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Purpose: To examine the use of multimodal data and multi-omics strategies for optic nerve disease 
screening. 
Methods: This was a single-center retrospective study. A deep learning model was created from 
fundus photography and infrared reflectance (IR) images of patients with diabetic optic neu-
ropathy, glaucomatous optic neuropathy, and optic neuritis. Patients who were seen at the 
Ophthalmology Department of First Affiliated Hospital of Nanchang University in Jiangxi Prov-
ince from November 2019 to April 2023 were included in this study. The data were analyzed in 
single and multimodal modes following the traditional omics, Resnet101, and fusion models. The 
accuracy and area-under-the-curve (AUC) of each model were compared. 
Results: A total of 312 images fundus and infrared fundus photographs were collected from 156 
patients. When multi-modal data was used, the accuracy of the traditional omics mode, 
Resnet101, and fusion models with the training set were 0.97, 0.98, and 0.99, respectively. The 
accuracy of the same models with the test sets were 0.72, 0.87, and 0.88, respectively. We 
compared single- and multi-mode states by applying the data to the different groups in the 
learning model. In the traditional omics model, the macro-average AUCs of the features extracted 
from fundus photography, IR images, and multimodal data were 0.94, 0.90, and 0.96, respec-
tively. When the same data were processed in the Resnet101 model, the scores were 0.97 equally. 
However, when multimodal data was utilized, the macro-average AUCs in the traditional omics, 
Resnet101, and fusion modesl were 0.96, 0.97, and 0.99, respectively. 
Conclusion: The deep learning model based on multimodal data and multi-omics strategies can 
improve the accuracy of screening and diagnosing diabetic optic neuropathy, glaucomatous optic 
neuropathy, and optic neuritis.   

1. Introduction 

Glaucoma and diabetic retinopathy are two of the most common causes of vision loss worldwide [1]. Both conditions cause 
irreversible damage to the optic nerve. Optic nerve damage happens especially early in diabetic retinopathy. As such, it is important to 
diagnose diabetic retinopathy as soon as possible to help mitigate vision loss. At present, optic neuropathy is primarily diagnosed by 
experienced ophthalmologists, and the lack of ophthalmologists in underdeveloped regions may significantly limit the number of 
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patients that are screened and diagnosed in those areas.The emergence of artificial intelligence (AI) has allowed physicians to diagnose 
eye diseases based on images. AI can screen large amounts of data and diagnose diabetic retinopathy [2], glaucoma [3], and 
age-related macular degeneration [4] with expert-level diagnostic accuracy. However, AI-based screening for optic neuropathy re-
mains rare. Future applications of AI in ophthalmology can even extend to include the analysis of multimodal data to improve pre-
dictive accuracy. 

This study aims to develop a deep learning (DL)-based algorithm to simultaneously screen glaucomatous optic neuropathy (GON), 
diabetic optic neuropathy (DON), and optic neuritis (ON) using multimodal data and multi-omics strategies, as well as compare the 
diagnostic performance of different models. 

2. Materials and methods 

2.1. Image collection and pre-processing 

This retrospective study was approved by the Ethics Review Committee of First Affiliated Hospital of Nanchang University（Ethical 
number：IIT2023281）. All procedures were carried out in accordance with the principles of the Declaration of Helsinki. We 
retrospectively collected fundus photography and infrared reflectance (IR) images of patients with DON, GON, and ON, who were 
admitted to the Ophthalmology Department of First Affiliated Hospital of Nanchang University from November 2019 to April 2023. 
Fundus and infrared fundus photographs were performed simultaneously. The following inclusion and exclusion criteria were also 
established: 1) Photographs with a clinical diagnosis of DON, GON, or ON were included in this study; 2) Photographs that depicted 
optic neuropathy caused by other diseases, such as hypertensive retinopathy, were excluded from this study; and 3) Patients with poor 
image quality were excluded from this study. 

Seven patients were excluded according to the criteria, resulting in 156 patients. A total of 312 images were collected from these 
patients. A total of 312 images (fundus photographs and infrared fundus photographs) were collected from these patients. All images 
were obtained using the same fundus photograph (KOWA Nonmyd WX; KOWA Company Ltd., Tokyo, Japan) and infrared reflectance 
(IR) (Heidelberg Spectralis Optical Coherence Tomography; Heidelberg Engineering, Dosenheim, Germany) machines. All images 
were acquired by the same ophthalmologist. The fundus and IR images were deidentified and exported in JPG format (768 × 868 pixels 
and 24 bit/pixel and 1876 × 1876 pixels and 24 bit/pixel, respectively). Two ophthalmologists reviewed the images and classified each 
as DON, GON, or ON. All images were then randomly assigned to the training and test sets following an 8:2 ratio. ITK-SNAP version 
3.8.0 software (NYU Tandon School of Engineering, NY, USA) was used to manually mark the region of interest (ROI) in each image. 

2.2. Model development and feature extraction 

This study developed a DL neural network-based model that can predict and classify optic neuropathy. All data inputs were 

Fig. 1. The flowchart of this study.  
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anonymized. The data were divided into training and test sets, and the classification of optic neuropathy was assigned as a multi- 
classification task in the test set. The images of the two modalities were featured separately and then fused and inputted into the 
neural network for classification. The results of the fusion model were then compared with the results of the traditional omics and 
Resnet 101 models. The flowchart for this process is shown in Fig. 1. 

2.3. Feature extraction of the traditional omics model 

The Python package “PyRadiomics 3.0.1" (Python Software Foundation; Wilmington, DE) was used to extract the target features, 
RF and rad-feature. The features extracted by traditional omics were numerous and quantitative, which may explain some of the 
resulting heterogeneity [5].Seven radiomic features were extracted: first-order, two-dimensional shape, gray co-incidence matrix, gray 
running length matrix, gray size band matrix, adjacent gray tone difference matrix, and gray dependence matri [6].Principle 
component analysis (PCA), least absolute shrinkage and selection operator(LASSO), and Pearson correlation coefficients were used for 
feature selection and data dimensionality reduction [7].For additional details on the definitions of each of the features, please refer to 
the PyRadiomics documentary online (https://pyradiomics.readthedocs.io/en/latest/features.html). The distribution and gravity of 
the traditional omics features are shown in Fig. 2. 

2.4. Feature extraction of the Resnet101 model 

Convolutional neural networks (CNNS), which are composed of input, hidden, and output layers, are currently the most well- 
known type of deep learning architecture [8]. Resnet [9] is a milestone development among CNNs, the widely used Resnet101 
model [10],[11]. was selected for this study. ResNet reduced the error rate of image classification recognition to 3.6 %. Its overall 
architecture can be divided into three parts: 1) an input stem that uses general convolution with a large stride to reduce image res-
olution, 2) a stage block with four stages, with each stage composed of multiple building blocks that can use stride or pooling. Each 
stage typically reduces image resolution, expands width (channel), and carries out a series of residual learning activities; and 3) an 
output stem that is designed for different tasks. Resnet101 is also known as a DAG network, which is a kind of neural network for DL. Its 
layers are arranged as directed acyclic graphs, creating a more complex structure that has multiple layers of input and output. 
ResNet101 also has 101 sub-networks, and each layer responds to or activates a unique input image. 

The model network weights were pre-trained and initialized on ImageNet（http://www.image-net.org/).To improve performance, 
the parameters were fine-tuned with the feedback of cross entropy loss function. The average probability of all images was used to 
produce the DL features, and the outputs of the penultimate FC layer of the convolutional neural network (CNN) were used as DL 
features. The structure of the CNN was implemented in Python 3.0(Python Software Foundation). 

Fig. 2. (A) Pie chart of feature distribution extracted from traditional omics model; (B) A violin diagram of the output distribution of traditional 
omics features(features extracted from fundus photography);(C) A violin diagram of the output distribution of traditional omics features(features 
extracted from IR images). 
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2.5. Feature extraction of the fusion model 

The features extracted from the Resnet101 model were fused with those extracted from the traditional omics model. Feature fusion 
[12] is the process of fusing two feature vectors into one feature vector. Feature fusion improves image information, which makes the 
fused feature vector more discriminative. Two commonly used feature level fusion methods include concat and add. The concat 
method increases the dimensions that describe image features but does not change the amount of information for each feature (Fig. 3). 
Comparatively, the add method increases the information for each image feature information but does not change the dimensions of 
each feature. Our study used the concat method to average the output probabilities of the traditional omics and DL features. 

2.6. LASSO model construction 

Computer-generated randomized sampling assigned 80 % and 20 % of the images to the training and test sets, respectively. A 
variable selection method proposed by statistician Robert Tibshirani in 1996 -LASSO [13].LASSO regression removes any unimportant 
features by penalizing the regression coefficients of relevant parameter sizes, which also functions as an additional feature screening 
method. LASSO works by constructing a first-order penalty function and determining the coefficient of the selected variables for 
feature screening, which creates a refined model. Ultimately, LASSO regression shrinks the coefficient estimate to zero, depending on 
the extent of the additional parameter, λ. To determine the best value for λ, a five-fold cross validation was performed, and λ was 
chosen based on the optimal criterion [14]. 

2.7. Prediction model building 

Each feature group was individually normalized with a z-score to combine the features of different magnitudes into one value. Non- 
zero coefficients were used as useful predictors in each feature group, and LASSO regression was used for feature selection in the 
training cohort. The machine learning classifiers, GradientBoosting and LightGBM, were used for predictive classification. 

2.8. Visualization 

We generated heat maps using the grad-CAM technique to visualize neural network outputs and identify which image region was 
likely involved in the classification of optic neuropathy [15]. Involved regions were highlighted in the heat maps to indicate the 
regions that contributed more significantly to the predictive outputs. 

2.9. Statistical analysis 

The chi-square test was used for qualitative data. A two-sided P-value <0.05 was considered statistically significant. All extracted 
features were dimensionally reduced by LASSO regression to improve the accuracy and fit of the modeling. The extracted features were 
then used to construct the prediction model with the machine learning methods, GradientBoosting and LightGBM. The performance of 
the study model was evaluated through AUC, accuracy, precision, sensitivity, and specificity measurements. Selected data were also 
presented through confusion matrices and heat maps. 

3. Results 

3.1. Characteristics of participants and images 

A total of 156 patients (312 images) were included in the study. The numbers of patients with DON, GON, and ON were 55, 64, and 
37, respectively. Each patient had a fundus photograph and an IR image. As shown in Table 1, there were 110, 128, and 74 images of 
DON, GON, and ON, respectively. The training and test sets had 248 (80 %) and 64 (20 %) images, respectively. 

Fig. 3. Two feature fusion methods; (A) Add. (B) Concat.  
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3.2. LASSO model and feature screening 

LASSO regression was used to screen the features of the fusion model, and regularization was introduced to screen the weight of 
each feature. Each feature was assigned a coefficient that represented its weight size. The larger the penalty coefficient, λ, the smaller 
the weight. The optimal λ value identified for the fusion model was 0.0592 (Fig. 4). 

3.3. Comparison of model predictive performance 

3.3.1. Accuracy, precision, sensitivity, and specificity 
We utilized the GradientBoosting classification model to measure accuracy. When multimodal data comprised the training sets in 

the traditional omics, Resnet101, and fusion models, the accuracy scores were 0.97, 0.98, and 0.99, respectively. When multimodal 
modal data comprised the test sets in the same models, the scores were 0.72, 0.87, and 0.88, respectively. We also utilized the 
LightGBM classification model to test accuracy. In the training set, the accuracy of the three models were 0.87, 0.87, and 0.89, 
respectively. In the test set, the accuracy of the three models were 0.81, 0.84, and 0.88, respectively. These data are shown in Table 2. 

In the Fusion model, we calculated the precision、sensitivity and specificity of each class using the confusion matrix shown in 
Table 3. 

The calculation formula was as follows [16]. 
A true positive (TP) result indicates that a patient with disease A was correctly detected as disease A. A true negative (TN) result 

indicates that a person with disease A was detected as non-disease A. A false positive (FP) result represents an incorrect data point, 
wherein a person with non-disease A was detected as positive for disease A. A false negative (FN) result represents an incorrect data 
point, wherein a person with disease A is detected as a person without disease A. 

Precision=TP / (TP+FP)

Sensitivity=TP / (TP+FN)

Specificity=TN / (FP+TN)

Table 1 
Baseline characteristics of participants and images in dataset.  

Clinical characteristics Participants,No.(%) P value 

Group Train (n = 124) Test(n = 32) – 
Age,median±SD(range),years 52.42 ± 16.69 50.91 ± 16.16 0.87 
Male 63(50.80 %) 16(50 %) 0.94 
Female 61(49.20 %) 16(50 %) 
Eye(Right) 66(53.23 %) 16(50 %) 0.75 
Eye(Left) 58(46.77 %) 16(50 %) 
Images,No. Fundus photography IR images – 
Glaucoma optic neuropathy 64(21 %) 64(21 %) – 
Diabetes optic neuropathy 55(18 %) 55(18 %) – 
Optic neuritis 37(19 %) 37(19 %) –  

Fig. 4. Feature selection by LASSO model. (A) LASSO coefficient profiles of the 104 variables(Fusion model); (B) The curve of the binomial de-
viation with respect to the parameter λ, where the vertical dotted line at the right shows the optimal value of λ (λ = 0.0596)(Fusion model). 
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3.3.2. Receiver operating characteristic (ROC) curves and AUC values 

3.3.2.1. Multimodal data vs. single-mode data. We utilized the GradientBoosting classification method to classify our data. In the 
traditional omics model, the macro-average AUCs of the fundus photographs, IR images, and multimodal features of our data were 

Table 2 
The accuracy of the three models for the train and test set.  

Model Type of data Task Accuracy 

GradientBoosting LightGBM 

Traditional omics model Multimodal label-train 0.97 0.87 
label-test 0.72 0.81 

Resnet101 model Multimodal label-train 0.98 0.87 
label-test 0.87 0.84 

Fusion model Multimodal label-train 0.99 0.89 
label-test 0.88 0.88  

Table 3 
The Precision, Sensitivity, and Specificity of each class in the Fusion model.  

Class Precision Sensitivity Specificity 

0(GON) 0.92 0.92 0.95 
1(DR) 0.85 1.00 1.00 
2(ON) 0.83 0.63 0.89  

Fig. 5. Receiver operating characteristic curves (ROC) and area under curve (AUC). Performance comparison of single mode and multimodal data in 
the same omics model. (A)(B) (C) Traditional omics model; (D)(E) (F) Resnet101 model; (A)(D) Fundus photography was used as a single mode data 
input; (B)(E) IR images were used as a single mode data input; (C)(F) Fundus photography and IR images were used as multimodal data input. The 
ROC curves in each figure represent the glaucomatous optic neuropathy (blue), diabetic optic neuropathy (orange), optic neuritis (green). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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0.94, 0.90, and 0.96, respectively. Comparatively, the AUCs of the same variables in the Resnet101 model were all 0.97. These data are 
shown in Fig. 5. 

3.3.2.2. Multiple omics model the traditional omics vs. Resnet101 vs. fusion model. We also utilized the GradientBoosting classification 
method in the fusion model. The AUCs for GON, DON, and ON in the fusion model were 0.99, 1.00, and 0.96 respectively. 
Comparatively, the scores for each of these diagnoses in the traditional omics model were 0.95, 0.97, and 0.94, respectively. The 
corresponding scores in the Resnet101 model were 1.00, 0.99, and 0.90, respectively. 

When the LightGBM classification was used as a classifier, the AUCs for GON, DON, and ON in the fusion model were 0.98, 0.99, 
and 0.94, respectively. In comparison, the AUCs for the same conditions in the traditional omics model were0.96, 0.95, and 0.94, 
respectively. The AUCs for the same conditions in the Resnet101 model were 1.00, 0.95, and 0.92, respectively. These data are 
depicted in Fig. 6. 

3.3.3. Confusion matrix 
We distributed the classification results of the test set into a 6 × 6 confusion matrix (Fig. 7). When GradientBoosting was used for 

predictive classification, the fusion model demonstrated better recognition performance than the traditional omics model. Specifically, 
the fusion model identified 28 correct images, whereas the traditional omics and Resnet101 models only identified 23 and 27 correct 
images, respectively. The total number of images in the test set was 32. Comparatively, when LightGBM was used as the classification 
method, the traditional omics, Restnet101, and fusion models identified 26, 26, and 28 correct images, respectively. 

3.4. Heat map 

As seen in the heat maps, the central region of each image was the primary ROI (Fig. 8). 

4. Discussion 

Our study demonstrated that multimodal data and a multi-omics DL system based on fundus photography and IR images could 
accurately diagnose DON, GON, and ON. These performed better than algorithms with a single-omics approach. 

AI algorithms for glaucomatous optic neuropathy have been studied extensively. The AUC of DL algorithms using color fundus 

Fig. 6. The AUCs of multimodal data in different omics models. (A)(D) Traditional omics model;(B)(E) Resnet101 model; (C)(F) Fusion model.  
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Fig. 7. The Confusion matrix of multimodal data in different omics models. “label = 0 ″ means “glaucomatous optic neuropathy "; “label = 1 ″ means 
“diabetic optic neuropathy "; "label = 2 ″ means “optic neuritis "; (A)(B) (C) When GradientBoosting was used as the prediction classification model 
in the test set, the number of correct predictions by traditional omics model、Resnet101 model and Fusion model were 23、27 and 28 respectively; 
(D)(E) (F) When LightGBM was used as the prediction classification model in the test set, the number of correct predictions by the three model were 
26、26 and 28 respectively. 

Fig. 8. (A)Fundus photography and its heat map;(B) IR image and its heat map; The blue area is the synaptic focus of ROI. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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photography reached 0.98 in a previous study [17], and the AUC of a DL algorithm based on spectral-domain optical coherence to-
mography (OCT) images of the optic disc reached 0.97 [18]. OCT-angiography also adds additional depth to the understanding optic 
neuropathy by providing in vivo data on the peripheral capillaries and macular retinal plexus of the eye, the AUC for diagnosing 
glaucomatous optic neuropathy was 0.94 [19]. Kihara et al. developed a multi-modal diagnostic system based on the fusion of IR optic 
disc images and visual field data [20]. Their study demonstrated that a multi-modal system was significantly superior to single-mode 
systems. Kihara’s DL system, which integrated OCT and visual field images, also showed excellent diagnostic performance, with an 
AUC of 0.90–0.95 [21]; [22]. The development of multimodal algorithms is a developing trend. 

AI systems have also demonstrated excellent performance in distinguishing between retinal diseases. A DL system based on colored 
fundus photographs can distinguish more than 10 types of retinal diseases, including diabetic retinopathy macular hole, and hyper-
tensive retinopathy [23]. Another DL system that is also based on colored fundus images can distinguish between diabetic retinopathy 
and GON [24]. Other DL systems can also be structured to differentiate between other types of optic neuropathy, such as optic neuritis, 
DON, and ischemic optic neuropathy [25]. However, it is important to note that these existing studies utilize single-mode data. The use 
of multimodal data in DL systems still requires future examination. 

Systems that use multimodal data seem superior because they can utilize early, intermediate, and late fusion to process multiple 
data features in different modes. This provides multi-dimensional perspectives for feature extraction, which can improve model 
performance [26]. 

More specifically, early fusion connects the data features in the different modes as input features directly. These are then entered 
into the first layer of the DL architecture for learning analysis [27]. The major limitation of early fusion is that the resulting neural 
networks cannot distinguish the features from different modes. Comparatively, intermediate fusion inputs the data of each mode into 
the neural network for learning, learns the correlation within the modes, and then fuses the features of the different modes in the 
middle layer of the neural network for further learning and to make an output prediction [28]. Late fusion trains and averages the data 
in each modality separately [29]. 

Kihara et al. and Huang et al. [29] utilized the late fusion method to analyze IR images of patients with glaucoma. Both authors 
fused two separate optic nerve OCT images into one output. The resulting neural network demonstrated good predictive performance. 
In a related study, Huang et al. utilized early fusion to analyze multiple magnetic resonance imaging sequences in an attempt to classify 
demyelinating diseases [30]. The same author also utilized early fusion to analyze fundus photos and visual field data [31]. The AUC 
for detecting GON in the latter study was 0.94, which was higher than the AUC for single-mode data-based models (fundus photos AUC, 
0.90; visual field AUC, 0.89). Our study also utilized early fusion, which can simultaneously learn cross-modal and intra-modal 
correlation at low levels of abstraction. While the Resnet101 model performed better than the single-mode traditional omics 
model, the difference was not significant, This may be related to the way data features were extracted by the Resnet101 model. Early 
fusion-based models are also incapable of learning the marginal features of different data [32]. Future research can be conducted to 
compare the performance of different fusion methods. 

Graphic feature extraction was the most important difference between the different omics models. Extraction of first-order, second- 
order and higher-order features in the traditional omics model relied on ROI segmentation. First-order features [7] mainly describe 
overall intensity and change, whereas second-order features [5] demonstrated the relationship between voxels.A CNN relies on neural 
networks to extract image information. As such, it can extract different features from a single image. This eliminates the need for image 
segmentation, which typically reduces feature accuracy [33]. At the same time, a local filter can slide over the input space in the CNN 
to preserve local image correlation of the image, as well as share the filter. This reduces the number of weights. Finally, the design of 
the neural network can be modified as needed, which provides flexibility. Our study also confirmed that deep learning models can 
diagnose different diseases with higher accuracy than a traditional omics model. 

Since each omics platform has specific limitations, an integrated approach based on multiple omics may yield more coherent 
features [34]. Our study compares 1) the predictive performance of the traditional omics and DL models in extracting multi-modal data 
features and 2) the predictive performance of the fusion model with two extraction features. The results of our study showed that the 
predictive performance of the fusion model is better than the two previous models. This is consistent with existing literature, which 
state that integrated models achieve better model performance than single-data models [35,36]. 

Our study has some limitations. Our study population was small and recruited from the same hospital. As such, our sample may not 
be representative of the general population. Future research should consider joint multi-center studies. More multi-modal data, such as 
optic nerve fiber layer thickness, and more data sources, such as OCT or visual field perimeters, may also increase the accuracy of 
future multi-modal fusion systems, improve model performance, and provide simpler and more effective screening tools for clinics. 

5. Conclusion 

The use of multimodal and multi-omics-based strategies can improve the accuracy of screening for DON, GON, and ON. 
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