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ABSTRACT

Transcription factors (TFs) and miRNAs are the
most important dynamic regulators in the control
of gene expression in multicellular organisms.
These regulatory elements play crucial roles in de-
velopment, cell cycling and cell signaling, and they
have also been associated with many diseases. The
Regulatory Network Analysis Tool (RENATO) web
server makes the exploration of regulatory
networks easy, enabling a better understanding of
functional modularity and network integrity under
specific perturbations. RENATO is suitable for the
analysis of the result of expression profiling experi-
ments. The program analyses lists of genes and
search for the regulators compatible with its activa-
tion or deactivation. Tests of single enrichment or
gene set enrichment allow the selection of the
subset of TFs or miRNAs significantly involved in
the regulation of the query genes. RENATO also
offers an interactive advanced graphical interface
that allows exploring the regulatory network
found.RENATO is available at: http://renato.bioinfo
.cipf.es/.

INTRODUCTION

Understanding the regulatory mechanisms that explain a
gene expression profiling experiment remains a difficult
task yet. Transcription factors (TFs) and miRNAs play
a crucial role in the dynamic regulation of the network
of gene expression (1). Alterations in these elements
have been extensively related with human malignancies,
including development diseases (2) and cancer (3,4).
Here, we present Regulatory Network Analysis Tool
(RENATO), a network-based analysis web tool, for the

interpretation and visualization of transcriptional regula-
tory information. RENATO contains information on
regulatory elements in genes, such as transcription factor
binding sites and miRNA complementarity targets.
RENATO has been designed to identify common regula-
tory elements in a list of genes. It maps such genes to the
regulatory network, extracts the corresponding regulatory
connections and evaluates each regulator for significant
over-representation (5) of targets in the list. Ranked
gene lists can also be analysed with RENATO by using
a strategy similar to the gene set enrichment analysis
(GSEA) (6). Previous knowledge of the relationship
between diseases and the deregulation of these elements
is also included. To make these resources easily accessible,
we have also implemented a set of RESTful application
programming interface web services, where regulatory in-
formation can be easily retrieved.

IMPLEMENTATION

RENATO inputs a list of gene identifiers, typically (but
not restricted to) differentially expressed genes in
transcriptomic profiling experiments (microarray or
RNA-seq). The output consists of a list of regulatory
elements of the genes in the list along with the correspond-
ing P value of enrichment. Results are represented
graphically through an interactive user-friendly web inter-
face that relates regulatory elements to their target genes.

Figure 1 shows a schematic representation of the
application. A RESTful web service queries the database
containing information on the regulatory elements con-
tained in the input file. Then a test is conducted that
returns the TFs or miRNAs corresponding to the
enriched regulatory elements. The web application
displays the results. The interface is based in modern
HTML5 technologies and allows the user to explore the
regulatory network found as well as executing several
operations, including different changes in the format
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(color, shape, size, labels, etc.), searching elements, filter-
ing genes and performing some simple exploratory
analyses that include adding new genes to the network,
including the network in the context of Reactome (7),
upload a file with gene attributes that can further be
used for filtering purposes and uploading gene expression
values that can be also used for filtering or color-labeling
the genes.

Depending on the data available, two types of tests are
possible. If the list of genes represents a set of differentially
expressed genes, a single enrichment analysis of regulatory
elements over-representation is carried out (5). A conven-
tional Fisher exact test is used to calculate the enrichment.
If the input data are list of genes ranked by a value that
accounts for differential expression (e.g. the statistic used)
then a variant of the GSEA (6) is carried out. This last
approach is much more sensitive than the conventional
enrichment analysis. As many TFs are simultaneously
checked for enrichment, multiple testing effect is corrected
by the popular false discovery rate method (8).

It is worth mentioning that the results are conceptually
different in the case of TF and miRNAs, given that the
former are positive regulators and the latter are negative
regulators. Thus, if we are analysing genes activated, then
the results on TF make reference to the TFs active,
whereas the results on miRNA would make reference to
miRNAs inactive.

The web server can maintain sessions and save data and
results obtained for new sessions.

Databases and motif finding

The information on transcription factor binding sites
(TFBSs) and miRNA target sites has been collected from
different databases. Information on TFBSs was taken
from Ensembl (Release 64, GRCh37) (9) through the

corresponding application programming interface. In the
case of miRNAs, we have used miRBase (release 18,
November 2011) (10), the microrna.org (Release August
2010), the TargetScan (11) predictions, as well as more
curated information from miRecords (release 3,
November 2010) (12) and miRTarBase (release 2.5,
October 15, 2011) (13). Information of diseases has been
taken from The human miRNA disease database (release
November 2011) (3) and Phenomir (14). At present, infor-
mation for human and mouse is available. In coming
versions, more species will be added.
MiRNA targets are predicted by searching for matches

with the miRNA seed regions (11). In the case of TF, the
use of a position-specific weight matrix (15) that accounts
for the DNA binding preferences of the TF, is used for
detection of TFBSs. These binding sites are mapped into
the promoter region of every gene, establishing the
connections between TFs and genes.

Other tools

Many single enrichment tools include enrichment analysis
of TFBSs, such as the FatiGO+ (16), DAVID (17) and
other (18). More recently, some tools arise specifically
focused on the analysis of regulatory motifs in the genes
of a list. Thus, tools like Pscan (19), TransFind (20),
oPOSSUM (21) or CARRIE (22) carry out different
variants of enrichment analysis and report lists of
over-represented TFBSs alone or in combination (23),
present in the set of genes analysed. Similar applications
have been published for miRNAs, like MMIA (24),
GeneSet2miRNA (25), miRvestigator (26), including the
analysis of ensembles of miRNAs, such as MiRror (27). A
more sophisticated tool, the mirConnX (28), combines
miRNA and TFs and also provides a graphical interface
based on Cytoscape web (29), which is a Flash application

Figure 1. Schematic representation of the internal organization of Regulatory Network Analysis Tool and the way in which queries are performed,
the RESTful Web Service communicates the user query with the database and then the response with the web interface. At the bottom are examples
of web service calls.
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that depends on the corresponding plug-in. RENATO, in
addition to single enrichment analysis, offers the GSEA,
which is known to be still more sensitive in finding enrich-
ments (6,18,30). An advanced graphical interface is also

provided, based on modern and efficient HTML5, with
much more options (e.g., information on the genes and
different layouts) than other interfaces and much more
optimized than a Flash application.

Figure 2. An example with Fanconi anemia. Significantly expressed genes in a comparison of Fanconi anemia patients with healthy controls have been
analysed by enrichment analysis. (A) Transcription factors with an adjusted P< 0.05 have been represented in the network (in red), along with the target
genes regulated by them. (B)miRNAswith an adjustedP< 0.05 have been represented in the network. As explained in the text, the transcription factors are
compatible with the genes activated, whereas the miRNAs should be downregulated to be compatible with the genes activated.
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RESULTS

An example with Fanconi anemia

We illustrate this with an example of Fanconi anemia
(FA), a disease in which signaling is relevant, FA is a
rare chromosome instability syndrome characterized by
aplastic anemia and cancer and leukemia susceptibility
(31). A recent study uses gene expression microarrays to
identify differences at the transcription level between bone
marrow cells from normal volunteers and from children
and adults with FA (32). Eleven normal volunteers and 21
patients were studied. Gene expression datasets for FA
were retrieved from the GEO database. Differential
expression analysis was carried out using the Babelomics
suite (33). RENATO has been used to study the set of
regulatory elements compatible with the observed gene
deregulation. Figure 2 shows the regulatory network
that justifies the observed increase in the gene activity
caused by the disease. Six TFs (E2F1, Gabp, Yy1, Nfya,
Egr1, Cmyc) account for activation observed in the
disease (Figure 2A). Some of these TFs have already
been linked to FA (34). Similarly, the miRNAs that
must be switched off to produce the observed gene expres-
sion levels are listed in Figure 2B, along with the regula-
tory miRNA network. Some experiments of inhibition of
DNA repair link FANCG gene to several miRNAs,
among which some of the detected in this analysis are
included (hsa-miR-30a-5p) (35).

DISCUSSION

RENATO is a convenient interactive web server for the
analysis gene expression profiling experiment that finds
the regulators (TF or miRNA) that significantly account
for the gene activity observed. The program also imple-
ments a highly efficient interactive interface, based on
HTML5, with many options, and able to offer much
information of the genes and regulators involved on the
experiment analysed.
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