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Abstract

Quantifying biophysical and biochemical vegetation variables is of great importance in precision 

agriculture. Here, the ability of artificial neural networks (ANNs) to generate multiple outputs 

is exploited to simultaneously retrieve Leaf area index (LAI), leaf sheath moisture (LSM), leaf 

chlorophyll content (LCC), and leaf nitrogen concentration (LNC) of sugarcane from Sentinel-2 

spectra. We apply a type of ANNs, Bayesian Regularized ANN (BRANN), which incorporates 

the Bayes’ theorem into a regularization scheme to tackle the overfitting problem of ANN and 

improve its generalizability. Quantitatively assessing the result accuracy indicated RMSE values 

of 0.48 (m2/m2) for LAI, 2.36 (% wb) for LSM, 5.85 (μg/cm2) for LCC, and 0.23 (%) for 

LNC, applying simultaneous retrieval. It was demonstrated that simultaneous retrievals of the 

variables outperformed the individual retrievals. The superiority of the proposed BRANN over 

a conventional ANN trained with the Levenberg-Marquardt algorithm was confirmed through 

statistical comparison of their results. The model was applied over the entire Sentinel-2 images 

to map the considered variables. The maps were probed to qualitatively evaluate the model 

performance. The results indicated that the retrievals reasonably represent spatial and temporal 

variations of the variables. Generally, this study demonstrated that the BRANN simultaneous 

retrieval model can provide faster and more accurate retrievals than those obtained from 

conventional ANNs and individual retrievals.
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1 Introduction

Vegetation covers are explained by their structural, biophysical, and biochemical variables. 

These variables play an important role in climate, hydrology, and ecology models, as well 

as in understanding the agricultural ecosystem processes (Baret et al., 2007; Sellers et 

al., 1997). In precision farming, monitoring these variables has been targeted to evaluate 

nutrition status and plant growth, leading to food security at national and regional levels 

(Weiss et al., 2020). Near-real time mapping the vegetation variables can therefore help 

better management of water and soil resources which preserves productivity at lower 

environmental costs (Moran et al., 1997), leading to sustainable development.

Sugarcane, a tall perennial grass in the genus Saccharum, is one of the economic products in 

tropics and subtropics regions (Som-Ard et al., 2021). Due to contribution of sugarcane 

in sugar and ethanol bio-fuel production (Moraes et al., 2015), its global demand is 

rapidly growing, which requires its cultivation to be as efficient as possible. Quantifying 

sugarcane biophysical and biochemical variables such as leaf area index (LAI), chlorophyll 

content, nitrogen content, and water content which are involved in important physical and 

physiological processes is of great significance in cultivating it with more productivity. LAI 

plays a critical role in the energy, water, and carbon exchanges between the continents and 

the atmosphere (Sellers et al., 1997). LAI is a good indicator of sugarcane growth and 

yield, so its variations during the crop cycle are used in sugarcane growth models (Teruel 

et al., 1997). Chlorophyll contributes to verifying vegetation health, and physiological and 

nutritional status (Delegido et al., 2010). Like in all plants, chlorophyll in sugarcane is 

correlated to vegetation stress, photosynthetic capacity, and productivity (Oliveros et al., 

2021). Nitrogen is a macro-nutrient that once absorbed by plants becomes a biochemical 

variable participating in constitution of organics such as protein, chlorophyll, and nucleic 

acid (Féret et al., 2021). In the case of sugarcane, plant nitrogen affects leaf and stalk growth 

(Miphokasap et al., 2012) and consequently crop yield and sugar production (Wiedenfeld, 

1995). Monitoring the response of sugarcane growth to varying nitrogen application rates 

demonstrated the significant benefit of increased nitrogen availability (Sofonia et al., 2019). 

Water content is one of the main controlling factors of photosynthesis and respiration in 

plant leaves (Zhang et al., 2019). Leaf sheath moisture (LSM) affects sugarcane growth and 

reflects the balance between the plant nutrients (Keshavaiah et al., 2013). Several studies 

were conducted to investigate or retrieve sugarcane LAI (Abebe et al., 2022; Lin et al., 2009; 

Yang et al., 2017), chlorophyll content (Oliveros et al., 2021), nitrogen (Abdel-Rahman et 

al., 2010; Abdel-Rahman et al., 2013; Miphokasap et al., 2012; Miphokasap and Wannasiri, 

2018; Shendryk et al., 2020), LSM (Keshavaiah et al., 2013), and salinity stress (Hamzeh et 

al., 2013; Hamzeh et al., 2016). Som-Ard et al. (2021) reviewed remote sensing applications 

in sugarcane cultivation.

Remote sensing has provided an unprecedented opportunity to acquire information about 

vegetation traits at both local and global scales (Sellers et al., 1997; Weiss et al., 2020). 

Based on remotely sensed surface radiance, vegetation variables can be retrieved by 

either statistical-empirical methods or physically-based approaches (Baret and Buis, 2008). 

Although physically-based approaches have the advantages of allowing more system insight 

and easily transferring to different data acquisition conditions and crop types, they are 

Hajeb et al. Page 2

Int J Appl Earth Obs Geoinf. Author manuscript; available in PMC 2023 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



difficult to use and inherently ill-posed for inversion (Baret and Buis, 2008; Combal et al., 

2003). Additionally, they are only capable to retrieve variables considered as the inputs 

into the Radiative Transfer Models (RTM) that have to be inverted during retrieval process 

(Verrelst et al., 2015a). On the other hand, statistical-empirical methods are easy to use; once 

calibrated, their implementation is instantaneous; and they are considered as benchmark 

models to evaluate the performance of physically-based RTMs (Kimes et al., 1998).

Artificial Neural Networks (ANNs) are among the non-linear non-parametric regression 

models frequently applied to retrieve surface biophysical/biochemical properties such as 

biomass (see review in (Ali et al., 2015)), fractional vegetation cover (fCover) (Bacour et 

al., 2006), LAI (see review in (Fang et al., 2019)), chlorophyll content (Wang et al., 2022), 

nitrogen content (see review in (Berger et al., 2020b)), and water content (Neinavaz et al., 

2017; Mirzaie et al., 2014; Trombetti et al., 2008). Verrelst et al. (2019) reviewed successful 

studies applying ANNs to retrieve different vegetation properties. ANNs, however, suffer 

from the overfitting problem (Kimes et al., 1998). Overfitting causes a network cannot 

generalize well to unseen data outside the training set (Beale et al., 2010). Regularization, 

however, is the practice done to tackle overfitting and improve the generalizability of 

ANNs. Several regularization methods have been introduced, the most well-known of 

which are early stopping (Yao et al., 2007) and Bayesian regularization (MacKay, 1992). 

Bayesian regularization offers more flexible generalization performance than early stopping, 

especially when dataset is small (Beale et al., 2010). By performing Bayesian regularization, 

almost all the disadvantages of ANNs can be mitigated while their benefits are preserved 

(Burden and Winkler, 2008).

Based on Bayes’ rule, the Bayesian procedure incorporates a priori information about the 

solution (Qu et al., 2008). Using the a priori information can restrict the variable space to a 

smaller subspace (Combal et al., 2003), resulting in more numerical stability of the model 

inversion. Bayesian procedures have already been used in the field of vegetation variable 

retrieval for regulating physically-based RTM inversion methods (Laurent et al., 2014; Xu 

et al., 2019), assimilating data (Lewis et al., 2012), and estimating uncertainty for the 

retrievals (Shiklomanov et al., 2016). Bayesian approach has also been utilized to regulate 

ANNs; the Bayesian regularized ANN (BRANN) has been applied in applications such as 

environmental studies (Liu et al., 2022; Ye et al., 2021), economy (Sariev and Germano, 

2020), and social studies (Kayri, 2016). In the field of vegetation studies, BRANN was 

applied to map sub-pixel land cover distribution with application in estimating patterns of 

deforestation and recovery (Braswell et al., 2003), model water status of grapevine (Pôças 

et al., 2017), and predict cotton yield (Xu et al., 2021). The studies attributed the good 

performance of BRANN to its ability to generate a more robust network, resulting in lower 

overfitting.

Simultaneous multi-variable retrieval using statistical-empirical methods is accomplished 

using a multi-output regression that can be solved by either training independent models or 

training a single model which directly generates multiple outputs. The former is a shortcut 

and easily performed, but does not take into account the internal relationships between 

the target variables. The single model approach, however, considers cross-relationships 

between multiple target variables (Zhu and Gao, 2018; Verrelst et al., 2015a). Exploiting 
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co-varying relationships between multiple dependent output variables, the single model 

approach can improve the prediction precision (Bacour et al., 2006). Especially in the 

case of vegetation properties, considering the cross-relations among biophysical/biochemical 

parameters is of great importance in the retrieval process. For instance, since the LAI and 

the fCover are indicators of the plant density and thereby correlated, a retrieval model 

should consider not only the underlying relations between the input spectral bands and the 

parameters to be predicted but also the internal relationships between the output parameters 

(Tuia et al., 2011). A prime benefit of the single model approach is to speed up the 

processing because it is implemented just once in the prediction phase (Verrelst et al., 

2015a). Nevertheless, inclusion of unrelated variables to this scheme can make the training 

more complex and raise the risk of ending in local minima (Verrelst et al., 2015a), which can 

reduce the model performance. For example, Baret et al. (2007) reported more robust results 

applying a single-output model than multiple output models. Rivera et al. (2013) stated that 

simultaneously retrieving using a single inversion strategy was not the best choice for LAI 

and leaf chlorophyll content retrieval, because of the non-linear correlation between these 

variables. So depending on their cross-relations across the spectral domain, some variables 

can be more successfully simultaneously retrieved than others (Mousivand et al., 2014).

With the motivation of simultaneously retrieving vegetation bio-physical/chemical variables 

and overcoming the overfitting problem of ANNs, this paper presents a multi-output 

BRANN technique to retrieve LAI, LSM, leaf chlorophyll content (LCC), and leaf 

nitrogen concentration (LNC) of sugarcane from Sentinel-2 spectra. The predictions are 

both quantitatively and qualitatively assessed. To compare their performance in estimating 

the sugarcane variables, a comparison between BRANN and a conventional ANN trained 

with the Levenberg-Marquardt (LM_ANN) algorithm is conducted. For both BRANN and 

LM_ANN, the retrieval is achieved both simultaneously (all variables at the same time using 

a single model) and individually (each variable using its own separate independent model) to 

compare their results.

2 Materials and methods

2.1 Case study

The study has been conducted in Amir Kabir Sugarcane Agro-Industrial zone, one of the 

seven units in Khuzestan province of Iran, located from 48° 12′ 19″ E to 48° 21′ 23″ E 

latitude and 30° 58′ 21″ N to 31° 5′ 37″ N longitude. Fig. 1 shows the location of the 

study area. The region is morphologically flat and its total area is 14,000 ha, of which about 

10,000 ha were under cultivation in 2020. The farms are almost homogenous and most of 

them are 25 ha (1000 (m) × 250 (m)). The area is climatologically semi-arid with about 266 

mm annual precipitation and 2788 mm/yr annual evaporation from open pans.

2.2 Data in use

2.2.1 Ground measurements—The ground measurements of the target variables were 

performed during a field campaign carried out in eight dates from 15th May to 23rd August 

2020, concurrently to Sentinel-2A image acquisition. The dates were chosen according 

to the distinct stages of sugarcane phenology during its growing season to characterize 
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adequately the global variations of the variables. The sampling strategy was based on 

measuring the target variables on several samples within an elementary sampling unit (ESU) 

with an area of 3 (m) × 1.83 (m), and averaging their values. A total of 136 ESUs were taken 

in the field campaign (see Fig. 1(c)). The ESUs were distributed in fields with 5 different 

sugarcane varieties (see Fig. 1(d)), and 7 different ratoons (see Fig. 1(e)). These are good 

representative of all fields throughout the study area.

LAI was derived through a destructive manner so that, in each ESU, three plant samples 

were harvested and scanned to determine their one-sided leaf area. The total area of leaves 

in the ESU was then calculated by multiplying the leaf area of samples by the number of 

plants in the ESU which was counted during the fieldwork, and dividing the result by 3 (the 

number of samples). LAI (m2/m2) was finally calculated by dividing the total area of leaves 

by the ESU area, i.e. 5.49 (m2).

To measure the LSM, the leaf sheaths were disconnected and their fresh weigh (FW) was 

immediately measured. Next, the leaf sheaths were dried in an oven at 80 °C for 24 h and 

their dry weight (DW) was measured (Fig. 2(a and b)). The percentage of LSM in wet basis 

(%wb) was then obtained using Eq. (1) as:

LSM( % wb) = FW − DW
FW × 100 . (1)

In order to measure LCC a Minolta SPAD-502 was used, in situ, to take chlorophyll from 

10 samples per each ESU. For each sample the SPAD reading was repeated 3 times and 

the average of these 30 values was used. The sampling was not performed on the veins. A 

widely used exponential equation (Eq. (2)) proposed by Markwell et al. (1995) was applied 

to convert the unit-less values of the SPAD readings (SPAD in Eq. (2)) into chlorophyll 

concentration (Chl in Eq. (2)), as:

Cℎl μmol/m2 = 10SPAD0 . 265
, witℎ r2 = 0 . 94 . (2)

Finally, the unit of the leaf chlorophyll concentration was converted to μg/cm2 regarding 

the molar mass of chlorophyll, 893.51 (g/mol), and the new value was considered as LCC 

(μg/cm2) of the ESU.

After drying and grinding the samples, the LNC (%) was determined through the titration 

method using the Kjeldahl device by calculating the consumed acid in the laboratory (Fig. 

2(c and d)). The widest part of the leaf lamina of leaves 3 to 6 from the top of the straw was 

considered, and the midrib and veins were discarded since their presence reduces nitrogen 

concentration (Miphokasap et al., 2012).

Fig. 3 presents some basic statistics of the measurements, and depicts their histogram and 

density plot.
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2.2.2 Satellite data—Sentinel-2 Level-2A images acquired concurrent with the ground 

measurements were used to retrieve the target variables. Sentinel-2A, launched on 23rd June 

2015, is equipped with multispectral optical sensors capable of acquiring 13 spectral bands 

in the range 400–2500 nm with spatial resolutions of 10 (m), 20 (m), and 60 (m). The 

60-meter spatial resolution bands were discarded because of their low resolution, and the 

remaining ten spectral bands (bands 2–8, 8a and 11–12) were only considered. To match the 

spatial resolution, the 10-meter spatial resolution images were down-sampled into 20 (m) 

using nearest neighbor interpolation.

Besides the Sentinel-2A images, Sentinel-2B images were used to map the variables on a 

pixel-by-pixel full scene basis.

Preparing the Sentinel-2 images was done in the Sentinel Application Platform (SNAP).

2.3 Methodology

2.3.1 Bayesian regularized artificial neural network—BRANN incorporates the 

Bayes’ theorem into a regularization scheme to deal with the overfitting problem of ANNs 

and improve their generalizability. While conventional training aims to reduce only the 

sum squared error (ED) as performance function, a regularized method also considers the 

model weights into a weight attenuation term (Ew) which penalizes the large weights. The 

regularized objective function becomes a linear combination of ED and Ew as:

F = βED + αEW , (3)

where EW is the sum of squares of network weights. α and β are regularization hyper-

parameters. The ratio α/β controls the trade-off between goodness-of-fit and model 

complexity. The larger the ratio, the more emphasis on weight decay, resulting in a smoother 

network response. If the ratio becomes smaller, the training algorithm drives the errors 

smaller (Dan Foresee and Hagan, 1997). Finding the optimum values for the regularization 

hyper-parameters is therefore the main problem with implementing regularization. MacKay 

(1992) proposed a probability-based iterative manner to automatically optimize the hyper-

parameters. This manner starts with a broad prior distribution for the model parameters, 

before the data are seen. After the data are taken, our knowledge is updated by calculating 

a posterior distribution, which is narrower than the prior distribution, using Bayes’ rule 

(Posterior = Likelihooh × Prior/Evidance). The goal is choosing the weights that maximize 

the posterior distribution. In each iteration, the posterior distribution is updated according 

to the Bayes’ rule while large weights are penalized. The steps to determine the optimum 

regularization hyper-parameters by BRANN are summarized as follows:

i. Set an initial value of α, β and weights. The values are used, after the first 

training step, to recover the regularization hyper-parameters.

ii. Take one step of the Levenberg-Marquardt algorithm to minimize the objective 

function Eq. (3).
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iii. Compute the effective number of parameters, γ, using the Gauss-Newton 

approximation to the Hessian matrix (H) in the Levenberg-Marquardt training 

algorithm as:

γ = m − αTraceH−1, (4)

where m is the number of network weights. γ expresses how many network 

parameters are effectively used in reducing the objective function (Dan Foresee 

and Hagan, 1997).

iv. Compute new estimates for α and β using Eq. (5) and Eq. (6), respectively.

α = γ
2Ew(w) . (5)

β = N − γ
2ED(w) , (6)

where N is the number of training samples.

v. Iterate steps 2 through 4 until convergence.

2.3.2 BRANN design for simultaneous multi-variable retrieval—A key factor 

that affects the performance of (BR)ANNs is the network architecture. For this purpose, 

the optimum number of hidden layers as well as their neurons should be appropriately 

determined (Bacour et al., 2006). ANNs with a complicated structure may follow the 

noise in used data resulting in poor generalization. Conversely, a network with a low 

number of neurons will not be capable to capture nonlinear relationships between inputs and 

output(s) (Göçken et al., 2016). In this work, to find the best network architecture, one and 

two-hidden layer networks were examined, and the number of neurons in the hidden layer(s) 

was optimized by trial-and-error. According to the dimension of the considered input and 

target variables, the networks have 10 neurons in the input layer based on the 10 selected 

Sentinel-2A wavebands, and 4 neurons in the output layer in case of simultaneous retrieval 

of the four variables and 1 neuron in retrieving the variables individually.

Tangent sigmoid was used as the transfer function in the hidden layer because of its ability 

to capture the inputs-output(s) nonlinear relationships. For the output layer, however, a 

linear transfer function was utilized since it is not restricted to produce output values in a 

specified range. A network with this combination of transfer functions can approximate any 

continuous function well (Beale et al., 2010).

Since the target variables are of a different dynamic range, their values were scaled into the 

range of [0, 1], in order to prevent the scaling factor problem and enhance the convergence 

performance (Bacour et al., 2006). Because the input spectra are as reflectance, they are 

intrinsically of the same scale, [0, 1], so no further normalization was required over them. 

An inverse process was needed to invert the scaled predicted values of the target variables 

into their actual dynamic range.
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The same procedure was followed for both LM_ANN and BRANN models.

The retrieval process using the BRANN and LM_ANN models was implemented in Matlab 

R2022a.

2.3.3 Accuracy assessment procedure—To assess the accuracy and precision of the 

models used, the randomized bootstrapping procedure was conducted by randomly dividing 

the dataset into 2 subsets, 70 % for model calibration (95 samples out of 136) and the 

remaining 30 % for independent validation (41 samples). The procedure was repeated 201 

times to create the bootstrap replicate datasets. An odd number was chosen so that the 

median value (of the statistical indicators) is produced by one of the models, participating in 

bootstrapping, itself. The median of the statistical indicators was considered as a measure of 

the model performance.

Four statistical indicators, root mean square error (RMSE), mean bias error (MBE), 

coefficient of determination (R2), and relative RMSE (RRMSE = RMSE/Mean of 
measurments) were used for model validation. Each of these statistical indicators was 

calculated for each of the target variables in each iteration. For example, RMSEi
LAI

represents the RMSE of the LAI predictions in the ith bootstrap out of the 201 repetitions. 

For each of the target variables, the median and standard deviation (Std.) of these 201 

values of the statistical indicators was considered as a representative of the performance/

accuracy and robustness/precision of the models in retrieving the variable, respectively. For 

example, in the case of LAI, we considered RMSEMedian
LAI = Median RMSEi

LAI, i = 1 :201

as the final value of RMSE representing the accuracy of LAI retrievals and 

RMSEStd
LAI = Std RMSEi

LAI, i = 1 :201  as a measure of the precision of LAI retrievals.

In order to evaluate the overall performance of the simultaneous retrieval models in 

predicting all the target variables, a measure that considers the average of the RMSE values 

of all variables was defined. This measure, here after called averaged RMSE RMSEi
AV G , 

is computed as:

RMSEi
AV G = RMSEi

LAI + RMSEi
LSM + RMSEi

LCC + RMSEi
LNC

4 , i = 1
:201 .

(7)

Note that the measure has no physical meaning, and has been used only to simplify the 

comparison of the overall performance of the retrieval models in retrieving all the target 

variables altogether.

3 Experimental results and discussion

The proposed Bayesian regularized ANN was implemented on a dataset consisting of 

Sentinel-2 spectra as the independent variables and ground measurements of the considered 

sugarcane variables as the target variables. The obtained results were both quantitatively 

and qualitatively evaluated, as presented in subsections 3–2 and 3–3, respectively. The 
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sugarcane variable retrieval was done both simultaneously and individually. In order to 

provide a comparison, besides the proposed BRANN, the conventional LM_ANN model 

was also applied. The same procedure was followed in the implementation of both models. 

For both BRANN and LM_ANN, the results of simultaneous and individual retrievals were 

compared.

To enable comparing the performance of the different models used for the variable retrieval, 

a statistical hypothesis test was conducted. For each model, there were 201 RMSEs derived 

from the bootstrap replicates. These RMSEs were considered as a group. So, in each 

pairwise comparison, we have two RMSE groups which have to be compared. The goal 

is to estimate the significance of difference between these two groups. For this purpose, 

first, the Shapiro–Wilk normality test was utilized to examine the normality of the RMSEs 

of each group. Based on the results of the normality test, if the RMSEs of both groups 

followed a normal distribution, then the parametric paired sample t-test was applied to 

give the significance of difference between these two groups. Otherwise, the nonparametric 

Wilcoxon Signed-Rank test was utilized to give the significance of difference between 

these two non-normal groups. The results of the statistical comparisons are presented in 

subsections 3–2-1 and 3–2-2.

According to the comparison result, the best model was implemented on Sentinel-2A and 

B images to map the target variables. The prediction maps were interpreted to qualitatively 

evaluate the retrieval quality.

3.1 Optimizing the network architecture of the models used

In this section the results of the trial and error process performed for optimizing the network 

architecture of the model used are presented. During the trial and error process, each of 

the used models (LM_ANN and BRANN) was constructed with networks consisting of 

one and two hidden layers. In the one-layer networks, the number of neurons from one to 

15 was examined. In the 2-layer networks, different combinations of odd numbers from 

one to 15 were considered as the number of neurons for each of the hidden layers (i.e. a 

total of 64 different network architectures for each of the models used). Fig. 4 compares 

the performance of the LM_ANN and BRANN models with different architectures in both 

simultaneous and individual retrievals in terms of their median of averaged RMSEs (i.e. 

the median of the 201 RMSEi
AV G calculated from the bootstrap replicates, RMSEMedian

AV G ). 

According to the results presented in this figure, in our experiments, it was demonstrated 

that the networks with two hidden layers did not perform better than those with one hidden 

layer. Among all the architectures, the best result was obtained from the one-hidden layer 

network with 4 neurons for the BRANN model, and with 2 neurons for the LM_ANN 

model. The RMSEMedian
AV G  values of 2.23 (in detail, 0.48 (m2/m2), 2.36 (% wb), 5.85 (μg/

cm2), and 0.23 (%) for LAI, LSM, LCC, and LNC, respectively) and 2.43 (in detail, 

0.50 (m2/m2), 2.66 (% wb), 6.33 (μg/cm2), and 0.24 (%) for LAI, LSM, LCC, and 

LNC, respectively) were achieved by the most efficient BRANN and LM_ANN models, 

respectively (see the bold labels in Fig. 4(a)).
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From the charts of Fig. 4, it can be seen that LM_ANN with simpler networks provided 

less error. As the number of neurons increases, the retrieval error raises, in both individual 

and simultaneous retrievals. In fact, increasing model parameters without increasing the size 

of dataset (136 samples in our study) and without regulating the model leads to overfitting, 

as discussed later in this subsection. Also, generally by LM_ANN with simpler networks 

(in particular, the one-hidden layer network (Fig. 4(a)) and the two-hidden layer networks 

with 3 and 5 neurons in the first hidden layer (Fig. 4(b and c))), the simultaneous variable 

retrieval led to superior results to individual retrievals.

As seen in Fig. 4, the BRANN model outperformed the LM model in almost all considered 

architectures. BRANN was also less sensitive to network architecture, since its errors have 

low fluctuation in different architectures. This is in agreement with (Demuth & Beale, 2004) 

in which it is stated that BRANN can reduce the difficulty of determining the optimum 

network architecture.

Since high training accuracy but low testing accuracy is considered as the evidence of 

overfitting (Skidmore et al., 1997), to investigate the overfitting problem in the used models, 

their testing and training accuracies were analyzed in different architectures. Figs. 5 and 6 

compare the testing and training accuracies for the LM_ANN and BRANN models with 

different architectures, respectively.

As seen in Fig. 5, as the complexity of the network increases with increase of the number 

of neurons/layers, the error in the training data decreases, but the measured error in the 

independent test data increases, which it is a sign of overfitting of the LM_ANN when 

a complex network is used. This effect can be seen in both individual and simultaneous 

retrievals, but it is more observable in the individual retrievals. In Fig. 5 (a), it can be seen 

that in the number of neurons more than 8, the model was perfectly fitted to the training 

data and the training error is almost zero, while the testing error is high. In the case of 

simultaneous retrievals, the difference between testing and training errors was smaller than 

that of individual retrievals. This shows that the simultaneous retrieval using the LM_ANN 

has alleviated the overfitting problem in it. This is consistent with the findings of Atzberger 

(2004), which used a simultaneous retrieval to reduce overfitting.

As it can be observed in Fig. 6, by applying BRANN, the difference between testing 

and training errors is generally small, in both simultaneous and individual retrievals. 

This indicates the ability of BRANN to overcome the overfitting problem and its more 

generalizability than LM_ANN. By applying BRANN, even in more complex models, 

although the performance of the model was reduced, there was a good balance between 

testing and training errors. This is due to the fact that the BRANN model, by penalizing 

large network weights, uses only an effective number of network parameters instead of all 

available parameters.

3.2 Quantitative assessment

This section involves to quantitatively evaluate the performance of the models applied. For 

this purpose, an accuracy assessment was performed based on the comparison between the 

model results and the ground measurements in terms of RMSE, RRMSE, R2, and MBE as 
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statistical indicators. Table 1 shows the results of the quantitative assessment of the BRANN 

model by presenting a summary statistics of the four statistical indicators including their 

mean, median, and Standard deviation. The statistics were calculated based on the 201 

bootstrap replicates. As seen in Table 1, low values of MBE have been achieved for all 

variables, indicating that, generally, their retrievals were on average neither underestimated 

nor overestimated. It can be explained by the fact that ANN is trained globally to provide 

unbiased predictions of variables of interest (Bacour et al., 2006). Nevertheless, some 

underestimations in high values and somewhat overestimations in low values of the variables 

are observable in the scatterplots of Fig. 7. Achieving more accurate retrievals in medium 

values of the considered variables than those in low and high values was expected since the 

low and high values of the variables and their corresponding spectral properties were less 

represented in the training data than the medium ones (see the frequency distribution of the 

measured variables in Fig. 3). In the case of LAI, some underestimations for LAI higher than 

4 applying ANN were also reported in several previous studies (Bacour et al., 2006; Verrelst 

et al., 2015b; Xie et al., 2021). The LAI underestimations can be explained by saturation 

of radiometric signals in dense vegetation (typically for LAI > 5), which causes that small 

variations in the spectral reflectance cannot be correctly related to the actual canopy LAI 

(Bacour et al., 2006). In these conditions, ANN overestimates low LAIs to compensate for 

the underestimation in high LAI values to give predictions without bias, as achieved in our 

experiments.

Fig. 7 shows the scatterplots of measured values of the sugarcane variables versus their 

corresponding BRANN estimations.

3.2.1 BRANN vs LM_ANN comparison—Comparison between BRANN and 

LM_ANN results indicated that, although there is accordance between their results, BRANN 

retrieved all target variables more successfully than LM_ANN in both simultaneous and 

individual retrievals. Fig. 8 compares the accuracy of BRANN and LM_ANN predictions. 

As seen in Fig. 8, compared to LM_ANN, BRANN reduced RMSEMedian
LAI  from 0.67 to 

0.51 (m2/m2), RMSEMedian
LSM  from 2.69 to 2.38 (% wb), RMSEMedian

LCC  from 6.89 to 6.03 

(μg/cm2), and RMSEMedian
LNC  from 0.296 to 0.247 (%) applying individual retrieval. In the 

case of simultaneous retrieval, also, applying BRANN instead of LM_ANN resulted in 

reduction of RMSEMedian
LAI  from 0.50 to 0.48 (m2/m2), RMSEMedian

LSM  from 2.66 to 2.37 (% 

wb), RMSEMedian
LCC  from 6.33 to 5.85 (μg/cm2), and RMSEMedian

LNC  from 0.242 to 0.232 (%).

The statistical hypothesis test comparing the BRANN and LM_ANN results showed 

that the median of RMSEs of the BRANN retrievals is statistically significantly lower 

than that of LM_ANN retrievals, for all sugarcane variables in both simultaneous and 

individual retrievals. The values of z-statistic of Wilcoxon Signed-Ranks test, and p-value 

and significance level of the test are given in Table 2.

LM_ANN provided very poor results in a few bootstrap repetitions. In these replicates, the 

model presented a small error in the training data but did not in the testing data, which is an 

evidence of overfitting.
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Comparing the optimal network architecture of these models explains the superiority of 

BRANN over LM_ANN. The optimal network of LM_ANN includes 2 neurons in its 

hidden layer, which is a simpler network than that of BRANN with 4 neurons. This 

means that this LM_ANN model is less capable to capture nonlinear relationships between 

inputs and output(s). Thanks to penalizing large weights, BRANN, however, can explore 

a more complex architecture without overfitting. For more clarity, in our experiments 

in the simultaneous retrieval, the optimum BRANN network (the network consisting of 

10 input, 4 hidden and 4 output neurons) used only 38 effective parameters out of the 

64 available network weights and biases. Such a parsimonious BRANN model can more 

properly capture nonlinearities without overfitting, resulting in higher generality and lower 

error than LM_ANN that uses all network parameters. The finding is in accordance with 

some studies comparing BRANN with non-regularized ANNs (e.g. Gianola et al., 2011; 

Kayri, 2016).

From the precision viewpoint, also, BRANN showed to be more robust than LM_ANN since 

it provided lower Std. in all statistical indicators. This superiority is especially significant in 

the individual retrievals.

3.2.2 Simultaneous vs Individual retrieval comparison—Statistical comparison 

between the results of simultaneous and individual retrievals showed slight improvement in 

the retrieval of the sugarcane variables when estimated together. The general improvement 

in all statistical indicators, RMSE, RRMSE, R2, and MBE, was achieved by both BRANN 

and LM_ANN. For example, in the case of RMSE, by applying simultaneous retrieval, the 

median value of RMSEs of LAI, LSM, LCC, and LNC had decreased, respectively, from 

0.51 (m2/m2), 2.38 (% wb), 6.03 (μg/cm2) and 0.247 (%) to 0.48 (m2/m2), 2.37 (% wb), 

5.85 (μg/cm2), and 0.232 (%) by BRANN, and from 0.67 (m2/m2), 2.69 (% wb), 6.89 

(μg/cm2) and 0.296 (%) to 0.50 (m2/m2), 2.66 (% wb), 6.33 (μg/cm2), and 0.242 (%) by 

LM_ANN. Fig. 8 also compares the simultaneous and individual retrieval accuracies. The 

values of t-score of t-test and z-statistic of Wilcoxon Signed-Ranks test, as well as p-value 

and significance level of these tests comparing simultaneous retrievals over individual ones 

are given in Table 3.

The general retrieval improvement can be attributed to the fact that in the simultaneous 

retrievals, in addition to underlying relations between the input spectra and the target 

variables, the cross-relations between the target variables themselves linking them together 

are also considered. So the multi-output simultaneous retrieval model can provide a more 

realistic representation of the variable retrieval problem than the single-output individual 

retrieval model that discards the correlations between the target variables. This was 

confirmed in some previous studies which emphasized the superiority of multi-output 

regression methods over single-output ones, in the field of vegetation variable retrieval 

(Bacour et al., 2006; Tuia et al., 2011), and other fields (Zhu and Gao, 2018).

To investigate the effect of inter-relationships of the variables on simultaneously retrieving 

them, their cross-relations were examined by performing a correlation analysis. The 

highest correlations were found for LSM_LAI, LCC_LNC, and LSM_LNC with correlation 

coefficient of 0.49, 0.35, and 0.33, respectively. The relatively high positive correlation 
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between LSM and LAI can somehow be explained by the finding of Peñuelas et al. (1994), 

in which it was expressed under water stress, plants decrease leaf expansion and leaves 

shrink, resulting in LAI reduction. The positive correlation between LCC and LNC was 

expected since nitrogen is essentially involved in constitution of chlorophyll, as already 

stated in many studies, (e.g. Bacour et al., 2006; Berger et al., 2020a). Regarding the 

correlation between LSM and LNC, Ding et al. (2018) found out plant nitrogen level 

can raise up its root water uptake. On the other hand, a strong correlation between water 

mass flow and soil nitrogen mobility was found by Cramer et al. (2009). They figured 

out increasing water flow can reach more nitrate to plant root. These close relationships 

between the nitrogen and water content of plants were reflected in the moderate positive 

correlation between LSM and LNC in our experiments. Comparing simultaneous retrievals 

with individual retrievals in each of the 201 bootstrap repetitions turned out that in most 

of the replicates in which the simultaneous retrieval of a variable was superior to its 

individual retrieval, its correlated variable was also retrieved simultaneously superior to 

individually. For example, LCC was retrieved simultaneously in 148 (out of 201) bootstrap 

replicates more accurate than individually; of these 148 replicates, in 119 ones (about 80 

% of them), the LNC simultaneous retrieval was superior to individual retrieval, as well. 

It can be attributed to the inherent correlation between LCC and LNC. The number of 

bootstrap replicates in which LSM simultaneous retrieval was more accurately than its 

individual retrievals is 115; in 100, out of these 115, replicates (almost 87 % of them), 

the simultaneously retrieving model could also predict LNC more successfully than the 

individually-one. This indicates that retrieving two correlated variables simultaneously can 

lead to superior results to retrieving each of them individually, as already confirmed in some 

studies (e.g. Tuia et al., 2011).

From the precision viewpoint, by applying BRANN, the simultaneous retrievals were a 

little more stable than individual ones. As seen in Table1, the BRANN simultaneous 

retrievals provided RMSEStd.
LAI and RMSEStd.

LSM less than, and RMSEStd.
LCC and RMSEStd.

LNC

equal to the BRANN individual ones. By applying LM_ANN, it was turned out that the 

overfitting problem of LM_ANN occurred much less in simultaneous retrievals than in 

individual ones. Hence, the Std. of RMSEs calculated from the LM_ANN simultaneous 

retrievals was significantly less than that calculated from the LM_ANN individual retrievals, 

indicating that the LM_ANN simultaneous retrieval model is more robust that the individual 

one. This emphasizes the advantage of simultaneous retrieval, especially when standard 

non-regularized ANNs is used.

An interesting advantage of the proposed simultaneous retrieval is a remarkable reduction in 

computational time. The total time elapsed to retrieve all four variables was reduced from 

1766 to 403 (s), and from 1055 to 369 (s) performing simultaneous retrieval using BRANN 

and LM_ANN, respectively. This can be attributed to the fact that in simultaneous retrieval 

of the four variables, a single model should be calibrated instead of four separate models 

each of which has to be calibrated separately, as already stated in some previous studies 

(Tuia et al., 2011; Verrelst et al., 2015b). Tuia et al. (2011) reported that computational load 

was almost divided by the number of output variables, which was somehow confirmed in our 

study.
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The computational times given here are based on using a core i5-4460 3.20 GHz personal 

computer with 8 GB installed memory (RAM).

3.2.3 Comparing the retrievability of the target variables by the BRANN 
simultaneous retrieval model—In this subsection we discuss how well each of the 

considered sugarcane variables is estimated by the BRANN simultaneous retrieval model (as 

the most efficient model used in our experiments). For this purpose, the retrievabilities of 

the variables are compared in terms RRMSE as the most widely-used dimensionless index 

(Richter et al., 2012).

Considering the median of the 201 RRMSEs (RRMSEMedian), LSM was retrieved 

excellently providing the lowest RRMSEMedian (<3 (%)). LNC and LCC with RRMSEMedian 

values of 15.46 (%) and 16.40 (%) respectively can be considered as good retrievals. LAI, 

however, with 37.83 (%) RRMSEMedian was estimated less accurately. Important to note 

here is that LAI retrievals with RMSE<0.5 (m2/m2) are considered excellent in the literature 

(Richter et al., 2012), and our LAI retrieval has RMSEMedian of 0.48 (m2/m2).

Our investigations revealed that the quality of retrievals of a model is governed by the 

variability level of the variable to be retrieved; the less the variability, the higher the 

performance of the results. To be more explicit, when the variability of a variable is low, 

the model encounters less difficulty in retrieving that variable. The variability of a variable 

can be expressed by coefficient of variation (CV = Std./Mean × 100(%)) of the variable 

measured values. For example, LAI of sugarcane has high rate of changes during its growing 

season (as discussed in the last paragraph of subsection 3–3); thereby, the variation range 

of the LAI values is comparatively large relative to its average value (see Fig. 3(a)). LAI 

has the highest CV, 51.54 (%), among the considered variables, which can explain why 

it has provided the highest RRMSEMedian. LSM, however, has relatively low variations 

compared to its average value (see Fig. 3(b)), which can be explained by the fact that 

water requirement of sugarcane is supplied sufficiently by performing regular irrigation. 

Among the considered variables LSM has the lowest CV, 3.84 (%), explaining the lowest 

RRMSEMedian for LSM retrieval. Although LCC and LNC have quite different average 

values, they have somewhat partly similar CVs, 19.44 (%) and 16.66 (%) respectively (see 

Fig. 3(c and d)), which can give a reason for their almost similar RRMSEMedian values, 

16.40 (%) and 15.46 (%) respectively. Generally, the CV values of 51.54, 19.44, 16.66, 

and 3.84 (%) for measured values of LAI, LCC, LNC, and LSM, respectively, seem to be 

meaningfully related to RRMSEMedian values of about 38, 16, 15, and 3 (%) provided by 

these variables, respectively.

In a further investigation, we computed the CV of the target variables of the 41 randomly 

selected testing samples for each of the 201 testing set participating in bootstrapping, 

and then calculated Pearson’s correlation coefficient between the 201 CVs and their 

corresponding RRMSEs. Interestingly, a strong positive correlation between the CVs and 

the RRMSEs was found. Fig. 9 depicts the scatter plot of CV versus RRMSE. As observed 

in this figure, the correlation coefficient was 0.73, 0.37, 0.50, and 0.49 for LAI, LSM, LCC, 

and LNC, respectively. This shows that, even for a single variable, a set with lower CV value 

of the variable can provide a lower RRMSE and vice versa.
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3.3 Qualitative assessment

In this subsection the performance of the proposed model is qualitatively assessed by 

visually interpreting the variable maps generated by applying the BRANN simultaneous 

retrieval model over the entire Sentinel-2 images. The Sentinel-2 images acquired on 25 

different dates throughout the sugarcane growing season were used to produce a time series 

of the considered variables. The generated variable maps are probed to find out how much 

the predictions in different places and times are reasonable.

Fig. 10(b1-b4) depicts the prediction maps of the four sugarcane variables derived from 

the 14th July 2020 Sentinel-2 image, as an instance. As seen in the figures, the variable 

maps closely resemble the spatial pattern of fields. Within-field variations, caused by farm 

management practices such as irrigation, fertilization, or harvesting, are observed in the 

variable maps regarding characteristics of the variable. The fallow lands and man-made 

areas are clearly differentiated. There are some relatively low density vegetated areas, in the 

easternmost part of the study area, which their pattern in the prediction maps well mimics 

the spatial pattern seen in the images. The predicted values of each of the variables seem 

to be reasonable in these vegetated areas. The bare soils covering the northwestern part of 

the images are marked by close to zero and even negative values, in all variable maps. The 

western part of the image is contaminated by a thin cloud, and a dense cloud covered the 

northwestern part (see Fig. 10(a)); these clouds have affected the predictions of the variables 

in these areas.

Considering the 201 predictions of each variable obtained by the models participating in 

bootstrap replicates, the associated Std. maps of the variables were generated. The Std. maps 

can be treated as a measure of uncertainty of the retrievals (Rivera et al., 2013). Higher 

values of Std. indicate that the model had more difficulty to retrieve a variable, resulting in 

higher variation in retrievals. Fig. 10(c1-c4) shows the Std. maps of the sugarcane variables 

on 14th July 2020. As seen in the figure, the sugarcane fields have provided the lowest Std. 

values. This is due to the fact that the retrieval models have basically calibrated over the 

measurements carried out only in these fields. Vegetated areas, even low density ones, show 

to have low Std. values, indicating that the model was more stable in these areas. Higher 

values of Std. are observed in non-vegetated areas such as fallow lands, bare soils and 

man-made features. The highest Std. values, however, are seen in the pixels contaminated 

by thick clouds having the most spectral distance with the vegetation spectrum. Generally, it 

can be inferred from the Std. maps that retrievals of non-vegetation areas, where the spectral 

properties were unrepresented in the training data, were low confidant.

To draw the temporal variations of the variables, time series were prepared for each of the 

sugarcane variables (see Fig. 11), at three spatial scales. The time series were made of the 

mean of the predicted values over all sugarcane fields in the first spatial scale, the fields of 

a certain variety in the second one, and an individual sugarcane field in the third one. In the 

second spatial scale, three sugarcane varieties having the most number of fields in the study 

area, i.e. CP69-1062, IRC9902, and CP73-21 (see Fig. 1(d)), were considered. For each of 

these varieties, one field of the ratoon PC and another of the ratoon R4 were selected as the 

fields to be investigated separately at the third spatial scale. The selected fields are marked in 

Fig. 10(a) as colored rectangles. As seen in Fig. 11(a), generally, the known LAI evolution 
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stages, an initial slow increase, a rapid increase, another slow increase, and finally a decline 

phase (Teruel et al., 1997), were shown in the LAI time series. The relative decrease in LAI 

on 18th and 28th August is likely related to heat stress. Under hot wind conditions that occur 

in summer in the study area, sugarcane shrinks its leaves, resulting in reduction in LAI. As 

observed in Fig. 11(b), like in LAI, the overall trend in LSM time series is upward, but 

with a lower slope. The generally similar shape of the time series of LAI and LSM reflects 

the relatively high correlation found in their ground measurements. In other words, as the 

ground measurements of LAI and LSM are correlated, their prediction values are correlated, 

as well, resulting in the rather analogous shape of their time series. The LNC time series 

(Fig. 11(d)) shows an initial slow increment until the middle of July, followed by a rather 

steady trend. This is consistent with (Wiedenfeld, 1995), which expressed most sugarcane 

nitrogen uptake occurs during early growth phase up to canopy closure. Comparing Fig. 

11(c) with Fig. 11(d) shows that the time series of LNC and LCC follow approximately 

the same trend, reflecting their relatively high correlation. As seen in Fig. 11(a and b), the 

highest values of LAI and LSM were predicted for the IRC9902 variety; the laboratory and 

field researches conducted in the study area have also indicated that this variety has more 

and larger leaves than the others. The considerable decrease in the predicted values of the 

variables, observed in mid to late August for the selected fields of all three varieties of the 

ratoon PC, and after 17th October for the selected field of the variety CP73-21_ratoon R4, 

is attributed to harvesting these fields. Due to rapid growth of the ratoon PC, its harvesting 

begins earlier than the other ratoons.

In general, quantitative assessment of the results indicates that the applied BRANN 

simultaneous retrieval model can provide predictions of the considered variables that 

reasonably represent the spatial and temporal variations of them. Considering different 

sugarcane varieties and ratoons shows that the predicted maps can well represent the 

differences between the phenology of the considered sugarcane varieties and ratoons.

4 Conclusion

This paper reports the outcomes of our efforts for retrieving LAI, LSM, LCC, and LNC 

of sugarcane from Sentinel-2 data. The multi-output BRANN was used to simultaneously 

retrieve the variables. The performance of BRANN was compared against that of the most 

conventional neural network, LM_ANN. To evaluate the performance of the simultaneous 

retrievals, individually retrieving each of the variables was also performed to compare their 

results. The statistical test comparing the performance of BRANN and LM_ANN indicated 

that BRANN outperformed LM_ANN in both simultaneous and individual retrievals. It is 

due to the capability of the model to penalize large network weights resulting in a more 

robust model with lower overfitting and higher generality. Statistical comparison between 

simultaneous and individual retrievals showed a marginal gain in accuracy and precision of 

the results applying simultaneously retrieval. Also, the simultaneous retrieval significantly 

reduced the runtime of the retrievals.

Investigating the retrievability of the variables by the BRANN model turned out that the 

variability level of the variable rules the quality of retrievals. According to this finding, LSM 
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having the lowest CV has been retrieved more accurately than the other variables; LNC, 

LCC, and LAI were ranked as the next most accurate retrievals, respectively.

Qualitative assessment of the results of the BRANN simultaneous retrieval model indicated 

that the retrievals reasonably represent the spatial and temporal variations of the variables. 

Generally, the variables were retrieved more confidently in vegetated areas than in non-

vegetated areas since the model was calibrated exclusively using training data collected from 

sugarcane fields.

This study confirms the usability of the BRANN simultaneous retrieval model providing 

more accurate and precise, and much faster retrievals of sugarcane variables from Sentinel-2 

images than those of conventional LM_ANN and individual retrievals. Our predictions of 

the sugarcane variables, especially the LSM and LNC predictions, are being used practically 

for irrigation and fertilizer management in the Amir Kabir Sugarcane Agro-Industrial zone, 

in the time of writing this paper.
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Fig. 1. Study area.
(a) The location of the case study; (b) The boundary of Amir Kabir Sugarcane Agro-

Industrial zone superimposed on Sentinel-2 image; (c) Distribution of ground measurement 

samples; (d) Map of sugarcane varieties; and (e) Map of sugarcane ratoons. Plant Cultivation 

(PC) represents newly cultivated sugarcanes. R1-R8 represent sugarcanes of ratoon1-8.
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Fig. 2. 
Laboratory proceedings for measuring (a and b) LSM; and (c and d) LNC.
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Fig. 3. Histogram and density plot of the measured variables
(a) LAI; (b) LSM; (c) LCC; and (d) LNC.
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Fig. 4. 
Comparing the performance of BRANN and LM_ANN in terms of averaged RMSE 

calculated for testing dataset for networks with (a) One-hidden layer; and (bi) two-hidden 

layer. The X-axis represents the number of neurons in hidden layers as: the number of 

neurons in the first hidden layer_ the number of neurons in the second hidden layer. The 

averaged RMSEs of the optimum network for BRANN and LM_ANN are presented as bold 

label.
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Fig. 5. 
Comparing the testing and training errors of LM_ANN in terms of averaged RMSE for 

networks with (a) One-hidden layer; and (b-i) two-hidden layer. The X-axis represents the 

number of neurons in hidden layers as: the number of neurons in the first hidden layer_ the 

number of neurons in the second hidden layer.
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Fig. 6. 
Comparing the testing and training errors of BRANN in terms of averaged RMSE for 

networks with (a) One-hidden layer; and (b-i) two-hidden layer. The X-axis represents the 

number of neurons in hidden layers as: the number of neurons in the first hidden layer_ the 

number of neurons in the second hidden layer.
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Fig. 7. 
Scatterplot of the measurements versus the BRANN estimations of (a) LAI; (b) LSM; (c) 

LCC; and (d) LNC, for the simultaneous retrieval, and (e) LAI; (f) LSM; (g) LCC; and (h) 

LNC, for the individual retrieval. Vertical error bar represents the standard deviation of the 

201 estimations. RMSE, RRMSE, R2, and MBE were calculated considering all samples.
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Fig. 8. RMSE of retrievals of BRANN and LM_ANN, applying individual and simultaneous 
retrievals.
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Fig. 9. 
Scatter plot of CV versus RRMSE for (a) LAI; (b) LSM; (c) LCC; and (d) LNC. The dotted 

red line represents the linear trend line. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 10. 
(a) Sentinel-2 image of 14th July 2020. The selected fields for the time series investigation 

at the third spatial scale are marked as colored rectangles. The map of (b1) LAI, (b2) LSM, 

(b3) LCC, and (b4) LNC predicted from the image; The Std. map of (c1) LAI, (c2) LSM, 

(c3) LCC, and (c4) LNC of the same date.
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Fig. 11. 
Time series of the predictions of (a) LAI; (b) LSM; (c) LCC; and (d) LNC. The time series 

made of the mean of the predicted values over: all sugarcane fields is shown as a bold black 

line; the fields of each considered variety is drawn as thin colored lines; and the selected 

field of the ratoons PC and R4 is presented as dashed and dotted colored lines, respectively.
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Table 1

Summary statistic of the statistical indicators obtained from BRANN results. The statistics include mean, 

median, and standard deviation (Std.) calculated based on the 201 bootstrap replicates. Retrieving time (in 

second) is given in the last two rows of the table.

Individual retrieval Simultaneous retrieval

LAI 
(m2/m2)

LSM (% 
wb)

LCC (μg/
cm2)

LNC (%) LAI 
(m2/m2)

LSM (% 
wb)

LCC (μg/
cm2)

LNC (%)

RMSE 
(Variable 
unit)

Mean 0.52 2.40 6.00 0.247 0.49 2.36 5.85 0.232

Median 0.51 2.38 6.03 0.247 0.48 2.37 5.85 0.232

Std. 0.09 0.26 0.49 0.022 0.07 0.23 0.49 0.022

RRMSE (%) Mean 40.48 2.96 16.81 16.41 38.32 2.92 16.40 15.46

Median 40.21 2.95 16.73 16.45 37.83 2.93 16.41 15.46

Std. 5.92 0.33 1.48 1.41 4.78 0.28 1.43 1.47

R2 (-) Mean 0.34 0.37 0.21 −0.01 0.41 0.40 0.24 0.09

Median 0.39 0.42 0.24 0.03 0.42 0.42 0.27 0.12

Std. 0.19 0.20 0.13 0.13 0.12 0.12 0.15 0.20

MBE 
(Variable 
unit)

Mean − 0.01 − 0.04 − 0.06 0.00 0.00 − 0.06 − 0.05 − 0.01

Median 0.00 − 0.03 0.03 0.00 0.00 − 0.05 0.05 − 0.01

Std. 0.10 0.45 1.11 0.05 0.10 0.43 1.08 0.04

Retrieving time(Second) 416 481 518 351 – – – –

Total time(Second) 1766 403
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Table 2
Statistical hypothesis test for comparing BRANN vs LM_ANN.

BRANN vs LM_ANN z-statistics p-value Median of RMSE (BRANN: LM_ANN)

Individual retrieval LAI −10.48 1.05e-25 (0.51: 0.67) ****

LSM − 8.64 5.47e-18 (2.38: 2.69) ****

LCC −10.19 2.02e-24 (6.03: 6.89) ****

LNC − 9.62 6.18e-22 (0.25: 0.30) ****

Simultaneous retrieval LAI − 2.39 0.017 (0.48: 0.50) *

LSM −10.96 5.57e-28 (2.37: 2.66) ****

LCC − 7.49 6.51e-14 (5.85: 6.33) ****

LNC − 2.66 0.008 (0.23: 0.24) *

*
significant at p < 0.05

**
significant at p < 0.005

***
significant at p < 0.001

****
significant at p < 0.0001.
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Table 3
Statistical hypothesis test for comparing simultaneous (Sim.) vs individual (Ind.) retrieval.

Sim. vs Ind. z-statistics t-score p-value Median of RMSE (Sim.: Ind.)

BRANN LAI  − 3.48 0.0004 (0.48: 0.51) **

LSM  − 2.33 0.02 (2.37: 2.38) *

LCC
7.61 

a 1.03e-12 (5.85: 6.03) ****

LNC
11.04 

a 1.84e-22 (0.23: 0.25) ****

LM_ANN LAI −11.46 2.03e-30 (0.50: 0.67) ****

LSM  −1.37 0.169
(2.66: 2.69) 

b

LCC − 7.66 1.72e-14 (6.33: 6.89) ****

LNC −10.50 8.56e-26 (0.24: 0.30) ****

a
RMSEs of LCC and LNC, applying BRANN in both simultaneous and individual retrievals, passed the Shapiro–Wilk normality test, so the 

statistical comparison of them was performed using the parametric paired sample t-test.

*
significant at p < 0.05

**
significant at p < 0.005

***
significant at p < 0.001

****
significant at p < 0.0001.

b
The alternative hypothesis is rejected.
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