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Abstract: This research is focused on obtaining antimicrobial hybrid materials consisting of
poly(lactide) nonwoven fabrics and using phosphoro-organic compound—fosfomycin—as a coating
and modifying agent. Polylactide (PLA) presents biodegradable polymer with multifunctional
application, widely engaged in medical related areas. Fosfomycin as functionalized phosphonates
presents antibiotic properties expressed by broad spectrum of antimicrobial properties. The analysis
of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included:
scanning electron microscopy (SEM), UV/VIS transmittance, FTIR spectrometry, air permeability.
The functionalized nonwovens were tested on microbial activity tests against colonies of gram-positive
(Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria.

Keywords: poly(lactide) nonwoven fabric; fosfomycin; phosphomycin disodium salt; phosphonomycin;
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1. Introduction

Polylactide (PLA) presents polymers of multifunctional application, widely used in medical related
areas [1]. PLA hybrids with antibacterial additivities (bactericide agents) provide antiseptic properties,
and therefore are applied in a variety of medical applications, namely, such as bioactive fibers for drug
delivery [2–18], for tissue engineering applications [19–22], forwound healing materials [23–26] and
membranes for efficient treatment of burns [27,28].

As one group of such potential additives/components, they can serve as functionalized
phosphonates. Functionalized phosphonate compounds, especially amino-phosphonates, are known
for their significant biological activity [29]. The list of representative biologically active phosphonates
is presented in Table 1.

Table 1. Structures, names, mode of actions and application area of representative biologically active
functionalized phosphonic acid derivatives.

Name (Abbreviation) /a Structure /b Origin Action/Application /c Ref.

Phospho-glycine
(GlyP)
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Phospho-glycine 

(GlyP) 

 

P

O
-

OH
C
H

2

O

H
3
N

+

 

Primary PMG 

metabolite 

Inhibition of 

prostate 

cancer cell 

growth (in 

vitro), 

phytotoxin 

[30,31] 

 

Primary PMG
metabolite

Inhibition of prostate cancer
cell growth (in vitro),

phytotoxin
[30,31]
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Table 1. Cont.

Name (Abbreviation) /a Structure /b Origin Action/Application /c Ref.

β-AlaP

(β-phosphono-alanine,
2-AEP, ciliatine)
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propyl)-
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O
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[42–46] 

 

ϖ-Aminoalkyl-

phosphonic 
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O
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OH
n

 

 

Artificial 
Neuroactive 
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[47] 
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bisphosphonic 
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(ϖ-AAP,P) 

H
3
N
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C
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C
n

 

P
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O

O
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OH

O

OH

OH
X

 
X = H, OH, halogen 

Artificial 

Inhibition of 

osteoclastic 

bone 

resorption 

[48–51] 

The first and most
abundant natural AAP [32,33]

Phosphino-thricin
GluγP(Me)

(phosphino-thricin, PPT)
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Produced by strains of
Streptomyces herbicide

Inhibition of glutamine
synthetase

(E.C. 6.3.1.2)
[34]

PMG
(Phosphono-Methyl-Glycine;

Glyphosate)
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[35,36]

Alafosfalin
Ala-AlaP

(alaphosphin; alafosfalin)
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Artificial antibiotic,
against gram-negative
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bacteria.
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5.1.1.1).
[37–41]

Fosmidomycin
((3-(Formyl-hydroxy-amino)-

propyl)-phosphonic acid;
The phosphonate antibiotic

FR-31564
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[42–46]

$-Aminoalkyl-phosphonic
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($-AAP)
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a/ Applied abbreviations according to the general rules elaborated by Kudzin at al. [59,60]. b/ Applied in the
form of free phosphonic acids or their salts. c/ Applied enzymes/procedures abbreviations: DXR—deoxyxylulose
phosphate reductoisomerase; UTIs—uncomplicated urinary tract infections; 5-Enolpyruvylshikimate 3-phosphate
(EPSP) synthase. (EC 2.5.1.19).

Fosfomycin (cis-1,2-epoxypropylphosphonic acid) exhibits broad spectrum activity against
numerous bacterial, both gram-positive and gram-negative pathogens, including resistant and
multi-resistant strains (Table 1).Fosfomycin acts as a bacterial cell wall inhibitor in the bacteria growth
phase, interfering with the first committed step in peptidoglycan biosynthesis. Specifically, Fosfomycin
irreversibly inhibits the UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme by covalent
modification of MurA (Figure 1), responsible for catalyzing the formation of N-acetylmuramic acid
(precursor of peptidoglycan) [54].
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Figure 1. Mechanism of action of fosfomycin on the UDP-N-acetylglucosamine enolpyruvyl transferase
enzyme (MurA).

Due to the fact that Gram-positive and Gram-negative bacteria require the formation of
N-acetylmuramic acid for the synthesis of peptidoglycan, fosfomycin’s antibacterial spectrum is very
broad, and there is no possibility of crossed resistances with this compound. This antibiotic has therefore
been employed for treating infections by multidrug-resistant pathogens such as methicillin-resistant
Staphylococcus aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS),
vancomycin-resistant enterococci (VRE), penicillin-resistant Streptococcus pneumoniae,
extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, carbapenemase-producing
Enterobacterales (CPE) and multidrug-resistant Pseudomonas aeruginosa [51].

Fosfomycin was accepted into clinical practice in the early 1970s [54,56]. Its use, however, has
been limited for several years for treating mainly lower uncomplicated urinary tract infections (in the
form of fosfomycin trometamol taken orally). Therefore, the application of fosfonomycin as an additive
to various PLA medical utilities seems to be highly rational. However, the recent paper of Gulcuet al.
revealed that the application of the PDL-fosfomycin hybrid used by authors in implant coating for the
prevention of implant-related infections afforded worse results than corresponding hybrids based on
PLA-gentamycin [58]. To dissolve these discrepancies, we undertook wide investigations on polymer
hybrids, based on polylactide (PLA) nonwoven fabric modified on the surface by fosfomycin (FOSM).

As part of our research program directed on biologically active functionalized phosphonates [59–63],
and their grafting on polymer matrix [64,65], we present the preparation, and physico-chemical and
biological properties of PLA–FOS polymer hybrid.

2. Materials and Methods

2.1. Materials

2.1.1. Polymers

Poly(lactic acid) (PLA) granulate was purchased from NatureWorks LLC (Minnetonka, Minnesota,
USA), type Ingeo™ Biopolymer 3251D, MFR = 30—40 g/10min (190 ◦C/2.16 kg), Tmp = 160—170 ◦C in
the form of granulates, and was used for the fabrication of nonwoven samples.

2.1.2. Chemical Agents

Fosfomycin[(−)-(1R,2S)-(1,2-Epoxypropyl)phosphonic acid,C3H5Na2O4P] from Sigma-Aldrich
(St. Louis, MI, USA) was used for the surface modification of polymer nonwovens.

2.1.3. Finishing Agents

Lutexal Thickener HC (BASF, Ludwigshafen, Germany) – polyacrylate, ammonia salt as the
thickening agent, ensures the viscosity and appropriate grip of product;

Pluriol 600 (BASF, Ludwigshafen, Germany) - poly(ethylene glycol) of molar mass 600 g/mol
as the wetting agent, prevents the formation of agglomerates in coating paste and uniformity in
coating dispersion;

Revacryl 247 (Synthomer, Essex, UK)- dispersion of low viscosity styrene-acrylic ester copolymer,
combines all ingredients of coating paste with nonwoven fabric.
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2.1.4. Bacterial Strains

Escherchia coli (ATCC 25922); Staphylococcus aureus (ATCC 6538) bacterial strains were purchased
from Microbiologics (St. Cloud, MN, USA).

2.2. Methods

2.2.1. Nonwoven Fabrics

Poly(lactic acid) nonwovens were fabricated by the melt-blown technique, analogously as
polypropylene nonwovens [65], using a one-screw laboratory extruder (Axon, Sweden) with a head
with 30 holes of 0.35 mm diameter each, compressed air heater and collecting drum. Processing
parameters for fabrication of poly(lactic acid) nonwoven are presented in Table 2.

Table 2. Technique processing parameters applied for preparation of Poly(lactic acid) nonwoven.

Processing Parameters

Temperature of the extruder in zone 1 195 ◦C

Temperature of the extruder in zone 2 245 ◦C

Temperature of the extruder in zone 3 260 ◦C

Head temperature 260 ◦C

Air heater temperature 260 ◦C

Air flow rate 7–8 m3/h

Mass per unit area of nonwovens 102 g/m2

Polymer yields 6 g/min

2.2.2. Dip-Coating Modification of Poly(lactic acid) Nonwoven

Poly(lactic acid) nonwoven fabrics were modificated by the dip-coating method, analogously
as polypropylene nonwovens [65]. The coating pastes of homogeneous dispersion and appropriate
viscosity (70 dPas) were prepared based on styrene-acrylic resin, thickening agent, wetting agent and
water. Component composition of used pastes is listed in Table 3.

Table 3. Component composition of used pastes [%].

Components g %

styrene-acrylic resin 6 6

thickening agent 1 1

wetting agent 3 3

water 90 90

Fosfomycin powder was added into the paste in 3 variants of concentrations: 0.005%, 0.01%,
0.1%and then mixed for 10 min.

The poly(lactic acid) (PLA) nonwoven samples were impregnated with the paste, squeezed and
dried to the constant weight for 5 h at a temperature of 50 ◦C. The increase of sample dry mass after
modification was 15%.

2.2.3. SEM—Scanning Electron Microscopy

The scanning electron microscope analysis was performed on a TESCAN VEGA 3 SEM microscope
(Czech Republic). The SEM microscopic examination of the surface topography was carried out in a
high vacuum using the energy of the probe beam 20 ekV. The surface of each preparation was sprayed
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with a conductive substance (gold), using a Quorum Technologies Ltd. (UK) vacuum dust extractor.
Magnification was 100×, 5000× and 20,000×.

2.2.4. ATR-FTIR—Attenuated Total Reflection Fourier Transform Infrared Spectroscopy

The chemical structure of poly(lactic acid) surface of nonwovens were assessed using ATR-FTIR
spectroscopy in the range of 400–4000 cm−1 using a spectrometer Jasco’s 4200 (Tokyo, Japan) with ATR
attachment Pike Gladi ATR (Cottonwood, AZ, USA).

2.2.5. UV-VIS Analysis

Changes of the physical properties as transmittance [%T] of poly(lactic acid) nonwoven fabrics,
after coating modifications, were assessed using a double beam Jasco V-550 UV-VIS spectrophotometer
(Tokyo, Japan) with integrating sphere attachment in the range: 200–800 nm.

2.2.6. Filtration Parameters

Air permeability of poly(lactic acid) nonwoven fabrics were determined for one layer of the
nonwoven sample and the test, and were performed according to EN ISO 9237:1998 standard,
analogously as polypropylene nonwovens [65]. An FX 3300 TEXTEST AG (Klimatest, Poland)
permeability tester was used. Air at a pressure of 100 Pascal and 200 Pascal was passed through a
fabric area of 20 cm2 diameter for testing. An average of 10 values was taken to be the final value of
the sample.

2.2.7. Tensile Testing

Tensile testing of poly(lactic acid) nonwoven fabrics were carried out in accordance with the EN
ISO 10319:2015-08 standard, analogously as polypropylene nonwovens [65]. A Tinius Olsen H50KS
(Horsham, Pennsylvania, USA) tester was used. Stretching speed was 20 mm /min.

2.2.8. Microbial Activity

The antibacterial activity of resulting poly(lactic acid)nonwoven fabrics were tested according
to PN-EN ISO 20645:2006 (Textile fabrics—Determination of antibacterial activity—Agar diffusion
plate test) against a colony of gram-negative bacteria: Escherchia coli (ATCC 25922) and gram-positive
bacteria: Staphylococcus aureus (ATCC 6538), analogously as polypropylene nonwovens [65].

Antibacterial activity of modified poly(lactic acid) nonwoven fabrics were tested by the agar
diffusion method using Muller Hinton medium agar. The test was initiated by pouring each agar onto
sterilized Petri dishes and it was allowed to solidify. The surfaces of agar media were inoculated by
overnight broth cultures of bacteria (ATCC 25922: 2.2 × 108 CFU/mL, ATCC 6538: 1.9 × 108 CFU/Ml).
Samples of sterile PLA discs (10 mm) were charged with coating pastes with various amounts of
fosfomycin (Table 7) and then discs with hybrids PLA/Fosfomycin were placed onto the inoculated agar
and incubated at 37 ◦C for 24 h. The diameter of the clear zone around the sample was measured as an
indication of inhibition of the microbial species. All tests were carried out in duplicate. Simultaneously,
the same tests were carried out for control samples—samples of unmodified nonwoven fabrics.

3. Resultsand Discussion

The analysis of the biofunctionalized poly(lactide) nonwoven fabrics covered: scanning electron
microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR),
UV/VIS transmittance, and technical parameters: filtration parameters, tensile properties.The activity
against representative gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) of
nonwoven fabrics modified by fosfomycin has been performed.
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3.1. Scanning Electron Microscopy

Scanning electron microscopy (SEM) presents the routine technique for morphological
investigations of polylactide nonwovens, both electrospin PLA [66–71] as well as melt-blown
PLA [72–81] fibers. Scanning electron microscopy spectra of polylactide nonwoven and polylactide
nonwoven coated with Fosfomycin modifier are presented in Figures 2 and 3, respectively.
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Figure 3. The SEM result of Polylactide nonwoven with fosfomycincoating (PLA-MOD), magnification
100× (a), 5000× (b) and 20,000× (c).

SEM spectra of PLA nonwovens present uniform randomly oriented nanofibers, with
interconnected pores (space) between the nanofibers and relatively smooth surface. The average
diameters of PLA nanofibers range from 3 to 8 µm, (Figure 2b,c).

Morphological changes of PLA after a surface deposition of fosfomycin lead to more random
orientation of the fibers, with a more rough surface, covered with dots of the modifier (Figure 3c).
These are much more subtle than described for the modification of polypropylene nonwoven with
Ala-AlaP [65].

3.2. ATR-FTIR Spectra

Comparison of ATR-FTIR spectra of fosfonomycin, polylactide nonwoven (PLA) and
polylactide nonwoven charged with fosfonomycin (PLA-MOD) is presented in Figures 4–6,
respectively. Characteristic FTIR signals of fosfonomycin, and polylactide nonwoven (PLA)and
polylactide–fosfonomycin nonwoven hybrid (PLA/fosfonomycin) are summarized in Table 4.



Polymers 2020, 12, 768 7 of 16
Polymers 2019, 11, x FOR PEER REVIEW 8 of 17 

 

 

Figure 4. ATR-FTIR spectrum of fosfonomycin. 

 

Figure 5. ATR-FTIR spectrum of the polylactide nonwoven (PLA) and nonwoven sample coated by 

paste concentrations 0.1%fosfomycin (PLA-MOD). 

Figure 4. ATR-FTIR spectrum of fosfonomycin.

Polymers 2019, 11, x FOR PEER REVIEW 8 of 17 

 

 

Figure 4. ATR-FTIR spectrum of fosfonomycin. 

 

Figure 5. ATR-FTIR spectrum of the polylactide nonwoven (PLA) and nonwoven sample coated by 

paste concentrations 0.1%fosfomycin (PLA-MOD). 
Figure 5. ATR-FTIR spectrum of the polylactide nonwoven (PLA) and nonwoven sample coated by
paste concentrations 0.1%fosfomycin (PLA-MOD).Polymers 2019, 11, x FOR PEER REVIEW 9 of 17 

 

 

Figure 6.FTIR bands determined forfosfonomycin in wave number: 1410 cm−1 in spectra of the 

nonwoven sample coated by paste with Fosfomycin (PLA-MOD). 

Table 4. Characteristic FTIR bands determined for fosfomycin (Fosfm), polylactide (PLA) and the 

fosfomycin–polylactide nonwoven hybrid (PLA/Fosfm). 

PLA [82] 

IR  

[/ cm−1]; 

Intensity 

2997; 

M 

 

2947; 

M  

 

1760;  

VS  

 

1452; 

S 

1348–

1388; 

S 

1368–

1360; 

S 

1270; 

S 

1215- 

1185; 

VS 

1130; 

S 

1100–

1090; 

VS, sh 

10

45

; 

S 

Assign- 

ment 

as 

CH3 

s 

CH3 
 C=O 

δas 

CH3 

δs 

CH3 

δ1 CH 

+  δs 

CH3 

δCH+   

 
COC 

as 

COC 

+rasCH

3 

rasCH3 
s COC 

 

 
C-

C

H

3 

Fosfomycin (Fosfm) [83] 

FosfmNa2  (Nujol) 

IR  

[/ cm−1]; 

Intensity 

 

 3010  
1414

w 
  

1270

w; 

1260 

w 

 

1125s; 

1096 

vs 

1008m  

Assign- 

ment 
 

(C–

H) 

(ring) 

 
δ 

(CH3) 
  

Ring  

breat

h 

 
a 

(PO32−) 
a (PO32−)  

FosfmCa×H2O (KBr) 

IR  

[/ cm−1]; 

Intensity 

 

 
3000

w 
 

1423

w; 

1419s

h 

  
1262 

vw 
 

1095 

vs 
1017m  

Assign- 

ment 
 

(C–

H) 

(ring) 

 
δ 

(CH3) 
  

Ring  

breat

h 

 
a 

(PO32−) 
a (PO32−)  

Legend: ν– stretching vibration, δ – deformation, sh = shoulder; s = symmetric; as = asymmetric; VS = 

very strong; S = strong; M = medium; w = weak. 

The IR spectrum ofpolylactide nonwoven coated by coating paste with 

0.1%fosfomycinconcentrations (PLA-MOD) reveals the band derived from representative band of 

herbicidal agent, namely at 1410 cm−1. 

Figure 6. FTIR bands determined forfosfonomycin in wave number: 1410 cm−1 in spectra of the
nonwoven sample coated by paste with Fosfomycin (PLA-MOD).



Polymers 2020, 12, 768 8 of 16

Table 4. Characteristic FTIR bands determined for fosfomycin (Fosfm), polylactide (PLA) and the
fosfomycin–polylactide nonwoven hybrid (PLA/Fosfm).

PLA [82]

IR
[ν/cm−1];
Intensity

2997;
M

2947;
M

1760;
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1452;
S

1348–1388;
S

1368–1360;
S
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S
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1130;
S
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δ1 CH +
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δ CH +
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ras CH3
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νs
COC

ν

C-CH3

Fosfomycin (Fosfm) [83]

FosfmNa2 (Nujol)

IR
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1260 w

1125 s;
1096 vs 1008 m
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Legend: ν—stretching vibration, δ—deformation, sh = shoulder; s = symmetric; as = asymmetric; VS = very strong;
S = strong; M = medium; w = weak.

The IR spectrum ofpolylactide nonwoven coated by coating paste with
0.1%fosfomycinconcentrations (PLA-MOD) reveals the band derived from representative band of
herbicidal agent, namely at 1410 cm−1.

3.3. UV/VIS Transmittance Spectra

Transmittance spectra [%T] of polypropylene nonwoven samples (PLA) and coated nonwoven
sample with fosfomycin modifier (PLA-MOD) in the range λ = 200–800 nm are presented in Figure 7.
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Figure 7. Comparison of transmittance spectra [%T] of polylactide nonwoven samples without (PLA)
and with Fosfomycin coating (PLA-MOD) in the range λ = 200–800 nm.

Transmittance (%T) spectra in the range λ = 200–800 nm of samples after modification revealed
changes in macrostructure of the nonwoven after coating modification, expressed by the depress of
transmittance ability in the all range of measuring spectra. Here, only the transmittance spectra of
nonwoven coated by paste concentrations 0.1%fosfomycin (PLA-MOD) samples are shown, because
the transmittance spectra’s nonwovens with different fosfomycin contents had the similar spectral
characteristics and transmittance.
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3.4. Technical Parameters

Technical parameters of coatedpolylactide nonwovens focused on filtration parameters and
tensile strength. Filtration parameters expressed by the air permeability were detected for clean
polylactide nonwoven and coatednonwovens. All these results are shown in Table 5 and indicated
that modifications decreased, roughly two times (910 vs. 400–449 at 100 Pa and 880–890 at 200 Pa,
respectively), the filtration properties of all nonwoven samples. Modified nonwoven samples with
different fosfomycin contents had approximately a similar result for filtration properties. The fosfomycin
content in the applied coating pastes on the polylactide nonwoven exhibit only slight effects on the
filtration properties.

Table 5. The air flow resistance of modified polylactide (PLA) nonwovens, according to: EN ISO
9237:1998.

Parameter PLA

PLA-Fosfomycin
[% Fosfomycin paste concentr.]

0.005% 0.01% 0.1%

Average air permeability
[mm/s], pressure

decrease:

100 Pa 910 442 440 449

200 Pa 1677 880 876 891

The results have been measured in triplicate and presented as a mean value with ± deviation approximately 2%.

The testing results of tensile strength durability for stretching [kN/m] and relative elongation at
maximum load [%] of polylactidenonwoven fabrics and modified polylactide (PLA) nonwovensare
listed in Table 6.

Table 6. Results of tensile strength test of modified polylactide (PLA) nonwovens.

Parameter PLA

PLA-Fosfomycin
[% fosfomycin paste concentr.]

0.005% 0.01% 0.1%

Tensile strength[kN/m] 0.032 0.117 0.120 0.115

Relative elongation at
maximum load [%] 10.0 9.720 9.930 10.102

The results have been measured in triplicate and presented as mean value with ± deviation approximately 2%.

The results show increased oftensile strength for modified PLA nonwovens (0.120 [kN/m]) in
comparison with unmodified nonwoven (0.032 [kN/m]). There are no significant effects of modification
on relative elongation of tested samples.

3.5. Antimicrobial Activity

The polylactide nonwoven (PLA), and polylactide nonwoven charged with fosfonomycin
(PLA-MOD) were subjected to antimicrobial activity tests against gram-negative E. coli (ATCC11229)
and gram-positive S. aureus (ATCC 6538) [84–86] (Table 7).

The results of these studies prove antimicrobial protection against different bacterial
microorganisms of biofunctionalized materials. Even only a 0.005% concentration of Fosfomycin
coating paste applied on polylactic acidnonwovens provides antimicrobial properties for E. coli and
against S. aureus (Table 7), expressed by bold visible inhibition zones of bacterial growthin Petri dishes
(Figures 8 and 9).
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Table 7. Results of tests on the antibacterial activity of fosfomycin modified nonwovens.

Sample No.

Fosfomycinon
PLAnonwovens

Bacterial Average Inhibition
ZoneGrowth for Bacteria (mm)

Fosfomycin Coating Pastes
Concentrations (%) E. coli S. aureus

1 0 0 0
2 0.005 3–4 5
3 0.01 4–5 6
4 0.1 5–6 6

Concentration of inoculum (bacterial suspension) amount of live bacteria. - E. coli: CFU/mL = 2.2 × 108. - S. aureus:
CFU/mL = 1.9 × 108.
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4. Conclusions

As the consumption of disposable nonwoven products with short life increases, biodegradable
polymers have great potential in use. On the other hand, demand for nonwovens is continually
increasing. Polylactic acid (PLA) brings environmental benefits and can be used for the production of
nonwoven fabrics.

This study focused on the functionalization of PLA nonwoven by the coating of bioactive
compounds—Fosfomycin, into/on to the surface of their fibers. Fosfomycin is a low cost commercial
antibiotic of natural occurrence, originally produced by certain types of Streptomyces, characterized by
safety of use. The structure and mechanical properties of the obtained new biofunctionalized PLA
nonwoven products were characterized by scanning electron microscopy (SEM), UV/VIS transmittance,
FTIR spectrometry, and air permeability. This work has shown that our coating technology can be
used to prepare new biodegradable or, “eco-friendly” biocomposite products with good mechanical
properties. A significant attribute of the described process is uncomplicated, safe of implementation
on an industrial scale and low production costs. All of the chemical agents and finishing agents
which were used in this work are popular and easily available. The specific advantage of using
hybrid materials based on polylactic acid (PLA) is the selected application in biomedical areas as an
antibacterial material.
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71. Matysiak, W.; Kapica, A.; Tański, T.; Dubiel, A. Analysis of the influence of electro spinning process
parameters on the morphology of poly(Lactic acid) fibres. Arch. Mater. Sci. Eng. 2019, 96, 73–78. [CrossRef]
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