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Abstract: Radial glia-like cells in the hypothalamus and dorsal vagal complex are neural precursors
(NPs) located near subventricular organs: median eminence and area postrema, respectively. Their
strategic position can detect blood-borne nutrients, hormones, and mitogenic signals. Hypothalamic
NPs increase their proliferation with a mechanism that involves hemichannel (HC) activity. NPs can
originate new neurons in response to a short-term high-fat diet as a compensatory mechanism. The
effects of high carbohydrate Western diets on adult neurogenesis are unknown. Although sugars
are usually consumed as sucrose, more free fructose is now incorporated into food items. Here, we
studied the proliferation of both types of NPs in Sprague Dawley rats exposed to a short-term high
sucrose diet (HSD) and a control diet. In tanycyte cultures, we evaluated the effects of glucose and
fructose and a mix of both hexoses on HC activity. In rats fed an HSD, we observed an increase in the
proliferative state of both precursors. Glucose, either in the presence or absence of fructose, but not
fructose alone, induced in vitro HC activity. These results should broaden the understanding of the
nutrient monitoring capacity of NPs in reacting to changes in feeding behavior, specifically to high
sugar western diets.
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1. Introduction

In addition to the well-characterized adult neurogenic niche in rodents, such as the
dentate gyrus of the hippocampus, the subventricular zone of the lateral ventricles, and
lately, the hypothalamus [1–4], the conception of additional non-conventional neurogenic
niches, such as the dorsal vagal complex (DVC) has broadened in the last decades [5].
The DVC region includes a set of nuclei located in the caudal brainstem, reaching the
area postrema (AP) at the most posterior part of the fourth ventricle (4V), thus sharing
an essential characteristic with the hypothalamus, i.e., its proximity to circumventricular
organs (CVOs) [6]. This allows them to chemo-detect blood-borne nutrients and hormones,
that may serve as a trophic cue for generating new neurons.

While the hypothalamus is the major regulatory center of energy balance and instinc-
tive behaviors, such as feeding and reproductive behaviors, the DVC is the main integrative
center of the autonomic nervous system, responsible for controlling the cardiovascular,
respiratory, and gastrointestinal reflex functions [7]. Moreover, the functional role of hy-
pothalamic neurogenesis has been extensively attributed to sustaining energy balance and
body weight after dietary insults [2,8–16]. High fat has been one of the most studied causes
of diet-triggered hypothalamic neurogenesis [2,8,9,11,17]. Although it is well known that
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Western diets include high sugar amounts, the possible effects of carbohydrates in adult
neurogenesis are still not fully understood. The consumption of sugars is normally given
in the form of glucose-fructose disaccharide naturally present in various foods such as
fruits and honey, but nowadays more free fructose is incorporated into groceries [18,19].
Worldwide, the intake of high caloric fructose-sweetened snacks and beverages has risen
proportionally with overweight [20].

The best-known peripheral effects of carbohydrate consumption are metabolic diseases.
In particular, the metabolic complications attributable to excessive fructose consumption
are largely due to increasing de novo hepatic lipogenesis [21,22]. Compared to glucose,
fructose strongly promotes lipogenesis, not only serving as a substrate for fatty acid synthe-
sis but also stimulating the transcriptional expression of de novo lipogenic enzymes and
promoting the activation of lipogenic transcription factors by insulin non-related molec-
ular pathways [23–25]. Indeed, subjects consuming fructose-sweetened beverages have
decreased postprandial fat oxidation along with decreased resting energy expenditure,
compared with subjects consuming an equivalent level of calories in glucose-sweetened bev-
erages [26]. In addition, recent studies showed that these two hexoses differentially affect
mitochondrial size, protein acetylation, and mitochondrial function, particularly fatty acid
β-oxidation [27]. Thereby, due to their differing metabolism, glucose or fructose enriched
diets may differentially contribute to physiological and pathophysiological processes.

Notably, these monosaccharides have also been shown to have opposite effects on
the control of food intake in the brain: intracerebroventricular (i.c.v.) glucose admin-
istration decreases food intake, whereas centralized fructose administration increases
feeding [28]. Indeed, in contrast with glucose, fructose metabolism in the CNS provokes
a drop in the ATP/AMP ratio, increased protein kinase, AMP-activated (AMPK) activity,
decreased Acetyl-CoA carboxylase (ACC) activity, and lowered malonyl–CoA in the hy-
pothalamus [28]. However, it is unknown if both hexoses are similarly incorporated by
nutrient-sensing hypothalamic cells and the metabolic and signaling consequences of their
glial assimilation have yet to be identified.

Glucose transporters, GLUT2 and GLUT5, are localized in tanycytes, and both trans-
port fructose [29]. Particularly, inhibition of Glut2 expression specifically in hypothalamic
tanycytes decreased food intake in rats [30], suggesting an important role of fructose-
sensing in feeding behavior. Tanycytes detect changes in glycemia and glycorrhachia, by
directly contacting fenestrated capillaries of the median eminence (ME) and cerebrospinal
fluid (CSF), respectively, and modulating the activity of neurons involved in the control
of food intake [31–34]. Tanycytes are the hypothalamic neural precursor cells that prolif-
erate and differentiate into fully functional orexigenic/anorexigenic neurons, which can
be activated upon detection of peripheral metabolic changes [2–4,8,35,36]. The molecular
mechanisms that induce tanycytes to proliferate after metabolic insults/signals need to
be elucidated. A possible explanation lies in the purinergic signaling triggered after the
activity of hemichannels (HC) [37]; a similar pathway that can be evoked by high glucose
exposure [38].

Morphologically similar to hypothalamic tanycytes, radial glia-type cells named vaglio-
cytes have been identified in the AP [39]. They share neural precursor typical markers [40],
form a barrier at the boundary of the AP and the nucleus tractus solitarius (NTS) [41],
and are able to form neurospheres [42]. Furthermore, in the NTS of adult mice, newborn
neurons have been detected by BrdU incorporation and doublecortin or polysialylated
neural cell adhesion molecule (PSA-NCAM) colocalization [40,43].

The impact of sugary diets on the generation of new neurons has been evaluated. It
has been shown that fructose, but not glucose consumption reduces hippocampal neuroge-
nesis [44]. Behavioral studies showed that the fructose-induced decline of neurogenesis
leads to an impairment in cognitive functions [45], highlighting the impact of the fructose
intake on neurogenesis-driven behavioral effects. However, the consequences of a high
sugar diet on brain regions neurogenesis in direct contact with blood or CSF, such as the
hypothalamus and DVC, are mainly unknown.
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Here, we investigated the proliferation of rat tanycytes and vagliocytes exposed to a
short-term high-sucrose diet (HSD; glucose plus fructose), compared to a branched low-
absorption polysaccharide starch diet used as a control. Our results showed that these
diets applied over 8 days did not affect body weight. Moreover, only HSD induced a high
glycemic condition. We detected an enhanced proliferation of β-tanycytes and AP Nestin+
cells in rats dietary exposed to high sucrose. In tanycyte cultures, we were able to separate
the effects of the monosaccharides on HC activity and detected that glucose, either in the
presence or absence of fructose, but not fructose alone induces HC activity. These results
will broaden the understanding of the nutrient monitoring of NPs in reacting to changes in
the feeding behavior, specifically to high-sugar Western diets.

2. Materials and Methods
2.1. Ethics Statement

Animal experiments were carried out in accordance with the ARRIVE guidelines
(https://arriveguidelines.org, accessed on 1 July 2021). All the studies that were carried out
using rats were approved and reviewed by the animal ethics committee of the research and
development national agency (ANID, N◦1180871), by the ethics committee of the faculty of
biological sciences of the Universidad de Concepción, Chile. Sprague Dawley adult rats
were housed on a 12 h light/dark cycle with free access to food and water. Data were not
pre-registered; all information is given in the manuscript and original data will be made
available upon request.

2.2. Primary Culture of Tanycytes

The primary cultures of rat tanycytes were performed using the previously described
method (Orellana, 2012, García et al., 2003). Briefly, rats at postnatal day 1 were rapidly de-
capitated, the brains were removed, and the region around 3V was carefully dissected. Then
were incubated with trypsin 0.25%—EDTA 0.2% (w/v) for 20 min at 37 ◦C, disaggregated
by gentle trituration and transferred to a MEM culture medium (GibcoTM), supplemented
with 10% fetal bovine serum (FBS), L-glutamine, penicillin, and streptomycin (Thermo
Fisher Scientific, Waltham, MA, USA). The tissue samples were disaggregated by gentle
trituration, and the cells were seeded in T25 culture flasks covered with poly-L-lysine
0.2 mg/mL (Sigma-Aldrich, St. Louis, MO, USA) at 1.2 × 105 cells/cm2 density. The
cells were incubated in the same flask for two weeks, with culture medium changes every
two days. Later, the monolayer-grown tanycytes were washed with PBS (pH 7.4) and
incubated in a disgregation buffer containing trypsin/EDTA 0.22/0.2 (w/v) for 3 min at
37 ◦C. Disaggregated cells were reseeded in 6-, 12- and 24-well plates, previously covered
with 0.01% (v/v) poly-L-lysine, at a density of 50,000 cells/cm2. Twenty-four h before
experiments, cultures were maintained in an FBS-free medium to prevent inhibition of ATP
release and activation of purinergic signaling.

2.3. BrdU Injection in Rats Subjected to High Sucrose Diet×
The rats were fed with chow diet prior to study initiation. 6–8 male rats were exposed

for 8 days to a diet rich in sucrose (Cat# 58R1 AIN-76A w/11% Fat Energy/Sucrose/Blue),
and to a control diet (Cat#58R0 AIN-76A w/11% Fat Energy/Corn Starch/Yellow), both
obtained from Test Diet. Diets were stored at 6 ± 4 ◦C. The diet rich in sucrose, contains
74.3% of its energy (kcal/g) made up of carbohydrates, sucrose being 61%. The control diet
contains 73.7% of its energy in carbohydrates, but the percentage of sucrose is completely
replaced by cornstarch. One day after starting the change in diet, each rat was injected
intraperitoneally (ip) with 200 µL of 50 mg/kg BrdU once a day for 7 consecutive days [46].
Body weight and the amount of food eaten were monitored daily. Before and after treatment,
glycaemia was measured after 4 h of fasting with an Accu-Check device, puncturing the
tip of the tail. One day after the last injection of BrdU, the rats were anesthetized with a
mixture of ketamine: xylazine (150:15 mg/kg, respectively) and vascularly perfused with
200 mL of ice-cold PBS (17 mM Na2HPO4, 83 mM NaH2PO4 2H2O, 15 mM NaCl, pH 7.4)

https://arriveguidelines.org
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followed by 200 mL of 4% paraformaldehyde dissolved in PBS, pH 7.4. The brains were
removed, and the hypothalamus dissected for subsequent immunohistochemistry.

2.4. Immunohistochemistry

Hypothalamus frontal sections of 40 µm were obtained from the rat brains previously
fixed by vascular perfusion and post immersion fixation in 4% (w/v) paraformaldehyde
for 24 h. Slices were obtained using a vibratome, and processing by free-floating immuno-
histochemistry. Slices were washed with Tris phosphate buffer (84 mM Na2HPO4, 35 mM
KH2PO4, 120 mM NaCl, 10 mM Tris, pH 7.8). BrdU detection was carried out using an
additional treatment for allowing DNA denaturation. Samples were incubated in 1 M HCl
at 45 ◦C for 30 min; after that were neutralized by washing the slides three times with Tris
phosphate buffer. The following primary and secondary antibodies were used: mouse
anti-nestin antibody (1:1500, Abcam Cat# AB6320), chicken anti-vimentin antibody (1:400,
Millipore Cat# MAB3400), sheep anti-BrdU antibody (1:1000, Abcam, Cat# AB1893), goat
anti-sheep Cy3, donkey anti-chicken Cy2, donkey anti-mouse Alexa 488. All secondary
antibodies used were obtained from Jackson Immuno Research and used at a 1:200 dilution.
Nuclei was labeled with TOPRO-3 (1:1000, Invitrogen).

2.5. BrdU Positive Cell Count

Two researchers participated in the counting of BrdU-positive cells for the different
conditions, considering cells with positive TOPRO-3 nuclei. The final value was calculated
as the average of both counts if they had an error of less than 15%. For these analyses, the
overlap of all the focal planes was used in the maximum intensity projection mode of the
ImageJ program (nih.gov). At least 12 slices per animal and 6 animals for each condition
were used. For this analysis, images taken at 20× objective were used, and the total tissue
volume was considered, excluding the ventricular area.

2.6. Glycemia Measurement

Blood glucose levels were measured in blood drops from the lateral tail vein using an
Accu-Chek Go glucometer (Roche, Basel, Switzerland). Basal blood glucose concentration
was assessed after 6 h of fasting (starting at 9 a.m.) before starting and ending treatment
with the diets. Acute changes in the glycemic induced by the diets were evaluated after
10 h of fasting at 30, 60, 90, and 120 min after starting refeeding.

2.7. Ethidium Uptake and Fluorescence Imaging

For time-lapse dye uptake analysis, tanycytes cultured on poly-D-lysine cover glass
coverslips were washed twice in phosphate-buffered saline (PBS) solution, pH 7.4, and
grown to ~80% confluency for 24 h. For fluorescence detection, cells were washed twice
with PBS, pH 7.4, before applying the registration solution (in mM: 154 NaCl, 5.4 KCl,
2.3 CaCl2, and 5 HEPES, pH 7.4), containing 5 µM ethidium bromide (Etd+). Cells on
coverslips were mounted under a live cell microscope (Nikon, Eclipse Ti-FL model) and
were recorded every 30 s with a 40× objective. In all experiments, basal fluorescence was
recorded for 5 min (in 2 mM glucose registration solution). Then, the effect on Etd+ uptake
of sugars and combinations of sugars with and without La3+ was tested for an additional
10 min. At least 10 cell nuclei per coverslip were defined as regions of interest (ROIs), and
the average change in their fluorescence intensity was measured over time.

2.8. Statistical Analysis

We analyzed the data obtained from animals using the t-Student test, and Statistical
differences were considered significant when p < 0.05. One-way ANOVA with Bonferroni’s
multiple comparison test was used by in vitro determination. Statistical significance was
defined as * p < 0.01. For all analyses, we used the Graphpad Prism 5.0 software (GraphPad
Software Inc., San Diego, CA, USA).
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3. Results
3.1. Short-Term Intake of a HSD Does Not Induce a Pathologic Phenotype

Among obesity-induced diets, the Western diet made up of a high fat and sugar
content is the most studied. The literature exhibits a plethora of findings related to the
effects of fructose over glucose (mimicking the content of the beverage), i.e., to activate
the rewarding system, or prevent the fatty acid oxidation (FAO) in the liver. In the present
study, we investigated the effects of a sugary caloric diet on NP proliferation in brain
areas related to nutrient sensing, namely the hypothalamus and DVC. For that, two animal
groups were fed a HSD, where 61% of the total carbohydrates were made up of sucrose, and
a control diet (CD), which contained the same proportion of carbohydrates (around 74%)
but replacing the total sucrose percentage (61%) per cornstarch. Cornstarch is a ramified
oligosaccharide, whose digestion involves the breaking of high molecular mass molecule
complexes into simpler ones; therefore, the CD is more slowly absorbed compared to the
HSD. Short-term intake of a HSD might imply both the remodeling of the hypothalamic
and DVC cytoarchitecture, as well as known metabolic complications that are not usually
observed after the intake of an equivalent amount of glucose, i.e., insulin resistance, hyper-
glycemia, and increased insulin levels [27]. Thereby, we initially compared overall changes
in glycemia, food intake, and body weight between the HSD and CD groups over 8 days
(Figure 1A). Glycemia measured after 4 h of fasting, did not vary significantly between
groups, ranging from 6.2 ± 0.4 mM and 6.9 ± 0.5 mM (mean ± sem) at the regime onset,
to 7.5 ± 0.4 mM and 7.1 ± 0.4 mM after treatment completion, for CD and HSD groups,
respectively (Figure 1B). Likewise, no significant differences were observed on body weight
gain (mean ± sem; 54.9 ± 1.8 and 47.7 ± 3.5 g for CD and HSD, respectively at the end of
treatment) (Figure 1C) and food intake (Figure 1D), measured regularly throughout the
treatment. HSD over 8 days was not sufficient to induce obesity or diabetes in Sprague
Dawley rats. Subsequently, we tested the effect of the HSD to produce a short-term rise in
blood glucose compared to the CD. Animals were fasted for 10 h and then, the glycemia was
analyzed before feeding and at 30, 60, 90, and 120 min after their first meal (Figure 2A). As
expected, the HSD group exhibited greater glycemia values than the CD at 60 (mean ± sem;
188.2 ± 5.2 mM vs. 159.2 ± 7.7 mM; p < 0.05), 90 (199.0 ± 5.9 mM vs. 175.8 ± 7.7 mM;
p < 0.05) and 120 min (205.6 ± 7.8 mM vs. 170.8 ± 4.1 mM; p < 0.01) (Figure 2B).

3.2. ME and Arcuate Nucleus (ARC) Cell Proliferation Remain Unresponsive to HSD

Subsequently, we evaluated the constitutive cell renewal in the hypothalamus and
explored the effects of HSD on it. Male rats weighing 180 to 230 g were injected with
50 mg/kg ip of BrdU daily for 7 days at the end of which the brains were collected, and
the hypothalamus was dissected. Forty µm thick sections from the medial basal region
were selected (Bregma coordinates −1.47 to −1.79, corresponding to the periventricular
ARC region). By immunohistochemical approaches, the presence of BrdU was assessed in
vimentin-positive cells of the ventricular border (Figure 3A1–B2) as well as in the lateral hy-
pothalamic section and ME of individuals subjected to CD and HSD (Figure 3A1,A2,B1,B2,
respectively). BrdU-positive cells were also observed in the pars tuberalis (not shown).
Since the ME contains fenestrated capillaries, it is the hypothalamic region most exposed to
variations in the concentration of circulating metabolites, which can even cause structural
changes in its vascularization state [47]. Therefore, the proliferative state of resident ME
cells was analyzed in the HSD and CD groups. No significant changes were detected
in the total BrdU-positive cells, with (mean ± sem) 58.7 ± 7.3 vs. 60.6 ± 6.3 BrdU+ cells
and 0.8 ± 0.1 vs. 1.0 ± 0.2 BrdU+ cells per tissue volume for HSD and CD, respec-
tively (Figure 3C). The amount of BrdU in cells of the ARC was similar between the HSD
and CD groups, reaching up to 42.5 ± 8.0 vs. 34.3 ± 6.1 BrdU+ cells and 1.0 ± 0.2 vs.
1.0 ± 0.3 BrdU+ cells per µm3, respectively. Furthermore, changes in the cell division of
the gross-tanycyte population in response to dietary sugar content was evaluated. For the
count of Vimentin+/BrdU+ tanycytes were considered to be located up to 30 µm in the
proximity of the ventricular wall. No significant changes in the proliferative state of the
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gross-tanycyte population were observed, with 5.8 ± 0.5 vs. 6.3 ± 1.1 BrdU+ cells for the
HSD and CD group, respectively (Figure 3E).
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3.3. HSD Differentially Boosts β-Tanycyte Proliferation

We detailed the proliferative response of each tanycyte subpopulation according
to Robins et al. and Rodríguez et al. [3,48]. We first analyzed α1- and α2-tanycytes
that form the dorsal and ventral portion of the 3V lateral wall, respectively. Again, no
significant changes were observed in the BrdU incorporation by α1/α2-tanycytes exposed
to HSD compared to CD (3.3 ± 0.5 vs. 4.8 ± 1.0 cells/30 µm, respectively) (Figure 3F).
β1-tanycytes line the most basal lateral wall and a small portion of the 3V floor, whereas
β2-tanycytes completely cover the 3V floor. The prolongation of the former reaches the ME,
contacts the fenestrated capillaries, and forms a physical barrier that allows the permeation
of systemic molecules to the hypothalamic parenchyma [41]. The β1-tanycytes were
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much slower dividing than the rest of the tanycyte-groups (data not shown), for which
their BrdU incorporation was excluded from the quantification. β2-tanycytes responded
to the rise of dietary fructose by significantly increasing their cell-division rate, from
1.5 ± 0.2 cells/30 µm under CD to 2.6 ± 0.4 cells/30 µm after HSD (Figure 3G).
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Under control conditions and for reasons mentioned above, BrdU administered pe-
ripherally was differentially incorporated by subpopulations of tanycytes, of which β2
had a lower rate of cell division compared to α1/2. However, when exposed to an HSD,
the proliferative rate of β2-tanycytes reached values such as that of α1/2, attenuating the
proliferative differences between both subpopulations (not shown). Thus, changes in the
cell division of tanycytes are a direct consequence of the increasing amount of circulating
glucose after HSD or are indirectly related to HSD-induced physiological changes.



Nutrients 2022, 14, 2564 8 of 18
Nutrients 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Hypothalamic cell proliferation of rats exposed to HSD and CD. (A1–B2) Immunohisto-
chemistry of frontal hypothalamus sections of rats exposed to a control diet (CD; (A1,A2)) and a diet 
rich in sucrose (HSD; (B1,B2)); with antibodies that recognize nestin (purple), BrdU (yellow) and 
their co-localization with the nuclear marker TOPRO (red). The images in the lower panel show a 

Figure 3. Hypothalamic cell proliferation of rats exposed to HSD and CD. (A1–B2) Immunohisto-
chemistry of frontal hypothalamus sections of rats exposed to a control diet (CD; (A1,A2)) and a diet
rich in sucrose (HSD; (B1,B2)); with antibodies that recognize nestin (purple), BrdU (yellow) and
their co-localization with the nuclear marker TOPRO (red). The images in the lower panel show a
magnification of the insets in (A1–B2), pointing to the proliferation of the α2 and β2 tanycytes, respec-
tively. Scale bar (A1–B2): 50 µm. Scale bar insets: 20 µm. 3V, third ventricle. ME, Median Eminence.
(C–G) Quantification of the number of dividing cells in ME (C) and in ARC parenchyma (D) nor-
malized to the volume of tissue analyzed and relative to the control condition. (E–G) Number of
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(F) and β2 (G). n = at least 26 slices and 8 animals for each condition. The data is represented as the
mean ± sem; (*) p < 0.05, Student’s t-test.
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3.4. Characterization of the AP along the Anteroposterior Axis

We next sought to perform a serial histological map of the DVC to recognize the poorly
characterized area harboring the NPs. Seven micrometer thick coronal sections of adult
mice were selected every 35 µm in the anteroposterior axis, within the bregma range of
−6.95 to −7.67 mm (Figure 4), according to the mouse brain stereotaxic atlas [49]. As
shown in Figure 4, this region is defined by the presence of the fourth ventricle (4V) and the
central canal (CC), which similar to all ventricles, are lined by vimentin+ ependymal cells
(Figure 4A). The presence of the choroid plexuses identified by their characteristic cellular
structure and organization in the roof of the 4V is also of note (Figure 4A1,B3). Due to
nuclear staining (TOPRO-3 in blue), it was possible to recognize cell clusters corresponding
to NTS and dorsal motor nucleus of the vagus (DMV) (Figure 4A2). As more posterior
sections were analyzed, a clear reduction of 4V is observed (Figure 4C1), giving rise to the
CC (Figure 4C1–E3); likewise, the disappearance of the choroid plexuses and the emergence
of the AP (Figure 4C3), where a significant number of vimentin+ vagliocytes reside [39,40].
According to the previous analysis, the coordinates that comprise the entire AP structure
are in the anteroposterior axis, between the −7.47 and −7.67 mm bregma for the mouse
brain, and −13.28 and −14.68 mm bregma for the rat brain, according to the mouse and rat
stereotaxic brain atlas [49].

3.5. Increased Proliferative Response of AP Cells Exposed to HSD

The effect of the HSD on DVC was evaluated in the same animals used for the
previously described hypothalamus analysis to reduce the experimental n. For this aim, the
posterior midbrains (including cerebellum) were dissected and sections between −13.68 and
−14.68 mm bregma were selected. The sections were processed by immunohistochemistry
to identify precursor cells with cumulative proliferative activity (Nestin+/BrdU+ cells)
in the parenchyma of nearby neuronal nuclei (Figure 5A–F2). Cell clusters with these
characteristics were found in DMV (Figure 5A,D), AP, and NTS (Figure 5B,E), as well as at
the dorsal roof of the CC (Figure 5C,F) for the CD and HSD, respectively.

BrdU+ cells were quantified in at least four coronal sections of the posterior mid-
brain of animals subjected to each feeding condition (Figure 5; n = 6 per group) and the
data reported was calculated over the volume analyzed (in µm3) and normalized to CD
(mean ± sem; Figure 5G–I). The quantification initially considered BrdU+ cells in the entire
DMV (Figure 5G), although no significant differences between conditions were observed
(1.00 ± 0.12 and 1.02 ± 0.16 BrdU+ cells/µm3 for CD and HSD, respectively). Likewise, the
proliferation of the vimentin+ ependymal cells lining the CC was analyzed (Figure 5H), also
resulting in no significant differences between both conditions (1.00 ± 0.27 and 0.92 ± 0.11
BrdU+ cells/µm3 for CD and HSD, respectively). Of note, the ependymal cells forming the
CC were nestin−/vimentin+, while tanycytes and vagliocytes are nestin+/vimentin+. As
carried out in the hypothalamus, it was decided to classify into subgroups; on the one hand,
NTS and DMV cells, and in the second group, AP cells. Identical values were found in the
cell division rate of the NTS + DMV group when exposed to each treatment (not shown)
(0.99 ± 0.14 for both CD and HSD). On the other hand, the proliferation rate of AP cells
was 0.97 ± 0.18 and 1.36 ± 0.38 BrdU+ cells/µm3 for CD and HSD, respectively (Figure 6I),
thus showing a significant sensitivity in their proliferation state when exposed to HSD.
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(AP; (C1–E3)), as well as the fourth ventricle (4V; (A1–B3)) to form the central canal (cc; (C1–E3)). 
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Figure 4. Antero-posterior screening of vimentin+ cells in the dorsal vagal complex. (A1–E3). Repre-
sentative coronal sections of the mice posterior midbrain, between bregma −6.95 and −7.67 mm.
Sections were processed with anti-vimentin (white), and TOPRO-3 nuclear marker (blue). Vimentin
staining along the anteroposterior axis label the choroid plexuses (pc; (A1–B3)), the area postrema
(AP; (C1–E3)), as well as the fourth ventricle (4V; (A1–B3)) to form the central canal (cc; (C1–E3)).
Vimentin+ cells in the AP labels vagliocytes. Augmented images are shown in column 3, respectively.
NST, the nucleus of the solitary tract. DMV, the dorsomedial nucleus of the vagus. Scale bar of
columns 1, 2 and 3: 200 and 120 µm, respectively.
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Figure 5. Effect of the sucrose-rich diet on cell proliferation in DVC. (A–F) Representative DVC
coronal sections of rats subjected to CD (A–C2) and HSD (D–F2). (A–D) Overview of posterior
midbrain immunostained for nestin and BrdU. (B1–C2,E1–F2) Augmented images of insets in (A,D),
respectively, show proliferating cells in the AP and CC. AP, Area Postrema. NTS, Nucleus of the
solitary tract. DMV, Dorsomotor nucleus of the vagus. CC, Central canal. Scale bar (A,D): 200 µm,
(B1–C2,E1–F2): 80 µm. (G–I) Quantification of the double-positive Nestin/BrdU cell number at the
DMV (G), CC (H), and AP (I) of rats subjected to each diet. The number of BrdU+ cells was relativized
to the considered volume (excluding non-cellular areas such as the central canal) and normalized to
the CD condition. The data is represented as the mean ± sem. n = 6. (*) p < 0.05, Student’s t-test.
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Figure 6. Differential sugar-induced extracellular ATP release and HCs activity in cultured tanycytes.
(A1–C1) A timeline describing the procedures to measure ATP release (A1) and ethidium (Etd+)
uptake (B1,C1). (A2) Luciferin/Luciferase assay to measure the extracellular ATP amount according
to the total protein content and normalized to the sucrose condition. n = at least 2 independent
cultures per condition. One-way ANOVA with Tukey posthoc. (B,C) Etd+ uptake through time
(B2,C2) and Etd+ uptake rate (B3,C3) after exposing tanycytes to different treatments and quantified
as arbitrary units of emitted nuclear fluorescence (AU) over time (min). Data in (B2,C2) represent
the average of different experimental n. The black arrows in (B2,C2) indicate the moment when the
stimulus was added. The white arrow in (B2) points to the moment when the connexin HCs inhibitor,
Lanthanum ion (La3+), was added. The blue arrow in (C2) defines the time when 10 mM glucose was
added. n = at least 10 nuclei per culture and 2 independent cultures per condition were analyzed.
One-way ANOVA with Bonferroni post-hoc, (*) p < 0.01. T-test (#) p < 0.05).
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3.6. Fructose Does Not Alter HC Activity and ATP Release

A high concentration of glucose is known to increase connexin 43 HC opening proba-
bility and ATP release in tanycyte cultures [38]. Moreover, purinergic signaling triggered
by these events is thought to play a role in the self-renewal capacity of tanycytes. Since the
HSD content is catabolized into glucose and fructose, we next sought to determine in vitro,
if fructose increases HC activity and ATP release as glucose does. Therefore, tanycyte
cultures were cultured in the absence of FBS and subjected to 2 mM glucose for 24 h,
mimicking low glycemic ranges before adding 10 mM glucose, 10 mM fructose, or a mix of
5 mM each (imitating sucrose) for 15 min (Figure 6A1). Additionally, 5 mM sucrose was
used as osmolarity and metabolic negative control. Extracellular ATP was measured by
Luciferase/Luciferase assay, adjusted to the total protein concentration of the respective
sample, and then normalized to the sucrose condition. Although no significant changes
were observed between treatments, ATP values derived from the 10 mM fructose condition
remained under the control threshold (0.8 ± 0.04; Figure 6A2) as compared to glucose, and
glucose plus fructose conditions. Moreover, a decreased ATP release can be associated with
a persistent HC closed state, which can be measured by Etd+ uptake recordings over time
(Figure 6B1). Starting from 2 mM glucose as the basal condition, the addition of 10 mM
glucose, but not 10 mM fructose, successively increased Etd+ uptake from min 5 and on
compared to the basal value (black arrow in Figure 6B2). In line with this, 5 mM glucose
in the glucose/fructose mixture was enough to trigger a response similar to that evoked
by 10 mM glucose alone (black arrow in Figure 6B2). For all conditions, lanthanum ion
(La3+) was added at minute 10 and during the last min of recording to inhibit the activity
of connexin HCs (white arrow in Figure 6B1,B2). The slope of each curve was measured
to obtain the Etd+ uptake rate (Figure 6B3). As described, 10 mM glucose and 5 mM
glucose/fructose conditions exhibited a significant 1.7 ± 0.2 and 1.6 ± 0.1 -fold increase
compared to basal, respectively, and both returned to basal values after the application of
La3+ (1.0 ± 0.1 and 1.1 ± 0.2, respectively). However, no significant changes were observed
after treatment with 10 mM fructose compared to basal, before nor after applying La3+

(1.1 ± 0.1 and 0.9 ± 0.1; Figure 6B3). To check whether fructose treated tanycytes were still
responsive to glucose, a boost of 10 mM glucose was applied for 5 min after their 10 mM
fructose or sucrose exposure (Figure 6C2). In fact, 10 mM fructose or sucrose between
5–10 min of recording did not promote Etd+ uptake compared to basal (0.8 ± 0.1 and
0.7 ± 0.2 -fold increase, respectively; Figure 6C3). Nevertheless, post hoc application of
10 mM glucose for an additional 5 min (between 10–15 min of recording) was sufficient
to significantly increase the Etd+ uptake in these cultures (1.4 ± 0.1 and 1.8 ± 0.2 -fold
increase, respectively; Figure 6C3). Therefore, fructose and sucrose do not stimulate the HC
activity in tanycytes in vitro as glucose does, which can be reflected in the deficient ATP
release by tanycytes exposed to fructose.

4. Discussion

Several studies have shown the presence of adult hypothalamic neurogenesis in
murine animals and its boost after exposure to different metabolic states [50], especially in
a high-fat diet (HFD) [8,12,13,51]. Since the incorporated neurons mainly acquire an anorex-
igenic phenotype, it has been postulated that they are part of a compensatory mechanism
in response to a caloric increase [9,52]. However, it is unknown if the neurogenic event is
transversal to other types of hypercaloric diets. In the present work, we showed that high
sucrose intake triggers the proliferation of β2-tanycytes, which have been controversially
proposed as NPs of the adult hypothalamus [13,53], and of Nestin+ cells in the AP, likely
representing an NP cell population in the NTS. The proliferative response seems to be exclu-
sive to some Nestin+ populations, since the parenchymal cells of the ARC and DMV nuclei,
of the ME, and cells forming the cavity wall, i.e., α-tanycytes and CC cells did not show
differences in BrdU incorporation when exposed to physiologically high sucrose content.
The immutable proliferative state of ARC parenchymal cells after HFD has been observed
in previous studies [51], supporting our results. The control diet used in our trials contains
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the same caloric proportion but is stored in the form of slowly degraded branched glucose
polysaccharides. The different compositions of both diets evoked different glycemia curves
over time, suggesting that the cell dividing β2-tanycytes were sensitive to plasma glucose
or fructose concentration, which was likely detected due to their privileged position in
contacting the ME. Fasting-feeding cycles induce persistent structural remodeling of the
ME, such as extended angiogenesis to lateral hypothalamic areas and development of
tight junctions in α-tanycytes during fasting, and their restoration after feeding [47]. These
antecedents support the plastic conception of the ME-residing cells to face changes in the
metabolic state of the individual. A clear example is the morphological plasticity of the ME
external zone to facilitate the release of the gonadotropin-releasing hormone to the portal
circulation during the estrous cycle, which consists of parenchymal basal lamina approach-
ing the neuronal terminals [54]. The structural plasticity of the brain’s highly permeable
zones and therefore the ability to monitor glucose levels might be reproduced in the AP
since it shares cytoarchitectural characteristics with the ME: (i) both are close to neuronal
nuclei involved in feeding behavior, ARC and NTS, respectively; (ii) the ventricle forming
walls are constituted by tanycytes and vagliocytes, that are secured to each other through
tight junction proteins, i.e., ZO-1, occludin, claudin1 and claudin5 [41]; and (iii) comprise
fenestrated capillaries, which are contacted by the tanycytic and vagliocytic processes [41].
In line with this, female but not male rats fed an HFD show increased proliferation and
neurogenesis specifically in the ME [14]. The same research group previously elucidated
the β2-tanycytes origin of nascent neurons [13]. However, our studies cannot rule out that
the cell division of β-tanycytes: (i) responds to sexual dimorphism [14] since only male rats
were used; (ii) precedes the inflammatory microenvironment fostered in the pre-diabetes
and pre-obesity [51,55–58]; and/or (iii) is due to a glucose-sensing mechanism dependent
on the sweet taste receptor Tas1r2, and not the glucose metabolism, that may likewise evoke
transmissible increases in calcium signals between tanycytes [59].

Moreover, cells residing in both the hypothalamus and DVC, are endowed with the
molecular machinery essential to monitor changes in glucose levels and thus participate in
energy regulation circuits; tanycytes express GLUT1, GLUT2, and the glucokinase enzyme,
while in DVC, a subset of GLUT2+ neurons have been detected [60–62]. The function
of the latter is well known; these neurons stimulate glucagon and insulin production in
hypoglycemic/fasting and hyperglycemic situations, respectively [61,63]. As part of the
tanycytic glucosensing mechanism, connexin 43 has been shown to play an essential role,
creating a broad panglial coupled network likely to amplify the detection of the metabolic
stimulus [64], acting as non-docked HC, and regulating the release of signaling molecules,
such as ATP, for activating purinergic signaling [38]. Taking these milestones into account,
we wondered if fructose was able to open HCs as glucose does.

In tanycytes, induction with 10 mM glucose enhanced current flow through connexin
43 HCs, without affecting connexin 43 levels on the cell surface [38]. Indeed, these effects
were replicated in the present study. Glucose-induced HC opening is attributable to the
extensive phosphorylation sites of the connexin 43 C-terminal portion by various kinases,
which underlies the regulation of its open/close state, distribution, and degradation [65].
The 5 mM glucose and fructose mix, mimicking the already digested disaccharide, in-
creased the Etd+ uptake to similar 10 mM glucose levels. In both cases, the application of
La3+ an HC blocker was enough to block Etd+ uptake rate, validating the HC contribution.
However, 10 mM fructose did not evoke Etd+ incorporation by tanycyte cultures, and
although the results were not significant, it also prevented ATP release. As a proof of
viability, 10 mM glucose application after 10 mM fructose indeed triggered HC activity.
The observed results can be consequences of the glucose/fructose differential metabolism
and activated pathways. Dietary sugars are known to increase hepatic malonyl-CoA levels,
which is an intermediate of de novo lipogenesis. Since fructose induces higher rates of de
novo lipogenesis than glucose [66], it is reasonable to expect that fructose leads to a more
profound decrease in FAO, and hence, in ATP synthesis. Recent studies showed that an
HFD plus fructose, but not glucose, increases the number of reduced size mitochondrial,
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reduces ATP and NADH levels (as a consequence of an FAO decline), and increases ROS
levels [27]. Interestingly, fructose application to isolated mitochondria reduced FAO, im-
plying that fructose directly inhibits mitochondrial beta-oxidation [67], independent of
its effects on malonyl-CoA activity and even in an insulin-free environment [27]. In fact,
fructose reduces hepatic FAO altering the transcriptional and post-translational modifica-
tions on mitochondrial proteins, i.e., inducing a hyperacetylation of ACADL and CPT-1A
enzymes [27]. Physiologically, HFD/fructose, but not HFD/glucose treated mice developed
hyperinsulinemia with increased basal glycemia and fasting HOMA-IR score, and impaired
glucose tolerance [27]. On the other hand, hypothalamic microglial cells show an increase
in proliferation and activation in response to a chronic HFD (i.e., 20 weeks), contributing
to a chronic inflammatory process, which alters neuronal function [68]. In this regard, it
is known that pro-inflammatory molecules, such as lipopolysaccharides and arachidonic
acid, inhibit connexin gap junctions and stimulates HC activity and ATP release in some
cell lines [69]. The possibility that the increased sucrose-triggered NP proliferation and the
paucity of fructose HC activity witnessed here is related to an inflammatory process cannot
be excluded but is unlikely due to the short-term exposure (1 week) given that more than
2 weeks was required in a separate study [70].

Future studies could consider specifying the phenotype acquired by β-tanycytes once
their proliferation is induced with the HSD in order to elucidate their differentiation into
glial cells (astrocytes) or neuronal cells (AgRP or POMC, among others). Our findings
suggest that the hypothalamus has an adaptative mechanism to compensate for the con-
sumption of a short-term hypercaloric diet, which is influenced by the type of sugar and
its metabolization.
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