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Introduction

Eustoma grandiflorum (lisianthus) is a Gentianaceae-family orna-

mental plant. Because of its enormous rose-like blossoms, long

stems and extended vase life, its sales have increased dramatically

in recent years, earning it the title of ‘next rose’. Selective

breeding has produced commercial lisianthus with a wide range

of flower colours and shapes (Figure S1a; Li et al., 2022). In

polyploid crops including wheat, cotton, peanuts and others,

polyploidy is critical for the development of high-quality traits

(Cheng et al., 2018). Polyploidy may also contribute to the

development of desirable traits in cultivated lisianthus. Here, we

report a high-quality chromosome-scale genome assembly for E.

grandiflorum (2n = 6x = 72) using a combination of PacBio HiFi

reads and Hi-C scaffolding technology and reveal that polyploidy

domestication of lisianthus contributes to ornamental traits in

cultivated lisianthus.

A total of 32.05 Gb (~23.56X) of PacBio HiFi data and 140.14

Gb (~103.04X) Hi-C data were generated for de novo whole-

genome sequencing. The total length of the assembly was 1.71

Gb, comprising 1056 contigs with a corresponding N50 of

7.33 Mb (Table S1), and 36 pseudo-chromosomes were assem-

bled (Figures S1 and S2, Table S2). BUSCO revealed a complete-

ness rate of 94.7% and a duplication rate of 31.6% (Table S5). A

total of 54 305 high-quality protein-coding genes were predicted

(Tables S3–S8). In addition, 77.85% of the genome was anno-

tated to be repeat sequences (Tables S9–S12).

Genome collinearity identified a large number of collinear

blocks with a ratio of 6 : 1 between E. grandiflorum and

Gelsemium sempervirens (Figure 1a), and a ratio of 2 : 1 between

E. grandiflorum and E. grandiflorum (Figure S3), indicative of

polyploidy events’ existence. To this end, the 36 pseudo-

chromosomes could be divided into three subgenomes, then 12

homologous groups with three sets of monoploid chromosomes:

A, B and C were obtained according to the transposable element

profiles (Figure S4, Table S10–S12). The reasonable collinearity

within subgenomes suggested that E. grandiflorum had experi-

enced a whole-genome duplication (WGD) event in the recent

history of E. grandiflorum (Figure S5). The Ks distribution further

confirmed that E. grandiflorum experienced a WGD event (Ks

peak value = 0.93) and a whole-genome triplication (WGT) event

(Ks peak value = 0.21) after divergence from Calotropis gigantea,

which is consistent with the ratio of 6 : 1 (E. grandiflorum: G.

sempervirens) and the evolutionary relationships depicted by the

phylogenetic tree (Figures 1a, S6–S7).
A total of 15 436 genes belonging to syntenic gene groups

resulting from the WGT event were found based on collinearity

across E. grandiflorum subgenomes, which were enriched in

processes of external stimulus response, anatomical structure

morphogenesis and biosynthetic process (Figure S8, Table S13).

Substantial copy number variations of transcriptional factors (TFs)

and structural genes participating in flavonoid/anthocyanin

biosynthesis were discovered as a result of WGT including MYBs,

bHLHs, CHIs, CHSs, DFRs, GTs and FLSs (Figures S9–S15). Thus, it
was hypothesized that the polyploidy event would enable the

breeding of colourful lisianthus varieties by providing enhanced

genetic materials for anthocyanin production. We also found that

numerous TFs regulating organ/flower development were gener-

ated by WGT, including floral identity genes in the MADS family,

and members in the TCP family and HD-Zip III family, which might

influence the formation of E. grandiflorum’s flower morphology

(Figures 1d, S16–S17).
To examine the genetic pathways regulating flower pigmen-

tation in lisianthus, we performed RNA-seq of petals in the purple

lisianthus (Purple01), the green lisianthus (Green01), the yellow

lisianthus (Yellow01), the red lisianthus (Red01) and ‘Rosita

White’ at different stages (bud stage, S1; turning stage, S2;

blooming stage, S3) and conducted weighted correlation
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network analysis (WGCNA) (Figure S18). Genes involved in

flavonoid biosynthesis were identified, and the putative antho-

cyanin biosynthesis pathway was depicted (Figures 1c, S11–S15,
S19). We found that FLSa was highly expressed in S1 and S2, and

was barely expressed in S3 (Figure 1b). In S3, we found that CHSa

expression level was significantly higher in all coloured cultivars

than in white cultivars, and ANSa/b displayed much higher

expression levels in both pink/red and blue/violet cultivars

(Figures 1b, S20). Moreover, compared to pink/red lisianthus,

blue/violet lisianthus showed higher F3050Ha/b levels (Figures 1b,

S20). Co-expression network reconstruction of the module

specific to S3 of lisianthus Purple01 (‘darkorange2’ module in

Figure S18) identified several MYBs co-expressed with F3050Ha
and ANSa/b; among them, MYB32a, MYB32b and MYB8b

showed high expression levels in S3 of lisianthus Purple01 similar

to those of F3050Ha and ANSa/b during flower development

(Figures 1b, S21). As a result, we suggested that in lisianthus

CHSa, ANSa/b, F3050Ha/b, MYB32a/b and MYB8b codetermine

blue/violet flower coloration, CHSa and ANSa/b codetermine

pink/red flower coloration and CHSa determines yellow flower

coloration (Figure 1c).

Instead of accumulating anthocyanins in the blooming stage,

green lisianthus varieties synthesize and accumulate large

amounts of chlorophylls, leading to green phenotypes. CHLMa,
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Figure 1 (a) Alignment of Eustoma grandiflorum chromosomes with Gelsemium sempervirens scaffolds. (b) Histograms showing expression profiles of

essential regulators of flower coloration in lisianthus. S1, bud stage; S2, turning stage; S3, blooming stage. FLS, flavonol synthase; CHS, chalcone synthase;

ANS, anthocyanidin synthase; F3050H, flavonoid 30,50-hydroxylase; CRD, Mg-protoporphyrin IX monomethyl ester cyclase; CHLH/D/I, Mg-chelatase subunits

H, D and I; PORA/B/C, protochlorophyllide reductase. (c) A proposed model of flower coloration in lisianthus. The potential simplified anthocyanin

biosynthesis pathway in lisianthus is depicted. CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F30H, flavonoid 30-hydroxylase; DFR,
dihydroflavonol-4-reductase; GT, glucosyltransferase; AT, acyltransferase. Essential regulators of flower coloration in lisianthus are in red fonts. The main

pigments refer to the reference (Gao and Li, 2020). (d) A proposed floral development model of lisianthus based on the expression patterns of floral identity

genes. Heatmap shows the number of MADS genes across various species. (e) Histograms showing the expression levels of C-class MADS genes in

lisianthus. In all samples, AGL1d is zero in FPKM, hence it is not displayed.
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CRDa and PORA/B/Ca were assumed to be important regulators

of chlorophyll biosynthesis in petals since they had the highest

expression levels in S3 in lisianthus Green01 (Figure 1b). Multiple

genes involved in photosynthesis, including those encoding

Chlorophyll a/b-binding proteins (CABs), were found to be co-

expressed with CHLMa, CRDa and PORA/B/Ca, suggesting that

these CABs might also play important roles in green petal

formation by inhibiting chlorophyll degradation via forming

antenna complexes with free chlorophylls (Figures S22–S24).
Based on the same expression patterns of genes involved in

chlorophyll synthesis and photosynthesis (e.g. CABs) in the tan

lisianthus with those in lisianthus Green01, it is possible that

chlorophylls were also pigments in the tan lisianthus (Figures 1c,

S24–S25).
In lisianthus, a total of 120 MADS-box genes were identified,

including 27 floral organ identity genes (three A-class genes, nine

B-class genes, four C-class genes, one D-class genes and 10 E-

class genes; Figures 1d, S26–S28). The floral development model

in E. grandiflorum was constructed according to floral identity

genes’ expression profiles (Figures 1d, S30). We found that

multiple floral organ identity genes were generated by WGT,

including B-class AP3s, C-class AGL1s and E-class AGL9s, which

might influence the evolution of E. grandiflorum’s flower

morphology (Li et al., 2022; Figure S29). ‘Rosita White’ and

‘Wavy White’ are two popular lisianthus cultivars, which have

flat-shaped petals and wave-shaped petals respectively. We

found that AGL1a, a C-class MADS gene, was highly expressed

in the stamen and carpel of ‘Rosita White’, while it was barely

expressed in all the flower tissues of ‘Wavy White’, potentially

due to differences in cis-acting regulatory elements between their

promoters (Figures 1e, S30–S31). It was reported that the

absence of C-class MADSs could result in the double-flower

phenotype. Thus, we speculated that AGL1a could be linked to

the more apparent double-flower phenotype with more petal

numbers of ‘Wavy White’ (Figure S32).

In summary, we present the chromosome-level genome of E.

grandiflorum and identify the key candidate genes involved in

flower coloration and morphology, which will speed up the

molecular breeding of E. grandiflorum in the future.
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