sin-
gle-conformation models of proteins with two, three, 
four, and n binding sites are shown in Fig. 6. For n bind-

Figure 4.  Three-site allosteric binding model. (A) State di-
agram in which symbols Rijk designate states with i, j, and k li-
gands bound to sites I, II, and III (i, j, k = 0 or 1). KI, KII, and 
KIII represent microscopic equilibrium association constants for 
sites I–III. Conditional cooperativity factors fJ(K,L) represent fold 
change in binding to site J given that sites K and L are occu-
pied. (B) Expressions for state populations for model in A and 
relation between model parameters and fit parameters: p1 = KI 
+ KII + KIII, p2 = fI(II) KI KII + fI(III) KI KIII + fII(III) KII KIII, and p3 = fII(III) 
fI(II,III) KI KII KIII. States and expressions are color coded black, 
red, blue, and purple for zero, one, two, and three bound li-
gands, respectively.
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ing sites, the reduced design matrix contains n rows and 
n columns, and the element in row j, column k of this 
matrix, Mjk, is given by 

	 ​​M​ jk​​  = ​​ (​​k − ​v​ j​​​)​​​​x​ j​​ ​​​​ k​,​� (15)

where the indices j and k are in the range 1 ≤ j, k ≤ n. 
Because the reduced matrix equations have a canonical 
form for all values of n, all of the algebraic steps can be 
bypassed, and the reduced matrix equation can be writ-
ten down once the value of n is specified. Analysis of the 
reduced matrix equation for macromolecules with n 
binding sites indicates that noiseless total binding data 
will constrain a set of n SI fit parameters {p1, p2, …, pn} 
if it is assumed that the protein occupies a single con-
formational state.

Structural identifiability of parameters for models 
including conformational change
The central function of many ligand-binding proteins 
is to convert the free energy of ligand binding into con-
formational change to perform important cellular func-
tions such as signal transduction. Our treatment of 
parameter SI is readily expanded to include models 
comprising any combination of binding and conforma-
tional equilibria. For example, for a two-site receptor, 
conformational change is modeled using equi-
libria of the form

	 ​​M​ RS​​  = ​  ​[​​​S​ 00​​​]​​ ____ ​[​​​R​ 00​​​]​​ ​,​� (16)

which quantifies the distribution of unoccupied recep-
tors between two conformations denoted R and S. Be-

Figure 5.  Structural identifiability analysis of parameters for three-site allosteric binding model. (A) Relation between mean 
number of bound ligands (v) and free ligand concentration (x) for the model in Fig. 4 A. Terms are color coded as in Fig. 4. (B) Linear-
ized form of binding equation from A. (C) Matrix representation of system of equations obtained by evaluating the equation in B at 
seven ligand concentrations x1 through x7. Dashed red and blue boxes indicate identical columns in design matrix and correspond-
ing parameters in parameter vector derived from states with one and two bound ligands, respectively. (D) Reduced matrix equation 
obtained by summing parameters KI, KII, and KIII from C into a single parameter and by summing parameters fI(II) KI KII, fI(III) KI KIII, and 
fII(III) KII KIII into a single parameter. This operation causes the identical red and blue columns to collapse into a single red and single 
blue column in the reduced design matrix. (E) General form of the reduced matrix equation in D, in which model-specific parameters 
are replaced by model-independent fit parameters {p1, p2, p3}.
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cause the elementary conformational rearrangements 
are assumed to occur with no change in the ligation 
state of the receptor, this phenomenon is easily incorpo-
rated into our approach.

For example, the two-site model in Fig. 1 A can be ex-
panded so that the macromolecule may occupy two 
(Fig. 7 B, left) or three (Fig. 7 C, left) global conforma-
tional states, denoted R, S, and T. In these models, pro-
tein conformation may influence ligand binding 
indirectly through binding at the other site (because of 
the conformation-specific cooperativity factors fR, fS, 
and fT) and directly by explicit state dependence of the 
ligand affinities. The direct effect is quantified by the 
distinct association constants KIR, KIS, and KIT for bind-
ing to site I and KIIR, KIIS, and KIIT for binding to site II 
in the R, S, and T conformations.

Expressions for the state populations for the multi-
conformation models (Fig. 7, B and C, right) have the 
same conserved form as for the single-conformation 
model (Fig. 7 A, right). One new feature that emerges 
for models that include conformational change is the 
appearance of multiple unliganded states, but these ad-
here to the familiar pattern that their populations are 
given by the product of a reference state population 
(R00), a factor that is a function of the model parame-
ters, and ligand concentration raised to the power b 
(where b = 0; Fig. 7, B and C, right).

To solve for the 11 unknown, independent parame-
ters of the model in Fig. 7 C (left), a system of equations 
is generated by evaluating the linearized binding rela-
tion at 11 (xi, vi) pairs. The parameters of this model are 
not SI because the design matrix is not invertible, re-
sulting from the presence of multiple sets of identical 
columns (Fig. 8 A). The two identical black, six identi-
cal red, and three identical blue columns derive from 
states with zero, one, and two bound ligands, respec-
tively. The now-familiar remedy of combining model 
parameters derived from states with the same number 
of bound ligands removes the linear dependencies in 
the design matrix by merging each set of identical col-
umns (Fig. 8 B) and yields the set of SI fit parameters 
{p0, p1, p2} (Fig. 8 C). The unliganded states S00 and T00 
are accounted for by the fit parameter p0.

From the arguments made earlier, it is clear that these 
results generalize in a predictable way for models that 
include conformational change for proteins with any 
number of binding sites. Examples of the conserved 
form of the design matrices obtained for multiple-con-
formation models of proteins are shown in Fig. 9. As in 
Fig. 6, the matrix element Mjk is given by Eq. 15, except 
now the row and column numbers are in the range 0 ≤ 
j, k ≤ n. For a protein with n binding sites and multiple 
conformational states, noiseless total binding data will 
constrain a set of n + 1 SI fit parameters {p0, p1, p2, …, pn}.

Figure 6.  Canonical form of reduced design matrices for binding models that include a single protein conformation. (A–D) 
Reduced design matrices for proteins containing two (A), three (B), four (C), or n (D) binding sites. Proteins are assumed to occupy 
a single conformation. Matrix elements derived from states with one, two, three, four, or n bound ligands are color coded red, blue, 
purple, green, and orange, respectively. The general form of the matrix elements in all cases is given by Eq. 15.
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Dis   c u ssi   o n

Our approach to assessing structural identifiability of 
total binding parameters
Much of our knowledge of the large and important 
class of macromolecular receptors that bind multiple 
ligands comes from estimates of binding parameters 
obtained by fitting total binding data. However, the 
question of the uniqueness and accuracy of these es-
timates has been largely ignored, likely because there 
is no general method for assessing binding parame-
ter identifiability. We present in this study a method 
for determining the maximum number of SI binding 
parameters for a protein with n binding sites. The 
practical identifiability of these SI parameter sets is 

addressed in the companion paper (Middendorf and 
Aldrich, 2017).

Our approach to assessing binding parameter SI 
was guided by several considerations. It is important 
that the method be simple to apply so that the SI as-
sessment can be made during the design phase of a 
proposed binding study. If the parameters of a can-
didate model are not SI, then the parameterization 
scheme is invalid; an ideal method would provide 
guidance on whether it is possible to “repair” non-SI 
parameter sets and, if so, how to modify those sets to 
achieve SI. Because it is very inefficient to reassess 
parameter SI for every candidate model under con-
sideration, it would be preferable that the method 
generate a universal (i.e., model independent) pa-

Figure 7.  State diagrams and state populations for two-site allosteric binding models that include multiple protein conforma-
tions. (A–C, left) Models for proteins occupying one (A), two (B), or three (C) conformations. States Rij, Sij, and Tij designate molecules 
in conformations R, S, and T with i and j ligands bound to sites I and II, respectively (i, j = 0 or 1). KIR, KIS, and KIT represent microscopic 
equilibrium association constants for site I when the macromolecule is in the R, S, and T conformations, respectively. KIIR, KIIS, and KIIT 
are the corresponding constants for site II. Cooperativity factors fR, fS, and fT represent the fold change in binding to a site when the 
adjacent site is occupied and the protein is in the indicated conformation. MRS and MST are the conformational equilibrium constants 
for the equilibria between states R00 and S00 and between states S00 and T00, respectively. (A–C, right) Expressions for state popula-
tions for models shown on the left and relation between model parameters and fit parameters {p0, p1, p2}. States and expressions 
are color coded black, red, and blue for zero, one and two bound ligands, respectively.
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rameter set that is SI by design. Our method fulfills 
all of these criteria.

Three elements form the basis of our method. First, 
the state populations derived from the equations for 
binding (Eq. 3) and conformational equilibria (Eq. 
16) have a conserved form for receptors with any num-
ber of binding sites: state population = reference state 
population * model parameter(s) * (free ligand con-
centration)b, where b is the number of ligands bound 
to the state in question. Therefore, the total binding 
relation, which is the ratio of sums of these state pop-
ulations, also has a conserved form (Eq. 1) and allows 
binding parameter SI to be treated in a general and 
model-independent fashion. Second, because the 
criteria for structural identifiability assume noiseless 
data, an intrinsically nonlinear problem can be linear-
ized (Fig. 2, A and B). Third, matrix algebraic methods 
can be used to assess the solvability of linear systems 

of equations without performing calculations such as 
computing matrix inverses and are readily adapted to 
questions of parameter SI.

In our method for assessing SI, a system of equations 
is derived from the linearized form of the total binding 
relation. For any model composed solely of binding and 
conformational equilibria and for receptors with any 
number of ligand-binding sites, the matrix representa-
tion of this system has the invariant form: design matrix 
* parameter vector = vector of predicted values (Eq. 4). 
The question of whether the parameters are SI is equiv-
alent to the question of whether the design matrix is 
invertible. The existence of multiple ligation states with 
the same total number of bound ligands (b) produces 
identical columns in the design matrix (Figs. 2 E, 5 C, 
and 8 A), which renders this matrix singular (i.e., non-
invertible). An important advantage of our analytical 
approach over numerical methods is that the cause of 

Figure 8.  Structural identifiability analysis of parameters for two-site, three-conformation binding model (Fig.  7  C, left).  
(A) Matrix representation of system of equations obtained by evaluating linearized binding relation at 11 ligand concentrations x0 
through x10. Dashed black, red, and blue boxes indicate identical columns in design matrix and corresponding parameters in pa-
rameter vector derived from states with zero, one, and two bound ligands, respectively. (B) Reduced matrix equation obtained by 
summing parameters in dashed boxes in A. This operation causes the identical black, red, and blue columns to collapse into a single 
black, single red, and single blue column in the reduced design matrix. (C) General form of reduced matrix equation in B, in which 
model-specific parameters are replaced by model-independent fit parameters {p0, p1, p2}.
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the identifiability failure and its solution are revealed by 
the form of the design matrix. In all cases, the parame-
ter set can be made SI by combining the model param-
eters for each group of states with the same value of b 
into a compound fit parameter, pb. This transformation 
merges each group of identical columns in the design 
matrix into a single column, yielding a reduced, invert-
ible design matrix and a set of SI fit parameters (Figs. 2 
G, 5 E, and 8 C). Because the final matrix equation pro-
duced by this procedure has a canonical form (Figs. 6 
and 9), the SI parameter set can be written down by in-
spection, with no calculations, and with no information 
other than the number of binding sites and whether the 
model includes conformational change.

In summary, we have derived a general strategy for 
generating the largest set of SI parameters for receptors 
with any number of binding sites, without reference to 
a specific physical binding model. The set of SI fit pa-
rameters {p0, p1, …, pn} are the coefficients of powers of 
ligand concentration in the total binding relation (Eq. 
1). The parameters of all models of protein–ligand in-
teraction that consist of any combination of unitary 
steps comprising binding equilibria (Eq. 2) or confor-
mational equilibria (Eq. 16) reduce to this canonical 

form. These very nonrestrictive criteria include virtually 
all physically reasonable binding models. These results 
also provide insight into why total binding data have rel-
atively low power for constraining model parameters: 
the measurement acts as a coarse filter that sorts the 
states of the system into groups according to the num-
ber of bound ligands but does not distinguish between 
the states with a given value of b. Thus, many parame-
ters that relate to the population of specific ligated in-
termediates cannot be estimated individually, but rather 
are folded into fit parameters that contain multiple 
terms. For example, the SI fit parameters for the model 
in Fig. 1 A are equal to the sum of the microscopic site 
binding constants (p1 = KI + KII), and the product of the 
three model parameters (p2 = f KI KII). None of the in-
dividual model parameters can be determined from fit-
ting total binding curves, even in the absence of noise.

Assumptions of our approach to parameter 
identifiability
Our treatment of binding parameter SI incorporates 
several simplifying assumptions. General assumptions 
include the following: (a) Data are from total binding 
measurements performed at equilibrium. (b) Only 

Figure 9.  Canonical form of reduced design matrices for binding models that include multiple protein conformations. (A–D) 
Reduced design matrices for proteins containing two (A), three (B), four (C), or n (D) binding sites.Matrix elements derived from 
states with zero, one, two, three, four, and n bound ligands are color coded black, red, blue, purple, green, and orange, respectively. 
The general form of the matrix elements in all cases is given by Eq. 15, with the row and column numbering ranging from 0 to n.



Structural identifiability of binding parameters | Middendorf and Aldrich118

models that consist of binding equilibria and conforma-
tional equilibria of the form specified by Eqs. 3 and 16 
are considered. (c) Binding between ligand and recep-
tors containing n distinct (and generally nonidentical) 
ligand-binding sites occurs within a single, aqueous 
reaction phase.

Specific assumptions about the protein include the 
following: (d) All receptors are identical except for dif-
ferences in site occupancy and conformation caused by 
ligand binding (i.e., there are no variations in stoichi-
ometry or posttranslational modifications between re-
ceptors). (e) There are no interactions between 
functional receptors, which eliminates the possibility of 
dimerization of receptors or higher aggregate forma-
tion. (The functional receptors may be oligomeric; our 
assumption is that these oligomers do not interact.) (f) 
Protein is present at sufficiently low concentrations that 
ligand depletion effects (Goldstein and Barrett, 1987) 
are not significant. (g) Protein is present at sufficiently 
low concentrations that complications caused by molec-
ular crowding (Zimmerman and Minton, 1993) can be 
ignored. (This assumption applies to the ligand as well.)

Specific assumptions about the ligand include the fol-
lowing: (h) There is a single ligand species present, and 
all ligand molecules are identical. (i) There are no in-
teractions between ligands that are not bound to pro-
tein. (Interactions between multiple ligands bound to a 
single receptor are allowed.) (j) Ligands bind only at 
the specified sites on the protein: there is no nonspe-
cific binding. (k) Ligands that are asymmetric bind in 
only one orientation in the protein-binding site. (l) Li-
gands bind to only one site at a time (i.e., ligand multiv-
alence is not considered).

An important future direction of this research is to 
explore whether some of these assumptions may be re-
laxed. By properly modeling the effects, our general 
approach to parameter identifiability may be expanded 
to include an even wider range of phenomena. For ex-
ample, we are extending the theory to account for li-
gand depletion (assumption f) and the presence of 
multiple, competing ligand species (assumption h). In 
addition, the single-phase approximation (assumption 
c) may be relaxed by incorporating the formalism de-
veloped by Wells (Hulme, 1992) to treat cases in which 
protein and ligand occupy multiple phases, such as 
aqueous and membrane compartments. Dimerization 
of functional receptors (assumption e) has been treated 
in the hemoglobin literature (Riggs, 1998) and may 
also be incorporated into our approach.

Limitations to inferring mechanism from analysis of 
total binding curves
Quantifying the microscopic site affinities, the magni-
tudes of cooperative interactions between binding sites, 
and possible conformational effects on these parameters 
are important goals of mechanistic binding studies. To 

specify these molecular properties, a total of n * c param-
eters are required if the affinities of all n sites are assumed 
distinct in each of c protein conformations. The number 
of additional parameters required to specify the magni-
tudes of all possible site–site interactions increases rap-
idly as n increases. Thus, models that allow for distinct 
site affinities and cooperative interactions between the 
various sites require large numbers of parameters. In 
contrast, our analysis shows that the maximum number 
of SI parameters supported by equilibrium total binding 
data are smaller: n if the model is composed solely of 
binding equilibria (Eq. 3) and n + 1 if the model also in-
cludes conformational equilibria (Eq. 16). The discrep-
ancy between the number of parameters required by 
detailed mechanistic models and the number that can be 
estimated reliably from experimental data indicates that 
a good fit to total binding data provides almost no infor-
mation about the physical properties of binding sites in 
proteins. This observation may explain the popularity of 
much simpler models such as the Klotz–Adair model 
(Klotz, 1997), which, by distinguishing states based only 
on the total number of bound ligands, requires a total of 
n parameters. The inevitable trade-off required with this 
model is that the parameters are macroscopic association 
constants that do not distinguish between site affinity 
and cooperativity. Identifiability analysis underscores the 
need for other experimental measurements that provide 
stronger parameter constraints, such as equilibrium 
site-specific binding (Di Cera, 1995), binding kinetics, 
and conformation measurements.

Are both SI and PI assessments needed?
Structural identifiability is a necessary but not sufficient 
condition for ensuring that parameters obtained from 
fitting a model to data are accurate and unique (Bell-
man and Åström, 1970; Němcová, 2010). SI is assessed 
assuming ideal conditions (noiseless data) that are 
never achieved in real-world situations. When fitting ex-
perimental data containing noise, it is possible that the 
number of PI parameters may be even smaller than the 
number of SI parameters. Thus, it is natural to question 
whether it is worthwhile assessing parameter SI if pa-
rameter PI (which is the sufficiency condition) is to be 
determined separately.

For the case of total binding parameters, we find that 
the SI assessment is essential; the conclusions reached in 
the PI assessment phase vary depending on whether the 
parameter set is SI. For example, Fig. 1 (C and D, bottom) 
shows that the three parameters of the two-site allosteric 
model (Fig. 1 A) are not SI (and therefore not PI), regard-
less of the degree of resolved structure in the total binding 
curve (Fig. 1, C and D, top). In contrast, the practical iden-
tifiability of the two SI fit parameters for two-site binding 
curves (Fig. 2, G and H) is shown in the companion paper 
(Middendorf and Aldrich, 2017) to depend strongly on 
the amount of resolved structure in the binding curve.
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