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Glucose Uptake in the Human Pathogen Schistosoma mansoni 
Is Regulated Through Akt/Protein Kinase B Signaling
Maxine McKenzie, Ruth S. Kirk, and Anthony J. Walker

Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom

Background. In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical sur-
face tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. 
However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood.

Methods. In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning 
microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni.

Results. We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schis-
tosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading 
larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite 
was also attenuated in both scenarios. 

Conclusions. These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake 
in schistosomes, which may open up novel avenues for antischistosome drug development.
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Schistosomes have a complex life cycle involving freshwater snail 
intermediate and vertebrate definitive hosts, with 3 principal spe-
cies infecting humans: Schistosoma mansoni, Schistosoma japon-
icum, and Schistosoma haematobium. Cercariae released from 
snails swim, penetrate skin, and transform rapidly into structurally 
and physiologically distinct schistosomules (“somules”) uniquely 
adapted to survive, develop, and navigate in their new environ-
ment [1]. This transformation is underpinned by (1) a substantial 
biochemical change in the parasite [2] and (2) manufacture of a 
unique host-interactive double-bilayer tegument that displays 
dynamic turnover, remains into adulthood, and is crucial to par-
asite survival and host-immune evasion [3, 4]. Female worms, 
which mature through pairing with an opposite-sex worm after 
an extraordinary voyage through the circulatory system, produce 
hundreds of eggs daily [5]. Although eggs are excreted in feces or 
urine for parasite transmission, many become lodged in tissues and 
elicit inflammatory granulomatous reactions that result in human 
schistosomiasis; a disease of enormous global significance [6].

Protein kinases orchestrate cellular signal transduction by 
phosphorylating substrate proteins, and, in humans, Akt (aka 
protein kinase B [PKB]) is a core node in signaling of growth 
factors, cytokines, integrins, and other mediators [7]. Thus, 
Akt regulates diverse processes including cell growth and pro-
liferation, survival, metabolism, and apoptosis [8]. Activation 
of Akt is achieved through post-translational modification that 
includes phosphorylation of Thr308 and Ser473 (in human Akt1) 
[9]. Principally, phosphoinositide-dependent protein kinase 
1 (PDK1) phosphorylates Thr308 within the kinase domain 
[10], whereas mammalian target of rapamycin complex 2 
(mTORC2) phosphorylates Ser473 in the regulatory domain [11]. 
Phosphorylation of Tyr315 by the tyrosine kinase Src is also funda-
mental to activation [12]. Homologous phosphorylation-depen-
dent activation mechanisms exist for Akt of invertebrates such 
as Drosophila melanogaster and Caenorhabditis elegans [13–15].

In this study, we have characterized Akt signaling in S mansoni 
definitive host-resident life-stages, and we demonstrate that Akt is 
crucial to expression of the facilitated glucose transporter SGTP4 at 
the parasite surface and that Akt blockade attenuates glucose uptake 
by somules and adult worms. Given that mature S mansoni con-
sume their dry weight equivalent of host glucose every 5 hours [16] 
for survival and reproduction, our findings provide vital mechanis-
tic insights into this process and highlight the potential for targeting 
tegumental glucose transporter signaling for parasite elimination.

MATERIALS AND METHODS

Parasites

Biomphalaria glabrata infected with S mansoni (strain 
NMRI) were provided by the Biomedical Research Institute 
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(Rockville, MD) and London School of Hygiene and Tropical 
Medicine. Patent snails were shed, and cercariae were collected 
and transformed mechanically into somules [17]. Somules, 
loaded into 48-well culture plates ([Nunc] ~1000 somules/
mL Basal  Medium  Eagle (BME)/well containing antibiotics/
antimycotics [Sigma]), were incubated (5% CO2/37°C) 18–24 
hours before experimentation. Adult worms (BIOGLAB; Prof. 
Doenhoff, University of Nottingham, UK) were equilibrated 
in Roswell Park Memorial Institute (RPMI) medium contain-
ing antibiotics and antimycotics for 2 hours (5% CO2/37°C) 
before use. Laboratory animal use was regulated by the UK 
Animals (Scientific Procedures) Act 1986 and complied with 
all requirements. The University of Nottingham Ethical Review 
Committee approved mouse experiments done under Home 
Office licence 40/3595.

Bioinformatics

The Akt protein sequence from the S mansoni genome (http://
parasite.wormbase.org; www.genedb.org), or other records 
[18], was assessed for similarity with other organisms using 
pBLAST (www.uniprot.org/blast), and alignments were gen-
erated using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/
clustalo/). Binding sites of the anti-phospho antibodies were 
derived from PhosphoSitePlus (http://www.phosphosite.org/
homeAction.action).

Detection of Schistosoma mansoni Akt Phosphorylation by Western 

Blotting

Adult worms were homogenized on ice in radioimmunopre-
cipitation assay (RIPA) buffer (~20  μL/worm; Cell Signalling 
Technology [CST]) containing Halt protease/phosphatase 
inhibitors (Thermo Scientific) using a motorized microfuge tube 
pestle (Kimble-Chase). An LDS sample buffer (5×) (Invitrogen) 
was then added. Somules (~1000), pelleted by ~30-second 
pulse centrifugation, were lysed in hot sample buffer. Lysates 
were then heated (95°C/5 minutes), sonicated (~30 seconds), 
and proteins (~20 μg) electrophoresed using Bolt Bis-Tris Plus 
gels (MES/SDS buffer) (Life Technologies) before transfer to 
nitrocellulose. Blots were blocked in 1% bovine serum albumin 
(BSA) for 1 hour and were then incubated overnight at 4°C in 
anti-phospho-Akt (Thr308)/(Tyr315)/(Ser473), or anti-Akt anti-
bodies (CST no. 2965, sc-293095 [Santa Cruz Biotechnology] 
and CST no.  9271, ab79360 [Abcam], respectively; 1:1000), 
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies (CST; 1:3000; 2 hours), and visualized using West Pico 
(Thermo Scientific)/ECL Prime (GE Healthcare) substrate on a 
GeneGnome (Syngene) imager. To reprobe, blots were stripped 
in Restore Western Blot Stripping Buffer (Thermo Scientific). 
Actin was detected with HRP-conjugated anti-actin antibodies 
(Santa Cruz Biotechnology; 1:3000; 3 hours). Band intensities 
were quantified with GeneTools (Syngene), and phosphor-
ylation and expression levels were normalized to actin. To 

dephosphorylate Akt, blots were treated with lambda phospha-
tase (400 U/mL in 1% BSA/2 mM MgCl2; 4 hours).

Reciprocal Immunoprecipitations

The Crosslink Immunoprecipitation (IP) Kit (Pierce) was used 
to immobilize antibodies, ensuring that immunoglobulin (Ig)
Gs did not interfere with Western analysis. Somules (~10 000) 
were lysed/homogenized on ice in IP lysis buffer (500 μL) con-
taining protease and phosphatase inhibitors, and lysates were 
centrifuged before preclearing with control agarose resin. Anti-
phospho-Akt (Thr308) XP (CST no. 13038), anti-phospho-Akt 
(Tyr315), or anti-Akt antibodies (1:50) were immobilized to 
Protein A/G Plus agarose and agitated with samples overnight 
(4°C). After washing and elution steps, samples were processed 
for Western blotting.

Immunoprecipitation/Kinase Activity Assay

Somules/adult worms (~20 000/~20 per IP) were lysed/homog-
enized on ice in cell lysis buffer (500  μL; CST) containing 
protease/phosphatase inhibitors and lysates centrifuged. An 
(“input”) aliquot was removed, anti-phospho-Akt (Thr308) XP 
antibodies (1:50) were added to samples (equal protein), and 
mixtures were agitated overnight (4°C). In parallel experiments, 
lysates were fractioned using Vivaspin 500 (GE Healthcare) 
50 000 molecular weight cutoff (MWCO) ultrafiltration devices 
before adding antibody. Protein A  agarose (10  μL; CST) was 
added, and samples were agitated (60 minutes; 4°C) before cen-
trifugation with 2 washes in cell lysis buffer, then 2 in kinase 
buffer (CST). Immunocomplexes were resuspended in 50  μL 
kinase buffer/1 μL 10 mM adenosine triphosphate (ATP) with 
1  μg of glycogen synthase kinase-3 (GSK-3) fusion protein 
(CST; 27 kDa) as substrate; 100 μL kinase buffer/2 μL ATP/2 μg 
substrate were added to input aliquots. Samples were incubated 
(30°C/2 hours) on a thermomixer (Eppendorf) at 700 rpm and 
processed for Western blotting with anti-phospho-GSK3α/β 
(Ser9/21) antibodies (CST no.  9327; 1:1000; overnight)/mouse 
anti-rabbit-IgG (conformation-specific) antibodies (CST 
no. 3678; 1:500; 3 hours).

Ribonucleic Acid Interference

Adult worms (typically ~10 pairs/10 males/females) were 
treated with pooled 27-mer synthetic small interfering ribo-
nucleic acid ([siRNA] Integrated DNA Technologies [IDT]) 
specific for S mansoni Akt (GenBank accession number 
CCD60524.1), designed using IDT’s custom RNAi de-
sign tool. Target sequences were as follows: SmAkt siRNA1, 
5’-ATTGTTGGATAAAGATGGTCATATA-3’ spanning base 
pairs (bp) 1119–1143 of the SmAkt coding region RNA; and 
SmAkt siRNA2, 5’-AAGTGATCATGAAGTCTTATTTGAG-3’ 
mapping to bp 1332–1356. The negative control siRNA 
(5’-CTTCCTCTCTTTCTCTCCCTTGTGA-3’), “DS 
Scrambled Neg” (IDT), does not match S mansoni sequence. 
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Worms were electroporated (square-wave 20  ms pulse/125 
V) in 4-mm electroporation cuvettes with 2.5  μg/50  μL each 
siRNA pooled in OptiMEM, maintained (5% CO2/37°C) in 
OptiMEM/5% fetal bovine serum with antibiotics and anti-
mycotics for 5 days, then processed for Western blotting with 
anti-Akt, anti-phospho-Akt (Thr308) antibodies or anti-SGTP4 
antibodies (1:1000).

Inhibitors, Host Molecules, and Schistosoma mansoni Akt 

Phosphorylation

Somules (~1000/treatment) in BME were exposed to the fol-
lowing: insulin (Tocris) or l-arginine (Sigma) (each at 1 μM); 
12  μM herbimycin A/dimethyl sulfoxide vehicle (0.1%, con-
trol); or 10-(4′-(N-diethylamino)butyl)-2-chlorophenoxazine 
(Akt inhibitor X; 0–50 μM; water soluble) for 1 h, before insulin 
(1 μM, 10 minutes) exposure. Somules were chilled rapidly then 
processed for Western blotting.

To isolate teguments [19], adult worms (5 pairs/500 μL RPMI) 
were exposed (or not) to insulin (1 μM, 10 minutes), transferred 
to tubes containing 100 μL ice-cold phosphate-buffered saline 
(PBS), and immersed in liquid nitrogen for 15 minutes. Worms 
were thawed, placed on ice for 5 minutes, and protease and 
phosphatase inhibitor cocktail was added and pulse vortexed 20 
times, 1 second each. Collected supernatants were centrifuged 
(16 000 ×g for 30 minutes at 4°C), pelleted tegument fragments 
were solubilized in RIPA buffer (40 μL), protein concentrations 
were estimated (Bradford assay; BSA standard), and samples 
were processed for Western blotting.

Immunohistochemistry

Immunohistochemistry was performed using our published 
approaches [20–22] but with 4% formaldehyde (~4 hours) fix-
ation and 0.3% Triton X-100/PBS (1 hour) permeabilization. 
Anti-phospho-Akt (Thr308)/anti-Akt antibodies (1:100) were 
incubated for 3 days, and AlexaFluor 488 antibodies (1:500 in 
PBS)/2 μg/mL rhodamine phalloidin were incubated for 2 days 
(4°C). Parasites were visualized on a Leica TCS SP2 AOBS con-
focal laser-scanning microscope.

SGTP4 Protein Dynamics/Glucose Uptake and Effect of Akt Blockade

Cercariae (~1000/treatment) were incubated in 10  μM Akt 
inhibitor X (or not, control) for 1 hour at ambient temperature, 
vortexed to release tails, and chilled on ice (5 minutes) before 
centrifuging. Parasites were resuspended in 1  mL warmed 
RPMI containing Akt inhibitor X (or not), transferred to 
48-well plates, and incubated (5% CO2/37°C) for increasing 
durations before processing for Western blotting with anti-
phospho-Akt (Thr308) or anti-SGTP4 antibodies (1:1000). Anti-
SGTP4 antibodies are specific for SGTP4 and do not cross-react 
with SGTP1 [23, 24]. Somules were also processed for immuno-
histochemistry with anti-SGTP4 antibodies (1:50; 3 days); pho-
tomultiplier tube voltages were identical for each experiment, 
and Leica software was used to quantify tegumental SGTP4 

staining. Adults (3 worms/treatment) were also exposed to Akt 
inhibitor X (20 hours; 5% CO2/37°C).

Glucose uptake was determined by Glucose Uptake-Glo 
(Promega) bioluminescence assay following the manufacturer’s 
recommendations. Transforming somules (~1000/treatment) 
or adult males and females (1 or 3 worms, respectively/treat-
ment) were rinsed in warmed PBS and placed in 50  μL PBS 
in white-bottomed 96-well plates (Falcon). 2-Deoxyglucose 
(1 mM) was added for 20-minute uptake. After stopping and 
neutralization, 2-deoxyglucose-6-phosphate detection reagent 
was added, and luminescence was recorded at 30 minutes using 
a FluorStar Optima reader (BMG Labtech).

Statistical Analysis

Statistical data comparison was done by one-way analysis of var-
iance and Fisher’s pairwise multiple comparison test (Minitab, 
version 16).

RESULTS

Akt in Schistosoma mansoni 

A single Akt is predicted in S mansoni (WormBase ParaSite: 
Smp_073930.1; GenBank assesion number CCD60524.1), and 
molecular cloning revealed a sequence encoding a 586-amino 
acid ([aa] 67.8 KDa) protein with typical Akt features [18]. 
Alignment with Akt from other organisms revealed that resi-
dues Thr308/Tyr315 (human), targets of PDK1 [10] and Src [12], 
respectively, are conserved in S mansoni Akt (Thr401/Tyr408) 
(Figure  1A). Phosphorylation site conservation is common 
between organisms, and Thr308/Tyr315 phosphorylation is fun-
damental to Akt catalytic competency and activation [9, 10, 12]. 
Therefore, we selected anti-phospho-Akt (Thr308) and (Tyr315) 
antibodies that recognize Akt only when phosphorylated 
(activated) (Figure 1A) and screened them against S mansoni 
somule and adult worm protein. A single band (~52 kDa) was 
detected (Figure 1B; Supplementary Figure 1); a weak second 
(~70 kDa) band was occasionally detected but only in somules. 
Lambda phosphatase treatment suppressed immunoreactivity 
(Figure 1B), demonstrating that the antibodies react only with 
the phosphorylated protein. “Total” anti-Akt antibodies target-
ing a similar region to anti-phospho-Akt (Tyr315) antibodies 
(surrounding the PEYLA motif), which recognize Akt irrespec-
tive of phosphorylation state, also detected a protein of similar 
molecular weight (Figure 1B). Finally, reciprocal IPs confirmed 
that all antibodies detected the same target (Supplementary 
Figure 2). Anti-phospho-Akt (Ser473) antibodies failed to detect 
S mansoni Akt; this is unsurprising because the sequence 
surrounding this site is less conserved than for Thr308/Tyr315 
(Supplementary Figure 3).

The RNA interference was next performed to demonstrate that 
the identified Akt was encoded by the predicted S mansoni Akt 
gene. Total Akt protein expression was reduced by ~83% in worms 
exposed to siRNA targeting Smp_073930.1 (P ≤ .001; Figure 1C), 
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Figure 1. Akt in Schistosoma mansoni. (A) Comparative alignment of amino acid sequences spanning the anti-phospho-Akt (Thr308 and Tyr315) antibody recognition sites 
for the predicted S mansoni (Sm) Akt and relevant Akt sequences from human (Hu), Drosophila melanogaster (Dr), and Caenorhabditis elegans (Ce). These antibodies bind 
Thr308 and Tyr315 (human numbering) only when phosphorylated and also typically recognize 5–6 residues either side of the phosphorylated site (green and orange boxes, 
respectively). Three dots signify the DFG motif of the ATP binding site. (B) Western blots of somule protein extracts (~1000 somules) revealing immunoreactive bands 
detected with anti-phospho-Akt (Thr308), -Akt (Tyr315), or anti-Akt (Akt) antibodies (Ab). Lambda phosphatase was used to confirm that the anti-phospho Ab reacted only with 
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although the reduction in Akt phosphorylation was less marked 
(P ≤ .05). This finding seems due to hyperactivation of residual 
Akt in the face of reduced Akt expression through RNAi; nor-
malizing phosphorylated Akt against total Akt signal revealed an 
approximate 4-fold hyperphosphorylation of the kinase.

Next, to demonstrate that the detected Akt possessed Akt activ-
ity, an IP/Akt kinase assay was performed. Glycogen synthase 
kinase-3, also in S mansoni (Smp_008260), is a ubiquitous Akt 
target [7]. Somule or adult worm protein, isolated with anti-phos-
pho-Akt (Thr308) antibodies, phosphorylated GSK-3 substrate 
(Figure 1D), demonstrating Akt activity. Somule lysates subjected 
to molecular separation (Vivaspin 500; MWCO 50 000) before IP 
also phosphorylated GSK-3 (Supplementary Figure 4), suggesting 
that the detected native Akt may not be as large as 68 kDa.

Although the apparent (sodium dodecyl sulfate polyacryla-
mide gel electrophoresis [SDS-PAGE]) molecular weight of the 
identified S mansoni Akt differs slightly from that predicted, 
the biochemical/siRNA findings show that the immunoreactive 
protein is a catalytically active Akt derived from the S mansoni 
Akt gene. Erroneous migration of the S mansoni Akt in SDS-
PAGE may be responsible for the size discrepancy. Otherwise, 
several mechanisms, including use of alternative promoters, 
alternative splicing, and/or use of alternative initiation codons 
may generate a smaller Akt. For example, D melanogaster pos-
sesses 1 Akt gene but uses alternative initiator codons to gen-
erate 2 forms, with one lacking the divergent and presumed 
nonfunctional 83-aa N-terminal extension sequence [25]. The 
similar (~100 aa) N-terminal extension, predicted in S mansoni 
Akt, may thus be absent in the identified Akt.

Human Insulin and l-Arginine Activate Schistosoma mansoni Akt

Insulin receptors (IRs) exist in the S mansoni tegument [26] so 
we hypothesized that human insulin would activate S mansoni 
Akt; transient Akt activation was observed in somules, peak-
ing at 10 minutes (P  ≤  .001; Figure  2A). Venus kinase recep-
tors (VKRs) possessing a kinase domain similar to IRs and a 
ligand-binding domain with Venus flytrap structure similar 
to G-protein-coupled receptors also exist in S mansoni [27]. 
Because VKR1 binds l-arginine [28], an aa that chemo-orien-
tates skin-stage somules [29], we conjectured that l-arginine 
might stimulate Akt. In contrast to insulin, l-arginine-medi-
ated Akt activation was sustained over 30 minutes (Figure 2A). 
Finally, to explore Akt responses in the tegument of adults, 
males were exposed to insulin and their teguments were iso-
lated. Western blot analyses revealed that insulin activated Akt 
in particulate and cytoplasmic fractions (~1.8- and ~2.1-fold 
increase, respectively) (Figure 2B).

Inhibition of Schistosoma mansoni Akt, and Src as an Upstream 

Regulatory Kinase

Effects of Akt signaling inhibitors on activated Akt were eval-
uated in the context of mechanistic action. Somules incubated 
with herbimycin A, a Src inhibitor, before insulin exposure 

displayed supressed Akt phosphorylation at 2 hours (Figure 2C; 
Supplementary Figure  5), identifying Src as the likely kinase 
that phosphorylates Tyr within the PEYLA region (Figure 1A). 
The C-terminal proline-rich motif (Pro424-X-X--P427 in human 
Akt1) within Akt thought to be important for interaction with 
Src [30] is conserved in S mansoni Akt (Pro517-Trp-Lys-Pro520) 
(Supplementary Figure 3) as in D melanogaster and C elegans 
[30]. Akt inhibitor X, which directly blocks Akt phosphoryla-
tion and activation [31], was next tested to determine a concen-
tration for functional experiments. Incubation of somules in Akt 
inhibitor X for 60 minutes before insulin resulted in a dose-re-
sponsive attenuation of Akt phosphorylation (Figure 2C). The 
profile of the effects of these inhibitors on Akt phosphorylation 
is consistent with known mechanisms of activation for Akt in 
higher eukaryotes.

Functional Mapping of Activated Akt in Schistosoma mansoni 

Next, we functionally mapped Akt signaling in intact somules/
adults using our published approaches that use immunohisto-
chemistry and confocal microscopy [32, 33]. On slides, some 
“somules” had retained their tails. In these tails, activated Akt 
was confined to sparse punctate regions (Figure 3). The “heads” 
and fully transformed somules displayed similar Akt activation 
patterns, with activated Akt evident at the tegument, muscula-
ture (particularly anterior cone), acetabulum, and preacetabu-
lar glands (Figure 3). Staining with anti-Akt antibodies revealed 
similar overall distribution, except that punctate staining was 
associated with the tegument (Figure  3); staining at residual 
glands was also pronounced (Figure 3), the functional signif-
icance of which is unknown. Adult males displayed striking 
Akt activation at the tegument, particularly the dorsal surface 
(Figure  4). Deep scanning through couples revealed that the 
gynaecophoric canal surface also possessed activated Akt, as 
did the tegument of the clasped female. Intense Akt activation 
was seen proximal to the oesophagus/mouth, possibly the oral 
sphincter. Scanning the male dorsal surface revealed individual 
tubercles with activated Akt, with intense staining seen within 
some; activated Akt between tubercles was not associated with 
the underlying musculature (Figure 4). Analysis of optical sec-
tions revealed that activated Akt sometimes appeared within 
oral and ventral suckers. Again, staining with anti-Akt antibod-
ies (Figure 4, lower images) broadly mirrored the anti-phospho-
Akt (Thr308) antibody staining, suggesting that Akt is generally 
activated and that large tissue pools of inactive Akt are absent.

Akt Regulates the Surface Expression of SGTP4 and Controls Glucose 

Uptake in Schistosoma mansoni

Given Akt’s tegumental localization and activation by insulin, 
we considered an involvement in glucose uptake. Schistosomes 
use 2 facilitated glucose importers, SGTP1 and SGTP4. SGTP4 is 
expressed in the apical double-bilayer tegument membrane [24] 
(Supplementary Figure  7), and only in mammalian host-resi-
dent life stages. SGTP4 transports glucose across this surface 
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membrane, whereas SGTP1, expressed at the basal tegument 
membrane, moves imported glucose into the underlying mus-
culature. We exploited the fact that SGTP4 first appears during 
cercarial transformation [34, 35] to determine the impact of 
Akt blockade on SGTP4 evolution at the parasite surface. Akt 
inhibition resulted in striking suppression of SGTP4 in trans-
forming parasites (Figure 5A), with residual SGTP4 restricted 
to cytons and not emerging at the developing tegument (Figures 
5B and C). In contrast, in controls, SGTP4 presented at the 
tegument surface in an anterior-to-posterior fashion. Thus, in 
addition to promoting SGTP4 expression, Akt appears to reg-
ulate SGTP4 transport to the parasite surface. Akt inhibitor 
X also significantly impaired glucose uptake by transforming 
somules (P ≤ .001; Figure 5D). It is interesting to note that Akt 
activation levels remained similar during early transformation 
(30–120 minutes; Figure 5A), implying that Akt may not regu-
late the switch from oxidative phosphorylation to glycolysis for 
ATP production that occurs during this transition [36]; further 
research is warranted to evaluate this possibility.

It is unfeasible to perform RNAi in cercariae due to their 
short-term survival, so we attempted to definitively link Akt to 

SGTP4 expression through RNAi in adults. Knockdown of Akt 
resulted in marked reduction of SGTP4 (~47%/~59% decrease 
in females/males, respectively; n = 2), confirming dependency 
between the activated kinase and expression of the glucose 
transporter (Figure 6A).

The adult schistosome tegument surface turns over rapidly, 
including in vitro, although differences in turnover rates are 
reported in the literature [37, 38]. We reasoned that over 20 
hours, SGTP4 might decrease in adults through Akt inhibition 
as a consequence of tegumental turnover and reduced SGTP4 
replenishment. Akt inhibitor X decreased SGTP4 expression at 
the tegument in males and females (Figure 6B), and glucose up-
take was attenuated by ~40% in either sex (P ≤ .01; Figure 6C).

Modeling the Mechanism: Akt and SGTP4 Expression/Translocation in 

Schistosoma mansoni

Drawing upon the knowledgebase of glucose transporters in other 
organisms, we constructed a hypothetical mechanistic overview of 
Akt-dependent SGTP4 shuttling/expression in S mansoni through in 
silico identification of candidate proteins/interactions. The proposed 
mechanism (Figure 7) would traffic STGP4-loaded vesicles from the 
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trans-Golgi network in the sunken cell bodies to the parasite sur-
face, with vesicle movement powered along the actin/microtubule 
network by molecular motors. The regulatory mechanisms that link 
Akt to SGTP4 gene expression now warrant exploration (Figure 7).

DISCUSSION

Elucidation of S mansoni Akt signaling has enabled functional 
experiments that reveal that Akt expression and/or activation is 
essential for expression and transport of the glucose transporter 
SGTP4 and concomitant glucose uptake at the schistosome sur-
face. Because adult schistosomes consume their dry weight equiv-
alent of glucose every 5 hours [16] to provide energy for survival 
and reproduction, these discoveries, evident both in somules and 
adults, significantly advance our understanding of schistosome bi-
ology, with particular relevance to host-parasite interactions and 
implications for schistosomiasis disease progression. Moreover, 
findings that include (1) linkage of l-arginine/insulin to Akt acti-
vation in the parasite and (2) functional mapping of activated Akt 
to the tegument, provide a rationale for the evolution of SGTP4 
at the somule surface during transformation and for sustained 
expression at the parasite surface. By integrating knowledge of S 
mansoni Akt phosphorylation and comparative biology, a model 
is proposed highlighting the putative role of RabGAP TBC 
domain-containing proteins and Rab-GTPase switch proteins in 
translocation of SGTP4-loaded vesicles to the parasite surface for 
glucose uptake (Figure 7). Further mechanistic investigations into 
vesicle shuttling within the tegument of schistosomes will provide 
answers to the specific role of Akt in this process; such studies may 
also facilitate research into exosome generation and/or release 
[39] and expression of vaccine targets at parasite surface.

We focused on evaluating effects of Akt blockade on SGTP4 
protein expression because, unlike SGTP1, SGTP4 is present 
exclusively in the apical membranes of mammalian-stage schis-
tosomes and appears rapidly during cercaria-somule trans-
formation [24]. SGTP4 facilitates glucose import from the 
glucose-rich host bloodstream into the tegument. In contrast, 
SGTP1, which localizes to the tegument basal membrane, its 
dilations, and the musculature [40], further transports glucose 
into the underlying tissues [24]. The RNAi of SGTP1 or SGTP4 
in S mansoni somules impaired glucose uptake by ~50%, and 
fewer somules survived to adulthood when injected into mice 
after SGTP1/SGTP4 co-RNAi [23], demonstrating the impor-
tance of Akt to parasite survival. Schistosoma japonicum and S 
haematobium also express SGTP4 [41], with S japonicum dis-
playing similar SGTP4 localization patterns to S mansoni [42]. 
Thus, all 3 major species infecting humans likely use similar 
Akt-dependent signaling mechanisms for expression and/or 
localization of SGTP4 at the parasite surface. The direct impor-
tance of insulin signaling to the maintenance of SGTP4 protein 
expression and/or localization in somules and adults warrants 
further investigation, particularly because other molecules (such 
as l-arginine via VKRs) will likely activate Akt, and because 
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suppression of IRs impacts glucose uptake, expression of glucose 
metabolism genes, and development of S japonicum [43]. Akt 
inhibitor X also kills somules and promotes uncoupling S man-
soni pairs after 24 hours [18]. Thus, in addition to glucose uptake, 
Akt seemingly performs other roles in schistosomes, as would be 
expected for a kinase that phosphorylates multiple targets.

CONCLUSIONS

The situation for human schistosomiasis is concerning. The 
disease has shown little sign of abatement over several decades 
despite targeted drug administration [44]; ~260 million people 

across 78 countries are affected. We envisage that our discovery 
will empower research aimed towards developing antischisto-
some drugs to kill multiple Schistosoma species through target-
ing tegumental glucose transport mechanisms.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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