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Abstract: Breast cancer is the second leading cause of death amongst women worldwide. As 

a result, many have turned their attention to new alternative approaches to treat this disease. 

Caffeic acid phenylethyl ester (CAPE), a well-known active compound from bee propolis, 

has been previously identified as a strong antioxidant, anti-inflammatory, antiviral and 

anticancer molecule. In fact, CAPE is well documented as inducing cell death by inhibiting 

NFκB and by inducing pro-apoptotic pathways (i.e., p53). With the objective of developing 

stronger anticancer compounds, we studied 18 recently described CAPE derivatives for their 

ability to induce apoptosis in breast cancer cell lines. Five of the said compounds, including 

CAPE, were selected and subsequently characterised for their anticancer mechanism of action. 

We validated that CAPE is a potent inducer of caspase-dependent apoptosis. Interestingly, 

some newly synthesized CAPE derivatives also showed greater cell death activity than  

the lead CAPE structure. Similarly to CAPE, analog compounds elicited p53 activation. 

Interestingly, one compound in particular, analog 10, induced apoptosis in a p53-mutated cell 

line. These results suggest that our new CAPE analog compounds may display the capacity 

to induce breast cancer apoptosis in a p53-dependent and/or independent manner. These 
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CAPE analogs could thus provide new therapeutic approaches for patients with varying 

genotypic signatures (such as p53 mutations) in a more specific and targeted fashion. 
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1. Introduction 

Breast cancer is still one of the deadliest cancers among women worldwide. Mechanistically, multiple 

genetic alterations foster the development and progression of cancer cells. For example, the activation of 

oncogenes and the alteration of tumor suppressor gene pathways are conducive to the development  

of neoplastic tissues. Essentially, cancer cells lose complete control over highly-regulated cell growth 

signals, which results in aberrant proliferation while evading programmed cell death or apoptosis [1]. 

A pivotal regulator of cell growth and survival is the NFκB transcription factor. The deregulation of 

NFκB is considered the cancer cell’s green light for proliferation and hyperactivity due to its anti-apoptotic 

effects [2,3]. Mechanistically, phosphorylation of the NFκB inhibitor (IκB) by IκB kinases (IKK) enables 

NFκB nuclear translocation and induction of pro-survival gene expression [4,5]. Another prominent 

cancer cell regulator working in concert with NFκB is the tumor suppressor gene p53. Studies have 

shown that the pro-apoptotic p53 gene is in fact inactivated or mutated in approximately 64% of all 

human cancers (reviewed in [6]). When irreparable genome damage occurs, p53 leads to the induction 

of the mitochondrial-mediated apoptotic pathway through the activation of pro-apoptotic genes such as 

Bax and p21 [7–9]. The importance of NFκB and p53 in cell homeostasis is reflected by the ongoing 

research interests and studies of NFκB and p53 as anticancer strategies [10–12]. 

The alarming incidence of cancer-related mortality has consistently pushed research toward the 

identification and development of new effective anticancer therapeutic strategies. A promising source 

for anticancer drug discovery is the use of bioactive compounds from natural products (reviewed  

in [13,14]). Phytochemicals such as polyphenols, flavonoids and phenolic acids have garnered wide 

interest by the scientific community due to their specific interactions with biological targets [15,16]. 

More specifically, caffeic acid phenylethyl ester (CAPE) (1, Figure 1), a prominent plant phenolic acid, 

has generated significant attention because of its ability to elicit cancer cell death mainly through the 

suppression of the cell’s survival pathway (i.e., NFκB) [17–19] or concomitant induction of apoptosis 

cascades (i.e., Bax, p53, etc.) [18,20–22]. Here we present the design of novel CAPE analogs and their 

capacity to modulated pivotal cell fate signaling cascades resulting in the apoptosis of breast cancer 

cell models. 

2. Results and Discussion 

2.1. Biological Evaluation of CAPE Analogs on Breast Cancer Cells 

To establish the biological significance of our novel CAPE derivatives on cancer cell viability, we 

tested growth inhibition following treatment of CAPE (1) derivatives on the MCF7 non-aggressive breast 

cancer cell line. The cells were treated with 10 µM of the compounds and monitored for cellular viability 

at 1, 3 and 5 days post-treatment (Figure 2A). As expected, CAPE (1) showed strong growth inhibition 
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within 48 h of treatment and suppressed up to 88% of growth when compared to the DMSO solvent 

control samples. Interestingly, many of the CAPE derivatives also showed a similar, if not more effective 

capacity to inhibit MCF7 growth when compared to the DMSO control cells. A growth inhibition 

benchmark of 88% set by the CAPE lead structure was also attained by esters 4, 7, 9, 10, 12, 13 and 17. 

Given that CAPE is well-documented as an efficient inducer of apoptosis, we explored whether the 

observed growth suppression mediated by our CAPE derivatives was a result of caspase-dependent 

apoptosis. We thus treated the MCF7 breast cancer cell line with 10 µM of our CAPE derivatives  

and monitored caspase 3/7 activity at 1, 3 and 5 days post-treatment (Figure 2B). As expected, CAPE 

revealed a good capacity to induce apoptosis through a progressive induction of caspase 3/7 activity 

over the period of 5 days of treatment. Interestingly, we observed that many CAPE derivatives also 

induced strong apoptotic events when compared to vehicle solvent-treated control cells. In the interest 

of characterizing new, effective CAPE-derived compounds as anticancer agents, we selected the top 

five compounds capable of inducing breast cancer apoptosis (i.e., 4, 10, 12, 13, and 17) for further 

biological elucidation. Accordingly, most of the latter compounds demonstrate greater apoptosis-inducing 

ability in comparison to CAPE, especially at 48 h post-treatment. 

 

Figure 1. Caffeic Acid Phenethyl Ester (CAPE) derivatives. 
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(B) 

Figure 2. Biological effects of CAPE derivatives on breast cancer cells. MCF7 breast cancer 

cells were treated with 10 µM of selected compounds and incubated in time (24, 72 and 120 h) 

and evaluated for (A) cell viability assay (Cell-Titer Blue, Promega) or (B) caspase-dependent 

apoptotic events (Apo-ONE, Promega). Control samples include non-treated (NT) and solvent 

(DMSO) treated cells in addition to cells treated with apoptosis-inducing agent Melphalan  

(5 µM) as a positive control (CTL+). Results and standard deviations are representative of 

biological and experimental triplicates where the data is presented as the means ± SEM. 

2.2. Modulation of Cell Fate Signaling by Selected CAPE Analogs in Breast Cancer Cells 

It has been well-established that CAPE is a potent inhibitor of NFκB, a pivotal regulator of cancer cell 

growth and survival [18,19,23,24]. We thus set out to evaluate the capacity of selected CAPE derivatives 

to suppress NFκB transactivation using an NFκB-responsive luciferase-based reporter gene transfected 

into the MCF7 breast cancer cell line. Interestingly, none of the CAPE analogs tested (4, 10, 12, 13 and 17) 

demonstrated any significant differences in their respective capacity to modulate NFκB-luciferase 

activity when compared to the CAPE lead compound (Figure 3A). The use of an IKK inhibitor (IKK-2 

Inhibitor IV/10 µM) as a positive control however, inhibited NFκB-luciferase activity up to 53%. 

We next wanted to explore the compounds’ ability to modulate other cancer cell pathways that could 

potentially explain their capacity to modulated breast cancer cell viability and apoptosis. Given that CAPE 

has previously been shown to activate the p53 pathway [18,22], we evaluated whether selected CAPE 

derivatives could induce p53 transactivation using a p53-responsive p21-luciferase reporter construct 

transfected into MCF7 cells. Interestingly, all selected CAPE analogs (4, 10, 12, 13 and 17) induced 

greater p53 transactivation in MCF7 cells when compared to CAPE treatment alone (Figure 3B). More 

notably, esters 4 and 12, with a propyl or phenylpropyl group, induced a ~1.75- and ~1.5-fold increase, 

respectively, over CAPE treatments. 
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(A) 

 
(B) 

Figure 3. Modulation of cell fate regulators by selected CAPE analogs in breast cancer cells. 

MCF7 breast cancer cells were treated with 10 µM of selected compounds and evaluated for 

(A) NFκB and (B) p53 transactivation potential using NFκB-luciferase and p53-responsive 

p21-luciferase reporter gene constructs respectively. Relative light units (RLU) from 

normalized luciferase activity were then plotted in fold-change activity over the parent core 

CAPE compound. Control samples include the treatment with an IKK inhibitor (IKK-2 

Inhibitor IV/10 µM) used as a positive control. Data is represented as means ± SEM of 

three experimental replicates. 
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2.3. Evaluation of p53-Mediated Apoptosis by CAPE Analogs in Breast Cancer Cells 

Given that the selected CAPE analogs (4, 10, 12, 13 and 17) elicit greater p53 transactivation than 

the CAPE parental compound, we set out to determine whether the latter gain of p53 activity accounts 

for greater apoptosis potential in breast cancer cells. We thus made use of the MB231 aggressive breast 

cancer cell line, which lacks a functional p53 due to mutation. MB231 cells were treated with 10 µM 

of selected CAPE analogs and monitored over time (days 1, 3 and 5) for caspase-dependent apoptosis 

(Figure 4). Interestingly, all CAPE analogs, with the exception of CAPE itself and 10, lost their ability 

to induce apoptosis in MB231 cells. These results suggest that CAPE and 10 compounds may mediate 

apoptosis predominantly through a p53-independent pathway. 

 

Figure 4. p53-Dependent apoptosis by CAPE derivatives in breast cancer cells. MB231 

breast cancer cells were treated with 10 µM of selected compounds and incubated over time 

(24, 72 or 120 h) and evaluated for caspase-dependent apoptosis (Apo-ONE, Promega). 

Control samples include non-treated (NT) and solvent (DMSO) treated cells in addition to 

cells treated with apoptosis-inducing agent Melphalan (5 µM) as a positive control (CTL+). 

Results and standard deviations are representative of biological and experimental triplicates 

where the data is presented as the means ± SEM. 

2.4. Antioxidative Potential of CAPE Analogs in Breast Cancer Cells 

It has been shown that apoptosis can also be induced by the alteration of the cell’s redox  

potential [25,26]. We therefore explored the capacity of the selected CAPE derivatives to elicit antioxidant 

activity as free radical scavengers. As depicted in Table 1, we observed that compounds 17 and CAPE 

displayed the highest antioxidant activity with IC50 values of 18.5 and 16.5 µM, respectively. These 

observations suggest that the redox modulation of CAPE, and more specifically 10, may account for 

their potency to induce apoptosis through an extrinsic pathway. 
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Table 1. Antioxidant activity of selected CAPE derivatives. 

Compounds IC50 ± SEM (µM)

CAPE 1 16.5 ± 4.0 
4 14.2 ± 1.7 

10 12.5 ± 2.6 
12 11.9 ± 0.6 
13 12.8 ± 1.1 
17 18.5 ± 2.1 

1 Antioxidant activity as free radical scavengers of CAPE and its derivatives expressed as IC50. Values are 

means of 2 independent experiments, each performed in triplicate. 

2.5. Discussion 

As with many naturally derived compounds, CAPE has been extensively studied to elucidate its health 

benefits. Recently, this compound has seen a surge in interest as a potent anticancer drug [17,18,27].  

In fact, CAPE has already been shown to inhibit breast cancer growth, while preserving the integrity of 

non-tumorigenic mammary epithelia cells [17]. However, in the interest of developing more efficient 

and targeted cancer treatments, it is crucial to explore new chemically derived compounds which could 

ultimately produce analogs with higher anti-cancer activity. More specifically, pharmacological properties 

with apoptosis-inducing capabilities are highly sought after, as they provide an effective, non-inflammatory 

approach to eliminating cancer cells to regain tissue homeostasis [28]. 

In this study, we explore the anticancer properties of 19 compounds, including the naturally derived 

CAPE as well as 18 novel synthetic analogs—17 esters (2–18) and one amide (19). We observe that CAPE 

derivatives effectively suppress breast cancer cell viability, with some of the esters showing greater 

inhibition of MCF7 breast cancer cell growth than CAPE itself and its amide analog (19). Given that 

apoptosis malfunction is a key hallmark of cancer development and tumor-cell survival, we evaluated the 

capacity of our panel of CAPE analogs for caspase 3/7 apoptosis activity in MCF-7 cells and observed 

that many derivatives (i.e., 1, 4, 10, 12, 13 and 17) induce strong caspase-dependent apoptosis events 

either equal to, or greater than, the lead reference compound. These findings are in agreement with 

previous reports demonstrating the potency of CAPE as an inducer of apoptosis [18,29–32]. Although 

we do not have a general trend, the replacement of the phenethyl moiety of CAPE with a propyl (4) or 

a phenyl (10) seems to be favorable for triggering apoptosis in MCF7 cells compared to CAPE lead 

structure. Moreover, the presence of a fluorine (13) or the replacement of the phenyl of CAPE by a 

biphenyl (17) or by a benzyl (12) appear to be favorable for apoptosis. 

In our attempt to elucidate the mechanisms of action for CAPE analog-mediated apoptosis in breast 

cancer cells, we selected the top five apoptosis-inducing compounds for further biological characterisation. 

First, we wanted to assess the capacity of novel CAPE analogs to modulate cell survival pathways 

mediated by NFκB which could counterbalance the outcome of breast cancer cell fate. NFκB not only 

promotes neoplastic transformation but also activates anti-apoptotic proteins and signaling (reviewed 

in [2,5]). However, we did not see any significant changes in their respective capacity to modulate NFκB 

activation when compared to CAPE alone. These observations strongly suggest that: (1) the core 

structure of the lead CAPE compound is likely responsible for CAPE’s reported ability to suppress 
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NFκB activity [18,33]; and (2) structure modifications did not account for changes of the NFκB 

survival pathway. 

We next explored the capacity of the compounds to activate the p53 pathway, which has been 

previously demonstrated by CAPE [18,34]. P53-mediated signaling commonly induces caspase-dependent 

apoptosis, proving to be a potent target during cancer-associated pathway deregulation [6]. 

Mechanistically, cancer cells profit from these molecular cascades to promote tumor growth and 

aggressivity. Interestingly, all selected CAPE analogs tested demonstrated greater potential to induce 

p53 transactivation when compared to CAPE. We observed that the replacement of CAPE's phenethyl 

moiety by either a propyl (4) or a phenyl (10) induces p53 tumor suppressor activity which would likely 

lead to cancer cell apoptosis sensitivity. In addition, the presence of a fluorine (13) or, the replacement of 

CAPE’s phenyl by either a biphenyl (17) or a benzyl (12) also results in p53 induction which would be 

favorable for triggering apoptosis. We next wanted to define whether the gain of p53 activity accounts 

for the compounds’ apoptotic inducing ability using the MB231 p53-mutated breast cancer cell line [35]. 

Surprisingly, all tested compounds lost their ability to induce apoptosis with the exception of CAPE 

and 10, thus suggesting that 4, 12, 13 and 17 may induce apoptosis in a p53 dependent manner. On  

the other hand, CAPE and 10 may alternatively make use of the extrinsic apoptosis pathway. These 

observations correlate with studies conducted by Nomura et al. (2001) which demonstrate the ability of 

CAPE to induce carcinoma cell apoptosis in both a p53-dependent and independent manner [22]. This 

being said, the structural modifications or similarities between CAPE, 10 and the other derivatives may 

define apoptotic signaling through either a p53-dependent or independent cascade. Compared to CAPE, 

4, 10, 13 and 17, as a phenyl ester, 10 is the least flexible of the series. These findings are of particular 

relevance when considering that inactivation or mutation of the p53 tumor suppressor gene is the most 

common alteration found in human cancers (up to 64%) (reviewed in [6]). Lead compound modifications 

such as 10 in this case could represent an effective anti-tumor strategy in cancers bearing p53 mutations. 

Recently, research in p53-independent apoptosis has garnered interest to ultimately provide new 

therapeutic opportunities for many cancers [36]. p53-independent apoptosis, or the extrinsic apoptotic 

pathway, is usually induced by the binding of ligands to their cognate death receptors from the tumor 

necrosis factor receptor (TNFR) gene superfamily such as Fas/Fas ligand, TNF/TNF receptor [37–39], or 

less traditional death ligand/receptor interactions such as Apo2L/DR4, Apo2L/DR5 or Apo3L/DR3 [40–43]. 

These interactions eventually lead to the activation of effector caspases (caspases-3, -6 and -7) resulting 

in DNA fragmentation. NFκB activation also regulates cell death via the regulation of TNFR extrinsic 

factors which result in p53-independent cell apoptosis [44,45]. Accordingly, CAPE has previously 

been shown to induce extrinsic apoptosis through Apo2L/DR4 and DR5 receptors as well as Fas/Fas 

ligand interactions [18,46,47]. 

Another possibility is that 10 could mediate apoptosis through oxidative stress and the production of 

reactive oxygen species (ROS). ROS is a collective term that broadly describes O2-derived free radicals 

that can induce extrinsic apoptosis through the activation of JNK or attack DNA directly (reviewed  

in [25,26]). We and others have demonstrated the potential of CAPE structures to modulate the cell’s 

redox state [48–50]. We also observe that 10 is among the weakest antioxidants in our panel of analogs, 

suggesting a pro-oxidative potential that sensitizes cancer cells to extrinsic apoptotic events. A study  

by Choi and colleagues (2007) brings support to this latter hypothesis by demonstrating that CAPE 

sensitizes astrocytoma cells to Fas-induced apoptosis in a redox-dependent manner [51]. Alternatively, 
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extrinsic apoptotic mechanisms could be at play to elucidate the potency of CAPE and 10 treatments  

in the induction of breast cancer cell apoptosis. The paucity of information in regards to the specific 

mechanism of action associated to CAPE analogs such as 10 in p53-independent apoptosis warrants 

further investigation as a potential anticancer drug. 

3. Experimental Section 

3.1. CAPE Analog Synthesis 

As recently reported [52], alkyl 2–9 and aryl esters 10–18 were synthesized by esterification  

with selected alcohol and caffeic acid or acetylated caffeic acid. Amide 19 was synthesized from  

2-phenylethanamine and acetylated caffeic acid. De-O-acetylation of the precursors of 10–18 and 19 

resulted in the desired caffeic acid derivatives (Figure 1). The substituents were selected for their electronic 

and steric properties. To explore the effects of flexibility, addition of an insaturation (8) as well as the 

modification of the alkyl linker length (10, 11, 12) were investigated. The effects of additional phenyl 

moiety (17, 18) as well as electron withdrawing and donating p-substituents (16, 17) were investigated. 

3.2. Cell Culture and Treatments 

MCF7 and MDA-MB-231 (MB231) breast cancer cell lines were obtained from American Type 

Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine and 

0.01 mg/mL of recombinant human insulin (MCF7). Cells were maintained in exponential growth and 

at 37 °C with 5% CO2. DMEM was obtained from HyClone (Thermo Scientific, Rockford, IL, USA), 

FBS from PAA Laboratories (Etobicoke, ON, Canada) and other reagents from Sigma-Aldrich (St. Louis, 

MO, USA). 

Treatments consisted of CAPE derivatives reconstituted in DMSO at the indicated concentrations 

and incubated for the specified time points with cells seeded in 96-well microplates. In the specified 

experiments, cells were submitted to chemical inducers of caspase-dependent apoptosis (Melphalan/5 µM) 

or inhibitors of NFκB (IKK-2 Inhibitor IV/10 κM) used as controls. 

3.3. Cell Viability and Apoptosis Assays 

5 × 103 cells were seeded in 96-well plates and analyzed at the indicated time points for cellular viability 

and apoptosis using multiplex assays CellTiter Blue® and Apo-ONE® kits respectively (Promega, Madison, 

WI, USA) according to the manufacturer’s instructions. In brief, 20 µL of CellTiter Blue® substrate was 

added to 100 µL of media containing the cells and incubated at 37 °C for 1 h. Then, the microplates were 

subjected to analysis on a fluorescence microplate reader (FLUOstar Optima, BMG Lab technologies, 

544Ex/590Em). Apoptosis was then measured on the same microplate by removing 80 µL of the total 

media and adding 40 µL of the Apo-ONE® substrate. Next, the microplate was incubated at room 

temperature for 1h on a plate shaker and analyzed by fluorescence reading (485Ex/520Em). 
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3.4. Cell Transfections and Luciferase-Based Reporter Assay 

Transfections were carried out using the XtremGENE reagent (Roche, Branford, CT, USA) according 

to the manufacturer’s guidelines. Briefly, cells were seeded in six-well plates 24 h pre-transfection at a 

density of 3 × 105 cells/well. Cells were then incubated with a DNA-reagent complex (ratio of 2 μg of 

DNA/5 µL reagent) for 24 h in OPTI-MEM in reduced serum without antibiotics. Luciferase-based 

reporter gene assays were conducted using the Dual-Glo luciferase system (Promega) as described 

previously [53]. Briefly, cells were transfected with 2 µg of either a NFκB-luciferase construct [54]; or,  

a p53-responsive p21 promoter luciferase gene construct [55], lysed and analyzed for luciferase activity 

using a luminometer (BMG Fluostar, Fisher Scientific, Ottawa, ON, Canada). Relative reporter activity 

was calculated using experimental triplicates. 

3.5. Radical Scavenging Activity 

To determine the antioxidant activity of CAPE analogs, we measured their ability to reduce free 

radicals. The radical scavenging activity of CAPE derivatives was measured using a 2,2-diphenyl-1-

picrylhydrazyl-(DPPH)-based radical generating system as previously described [56]. This assay measures 

the capacity of compounds to reduce free radicals through an electron transfer (ET) mechanism [57]. 

Controls within an optical density range of 0.350–0.360 at 520 nm were considered acceptable to avoid 

variations in the calculation of IC50 values. A solution of 60 mM DPPH (1 mL in ethanol) was mixed 

with 1 mL (in ethanol) of increasing concentrations of each CAPE derivative or with ethanol alone. Each 

mixture was then shaken vigorously and kept in the dark for 30 min at room temperature, after which 

the absorbance of DPPH at 520 nm was measured. 

4. Conclusions 

Altogether, our findings further validate the efficacy of CAPE as a potent anticancer agent as well 

as putting forth new CAPE-derivative compounds that show promising anticancer activity. Amongst 

these esters, we present their respective apoptotic inducing activities in both p53 competent and p53 

mutant breast cancer cell lines. We strongly believe that CAPE, as well as possible derivatives including 

those shown here, warrant further investigation to create the possibility of adapting such analogs into 

promising therapeutic anticancer regimes. 
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