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Abstract

Mendelian randomization (MR) has been used to estimate the causal effect of body mass

index (BMI) on particular traits thought to be affected by BMI. However, BMI may also be a

modifiable, causal risk factor for outcomes where there is no prior reason to suggest that a

causal effect exists. We performed a MR phenome-wide association study (MR-pheWAS)

to search for the causal effects of BMI in UK Biobank (n = 334 968), using the PHESANT

open-source phenome scan tool. A subset of identified associations were followed up with a

formal two-stage instrumental variable analysis in UK Biobank, to estimate the causal effect

of BMI on these phenotypes. Of the 22 922 tests performed, our MR-pheWAS identified 587

associations below a stringent P value threshold corresponding to a 5% estimated false

discovery rate. These included many previously identified causal effects, for instance, an

adverse effect of higher BMI on risk of diabetes and hypertension. We also identified several

novel effects, including protective effects of higher BMI on a set of psychosocial traits, identi-

fied initially in our preliminary MR-pheWAS in circa 115,000 UK Biobank participants and

replicated in a different subset of circa 223,000 UK Biobank participants. Our comprehen-

sive MR-pheWAS identified potential causal effects of BMI on a large and diverse set of phe-

notypes. This included both previously identified causal effects, and novel effects such as a

protective effect of higher BMI on feelings of nervousness.

Author summary

Mendelian randomization uses genetic variants associated with an exposure to investigate

causality. For example, there are several genetic variants that have been robustly associated

with body mass index, and these can be used to test whether body mass index causally

affects other traits. Usually, Mendelian randomization studies focus on particular out-

comes, for instance, estimating the causal effect of body mass index on blood pressure.

However, a trait (such as body mass index) may be a modifiable, causal risk factor for out-

comes where there is no prior reason to suggest that a causal effect exists. We recently

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007951 February 1, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Millard LAC, Davies NM, Tilling K, Gaunt

TR, Davey Smith G (2019) Searching for the causal

effects of body mass index in over 300 000

participants in UK Biobank, using Mendelian

randomization. PLoS Genet 15(2): e1007951.

https://doi.org/10.1371/journal.pgen.1007951

Editor: Samuli Ripatti, Institute for Molecular

Medicine Finland (FIMM), FINLAND

Received: August 30, 2018

Accepted: January 9, 2019

Published: February 1, 2019

Copyright: © 2019 Millard et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from UK Biobank [www.ukbiobank.ac.uk]. The data

were released on 23/04/2018 (phenotypic data;

dataset ID 21753 under UK Biobank application

16729) and 07/04/2018 (genetic data [version 2;

500K with HRC imputation]).

Funding: This work was supported by the

University of Bristol and UK Medical Research

Council [grant numbers MC_UU_00011/1,

MC_UU_00011/3 and MC_UU_00011/4]. LACM is

http://orcid.org/0000-0003-4787-8411
http://orcid.org/0000-0002-2460-0508
http://orcid.org/0000-0002-1010-8926
http://orcid.org/0000-0003-0924-3247
http://orcid.org/0000-0002-1407-8314
https://doi.org/10.1371/journal.pgen.1007951
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007951&domain=pdf&date_stamp=2019-02-13
https://doi.org/10.1371/journal.pgen.1007951
http://creativecommons.org/licenses/by/4.0/
http://www.ukbiobank.ac.uk


published a novel tool called PHESANT, that allows comprehensive phenome scans to be

performed, allowing researchers to search for the causal effects of a trait of interest across

over 22,000 traits in UK Biobank. In this work we used PHESANT to search for the causal

effects of body mass index. We identified previously established effects, for example,

adverse effects of higher body mass index on risk of diabetes and hypertension. We also

identified novel effects, such as a protective effect of higher body mass index on feelings of

nervousness, and these need replicating in an independent sample and using other study

designs.

Introduction

Body mass index (BMI), taken to be a general indicator of adiposity, has been associated with

many traits and diseases [1–3]. These observational associations may be due to a causal effect

of adiposity (as reflected in BMI), a causal effect of the phenotype on BMI, confounding, or a

combination of these. Mendelian randomization (MR) estimates the causal effect of an expo-

sure on an outcome using genetic variants as an instrumental variable for the exposure [4,5].

To date, MR has been used to assess whether BMI causally affects a vast array of phenotypes

[6–21]. These results suggest that higher BMI leads to an earlier age at menarche [15], a reduc-

tion in physical activity [6], an increased risk of coronary heart disease [22], asthma [13] and

cancer [23], a lower risk of Parkinson’s disease [9], and changes in metabolite concentrations

[7].

Hypothesis-free searching is an established method to identify novel associations, such as

genetic variants associated with a particular phenotype in genome-wide association studies

(GWAS) [24]. In contrast to hypothesis-driven analyses, a hypothesis-free analysis can identify

novel associations where there is no prior expectation that an association might exist, and

should help to avoid publication bias as all results are published, not just the most “statistically

significant”. Phenome scans are a class of hypothesis-free scan that test the association of a var-

iable of interest with a potentially large array of phenotypes—the “phenome” [25]. Phenome

scans commonly seek to identify phenotypes associated with a genetic variant (phenome-wide

association studies—pheWAS) or an observed phenotype (environment-wide association

studies—EnWAS). A third type of phenome scan, MR-pheWAS, uses MR to search for the

causal effects of a particular exposure [26–28].

To date, only a small number of phenome-wide scans of BMI have been published. We

recently published a MR-PheWAS that searched for the causal effects of BMI in circa 8000 par-

ticipants in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, across

172 outcomes [26]. This study confirmed several known associations such as with leptin levels

and blood pressure, and identified potentially novel associations, such as with a self-worth

score. Cronin et al. performed a pheWAS of FTO genetic variants within electronic health

record phenotypes, in circa 25 000 participants, and identified novel associations [29]. For

instance, a genetic predisposition to a higher BMI was associated with a higher risk of fibrocys-

tic breast disease and non-alcoholic liver disease [29].

UK Biobank is a prospective cohort of circa 500 000 participants [30], and several hypothe-

sis-driven MR analyses of BMI have been performed in this study, to date [12,13,31,32]. The

large sample size offsets the multiple testing burden of hypothesis-free analyses, providing an

opportunity to search for causal effects with MR-pheWAS. Recently, we published an open-

source tool for performing phenome scans (including MR-pheWAS) in UK Biobank—the

PHEnome Scan ANalysis Tool (PHESANT) [27]. PHESANT enables comprehensive phenome
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scans to be performed across a large and diverse set of phenotypes—all continuous, integer

and categorical fields in UK Biobank—where previously researchers would restrict their analy-

sis to a homogeneous subset of phenotypes that could be processed in a consistent fashion

[27].

In this study we search for the causal effects of adiposity, using the PHESANT tool in UK

Biobank. We use BMI as a surrogate measure of adiposity. In our initial presentation of PHE-

SANT [27] we analyzed the non-random sample of circa 115 000 participants with genetic

data that was available in UK Biobank at that time. We found that participants with a genetic

propensity to a higher BMI were less likely to perceive themselves as a nervous person or to

call themselves tense or ‘highly strung’ [27]. In the current paper, we search for the causal

effects of BMI in circa 330 000 participants in UK Biobank satisfying our inclusion criteria.

BMI is a well-studied phenotype, hence this study serves as a model for future MR-pheWAS

that may investigate phenotypes with much weaker priors regarding their causal effects.

Results

We checked the strength of the association between the BMI allele score and BMI, and found a

standard deviation (SD) increase in BMI allele score was associated with a 0.64 kg/m2 increase

in BMI (95% confidence interval (CI): 0.62, 0.65, F statistic = 6114.52). Estimates of the effect

of each SNP on BMI are given in Table A in S1 Text.

Results of MR-pheWAS analysis

The results of our MR-pheWAS include 22 922 tests ranked by P value, given in S1 File. The

number of fields reaching each stage of the PHESANT automated pipeline are shown in Fig B

in S1 Text. A QQ plot is given in Fig 1, and the PHESANT-viz visualization can be found at

[http://www.datamining.org.uk/PHESANT/results-bmi-21753.html]. We identified 587

results at a false discovery rate (FDR) of 5% (using a P value threshold of 0.05 × 587/22922 =

1.28x10−3), given in Table D in S1 Text, and of these, 278 results had a P value lower than a

stringent Bonferroni corrected threshold of 2.18x10-6 (0.05/22922). We estimated that there

are 19,602 effectively independent phenotypes represented by the 22,879 continuous, ordered

and binary outcomes using spectral decomposition. Accounting also for the 43 unordered phe-

notypes (for which correlations could not be generated) our correlation-based threshold was

calculated as 0.05/(19602+43) = 2.55x10-6. We found 281 results with a P value lower than this

threshold.

Our MR-pheWAS identified several known effects of BMI. For example, a genetic predispo-

sition to a higher BMI was associated with an increased risk of diabetes [11] (field ID (FID) =

2443), hypertension [33] (FID = 20002 value 1065, and FID = 4079), a higher bone mineral

density [14] (FID = 3148) and an earlier age of puberty in both sexes [15] (FIDs = {2714, 2375,

2385}). For instance, PHESANT estimated that participants with a higher genetic risk score

were on average more likely to report being diagnosed with diabetes (odds ratio [OR] per 1SD

higher BMI genetic risk score of 1.147 [95% CI: 1.128, 1.165]) and more likely to report being

diagnosed with hypertension (OR per 1SD higher BMI genetic risk score of 1.077 [95% CI:

1.068, 1.085]). Fig 2 shows that, when restricting to psychosocial traits, a subset is associated

more strongly than would be expected by chance including several nervousness / anxiety

traits.

PHESANT sensitivity analysis. Our tests of association of assessment centre with the

BMI genetic score found that, while adjusting for the genetic principal components attenuated

the association, an association remained (likelihood ratio test P values of 4.45x10-26, 4.32x10-10

and 9.57x10-6 when adjusting for age and sex only, and additionally the first 10 and first 40
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genetic principal components, respectively). The results of our sensitivity MR-pheWAS (addi-

tionally adjusting for assessment centre and genetic batch) are given in S2 File. Comparison of

the results of our main MR-pheWAS analysis (adjusting for age, sex and the first 10 genetic

principal components) with our sensitivity analysis (additionally adjusting for assessment cen-

tre and genetic batch), is shown in Fig C in S1 Text. Large differences between these results

occurred for binary outcomes with small numbers in a certain category (see examples in

Table H in S1 Text).

Detailed follow-up of potentially novel results

Our hypothesis-free scan found that a genetic predisposition to a higher BMI was associated

with a decreased reporting of being a nervous person (FID = 1970, p = 6.79x10-24), being tense

or ‘highly strung’ (FID = 1990, p = 1.02x10-11), suffering from ‘nerves’ (FID = 2010, p =

9.73x10-10), or being a worrier (FID = 1980, p = 1.34x10-6). Fig 3 and Table E in S1 Text pres-

ent the causal effects of BMI on these nervousness traits, estimated using two-stage instrumen-

tal variable analyses. A higher genetically predicted BMI was associated with lower risk of

reporting as a ‘nervous’ person (OR per 1kg/m2 higher BMI of 0.940 [95% CI: 0.929, 0.951]). A

higher genetically predicted BMI was associated with a lower ‘worry’ score (OR per 1kg/m2

Fig 1. QQ plot of 22,922 MR-pheWAS results. Green dashed line: Bonferroni corrected threshold (p = (0.05/22922 =

2.18x10-6). Red dash-dotted line: FDR threshold (p = 0.05 × 587/22922 = 1.28x10−3). Blue dotted line: actual =

expected. Purple points: results of tests performed in MR-pheWAS. Red stars: results with P values< 2.23x10-308 (the

smallest number allowed in R, specified in .Machine$double.xmin).

https://doi.org/10.1371/journal.pgen.1007951.g001
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higher BMI of 0.957 [95% CI: 0.947, 0.966]). A higher BMI was observationally associated with

a lower risk of self-reporting as a ‘nervous’ person (OR per 1kg/m2 higher BMI of 0.964 [95%

CI: 0.962, 0.966]). Adjusting for age, sex and the first 40 genetic principal components did not

meaningfully affect the results (see Table F in S1 Text). Furthermore, causal estimates using

the discovery subsample of UK Biobank (used in our initial presentation of PHESANT [27])

and replication subsample (comprising additional participants used in this study) were consis-

tent for these four nervousness/anxiety phenotypes. Observationally, a higher BMI was associ-

ated with a lower risk of reporting as a ‘nervous’ person, a worrier, tense/highly strung and

suffering from nerves (see Table E in S1 Text). Those reporting yes for each nervousness phe-

notype on average were younger, live in an area with greater deprivation and left full time edu-

cation earlier, and more likely to have ever been depressed a whole week (see Table I in S1

Text). Directions of associations with smoking status and sex differed across our four nervous-

ness phenotypes. For instance, participants who reported ‘suffering from nerves’ were more

likely to be male compared to those who did not report this, while participants who reported

being a nervous person, being a worrier or being tense/highly strung were more likely to be

female than those who did not.

As a sensitivity analysis, we estimated causal effects of BMI using two-sample MR methods.

Overall, these results are broadly consistent with the results of our main one sample analyses,

Fig 2. QQ plot of results in UK Biobank field category ‘psychosocial factors’ (ID 100059). Green dashed line:

Bonferroni corrected threshold calculated for psychosocial traits only (0.05/59 = 8.47 x 10−4). Blue dotted line:

actual = expected. Purple points: results of tests performed in MR-pheWAS.

https://doi.org/10.1371/journal.pgen.1007951.g002
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although the confidence intervals of most of these two-sample estimates include the null.

MR-Egger regression and simulation extrapolation (SIMEX) plots are shown in Fig D and Fig

E in S1 Text, respectively. We found little evidence of directional pleiotropy, as all confidence

intervals for intercept estimates of MR-Egger included zero. We found evidence that the

MR-Egger ‘NO Measurement Error’ (NOME) assumption—that SNP-exposure associations

are measured without error—was not fully satisfied (I2
GX statistic = 0.892). However, estimates

using MR-Egger with SIMEX—a correction for violation of the NOME assumption—were

highly consistent to the results of MR-Egger without SIMEX.

The smoothed empirical densities of the SNP effect estimates using mode-based estimator

(MBE) smoothing parameter ϕ values of 0.5, 0.75 and 1 are shown in Fig F and Fig G in

Fig 3. Results of follow-up analysis of the associations between nervousness / worrying traits (outcomes) and

genetically predicted BMI (exposure). BMI: body mass index; FID: field identifier; SD: standard deviation; IV:

instrumental variable; TS: two stage; SIMEX: simulation extrapolation; MBE: mode-based estimate. Estimates are in

terms of the log odds of outcome variable for a 1SD higher BMI. TS probit analyses are adjusted for age, sex and first

10 genetic principal components (see Table F in S1 Text for results of sensitivity analysis, adjusting for age, sex and first

40 genetic principal components). TS Probit estimates of the odds ratio of outcome for a SD higher BMI are calculated

by taking the exponent of 1.6 times the probit estimate [34]. TS probit, full sample, 97 SNPs: Estimates using two-stage

IV probit regression using our 97 SNP score as an instrument for BMI, and our full sample (N = 334,968). TS probit,

full sample, 96 SNPs: Estimates using two-stage IV probit regression using our 96 SNP score (excluding FTO SNP) as

an instrument for BMI, and our full sample (N = 334,968). TS probit, full sample, FTO: Estimates using two-stage IV

probit regression using FTO SNP as an instrument for BMI, and our full sample (N = 334,968). TS probit, discovery

sample: Estimates using two-stage IV probit regression using our 97 SNP score as an instrument for BMI and our

discovery sample. TS probit, replication sample: Estimates using two-stage IV probit regression using our 97 SNP score

as an instrument for BMI and our replication sample. Discovery results are estimated on the UK Biobank sample used

in the PHESANT application note usage example [27]. Sample size for discovery samples: Field 1970: 111,746; Field

1980: 111,673; Field 1990: 111,161; Field 2010: 110,451. Sample size for replication samples: Field 1970: 216,311; Field

1980: 216,301; Field 1990: 215,435; Field 2010: 214,152. F-statistics for association of 97 SNP, 96 SNP (excluding FTO)

and FTO genetic instruments with BMI are 6114.52, 5200.41 and 901.91, respectively. See Table E in S1 Text for full

results.

https://doi.org/10.1371/journal.pgen.1007951.g003
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S1 Text. We choose to use ϕ = 0.75 as this provided sufficient smoothing while still allowing

multiple peaks to be captured. The effect estimates across IV methods—IV probit regression,

and the two-sample approaches; MR-Egger, weighted median and MBE—were broadly consis-

tent. We did, however, see a difference between the estimates of the IV probit regression and

weighted MBE (ϕ = 0.75) for reporting ‘being a worrier’ (FID = 1980), with ORs per 1SD

higher genetically predicted BMI of 0.879 [95% CI: 0.834, 0.926] and 1.065 [95% CI: 0.947,

1.197], respectively. The causal estimates using the 96 SNP score (F statistic = 5200.41) versus a

BMI-associated SNP in FTO (“FTO SNP”; F statistic = 901.91) were consistent for the ‘being a

nervous person’ (FID = 1970; heterogeneity P value = 0.421) and ‘suffering from “nerves”‘

(FID = 2010; heterogeneity P value = 0.089) outcomes, but not for reporting ‘being a worrier’

(FID = 1980; heterogeneity P value = 0.001) and ‘being tense or “highly strung” (FID = 1990;

heterogeneity P value = 0.020).

The results of these four nervousness/anxiety traits do not provide a form of replication

for each other because these traits are highly correlated (see Table G in S1 Text; all accuracy

between 57.59% and 83.49%) and so are more likely to agree compared to tests using indepen-

dent traits or a replication on an independent dataset.

We searched for other nervousness related traits by searching for the terms: “worr”, “nerv”,

“tens”, “anxi”, in our results listing, to determine if other related traits were tested and an asso-

ciation not identified, to assess the strength of the evidence when considering results for all

similar phenotypes. This identified three self-reported phenotypes describing: 1) whether the

participant has seen a psychiatrist for nerves, anxiety, tension or depression, (FID = 2100; esti-

mated OR per 1kg/m2 higher genetically predicted BMI of 1.009 [95% CI: 0.995, 1.024]), 2)

whether the participant has seen doctor (GP) for nerves, anxiety, tension or depression"

(FID = 2090; estimated OR per 1kg/m2 higher genetically predicted BMI of 1.006 [95% CI:

0.994, 1.017]), and 3) the frequency of tenseness / restlessness in last 2 weeks (FID = 2070; not

at all versus several days or more; estimated OR per 1kg/m2 higher genetically predicted BMI

of 0.985 [95% CI: 0.974, 0.997]).

Discussion

In this study we used the PHESANT phenome scan tool to search for the causal effects of

BMI—a MR-pheWAS analysis—in a sample of circa 330 000 participants in UK Biobank,

across over twenty thousand diverse phenotypes. This systematic approach helps to avoid

biases associated with hypothesis-driven analyses, where a researcher might try several tests of

association until a desired result is found, and should help to avoid publication bias as all

results are published, not just the most “statistically significant” [34].

Our results include associations consistent with previous MR studies, such as adverse

effects of higher BMI on risk of diabetes [11] and hypertension [33], a higher bone mineral

density [14] and an earlier age of puberty in both sexes [15]. Consistent with our preliminary

results [27], we identified an association with a set of nervousness phenotypes, where a

genetic predisposition to a higher BMI was associated with a person being less likely to call

themselves a nervous person, tense or highly strung, a worrier, or to report they suffer from

‘nerves’ (consistent with results of genetic correlations in UK Biobank reported previously

[35]). We followed up this analysis to estimate causal effects and found, for example, an OR

of 0.940 [95% CI: 0.929, 0.951] per 1 kg/m2 higher genetically predicted BMI, for self-report-

ing as a nervous person. The causal estimates were more extreme than the observational esti-

mates for three of these outcomes. Furthermore, causal estimates using the discovery and

replication subsamples of UK Biobank were consistent for these four nervousness/anxiety

phenotypes.
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The four nervousness phenotypes we identified are part of the 12-item Neuroticism scale of

the Eysenck Personality Questionnaire-Revised (EPQ-R) [35,36], and as we and others have

shown, are highly correlated [35]. Neuroticism is one of the “Big Five” personality traits [37], and

these are hierarchical—questionnaire items define facets of neuroticism, which themselves define

the neuroticism personality trait as a whole [38]. Previous studies in UK Biobank have shown

that these particular items form an anxiety facet of neuroticism [35,38]. For instance, Nagel et al.

identified two genetically homogeneous clusters (where the within cluster genetic correlation

was much higher than the between cluster genetic correlation) within the 12 neuroticism items,

one of which denoted ‘worry’ and comprised of the 4 ‘nervousness’ items we identified [35]. We

found that a genetic predisposition to a higher BMI was associated with a lower ‘worry’ score.

We searched our results for other nervousness traits to determine the strength of the evi-

dence in the context of the results of related phenotypes, which, while not a form of replication,

provides an unbiased view of the evidence using the UK Biobank cohort. We identified two

phenotypes detailing treatment by a psychiatrist or a doctor, respectively, for nerves, anxiety,

tension or depression, but we did not find evidence of a causal effect of BMI on these pheno-

types. A third result, the frequency of tenseness / restlessness in the last 2 weeks, was weakly

associated in a direction consistent with the other nervousness associations we identified,

although it did not pass the P value threshold corresponding to an estimated FDR of 5%. The

‘null’ associations of our BMI genetic risk score with risk of seeing a doctor or psychiatrist for

nerves, anxiety, tension or depression may be because, compared to our self-reported nervous-

ness items, these phenotypes pertain to more severe manifestations where treatment has been

instigated. Furthermore, worry and depressed affect have been shown to be distinct clusters of

neuroticism, having negative and positive genetic correlations with BMI, respectively [35],

such that combining treatment of worry and depression into a single phenotype may mean the

effect of BMI on the former is masked by the effect on the latter (and vice-versa).

Several previous observational studies have reported the association of anxiety and BMI

[39–45]. The prevalence of anxiety has been shown to be higher in obese compared with non-

obese people [39–44] and higher in both underweight and overweight/obese people compared

with those of normal weight [45]. The few instrumental variable studies estimating the causal

effect of BMI on anxiety that have been performed to date (one specifically looking at phobic

anxiety [46] and the other using an anxiety measure defined using the Hospital Anxiety and

Depression Scale [HADS] 50), did not find evidence of a causal effect, although this may be due

to insufficient statistical power [46,47]. Some previous MR studies using a BMI genetic risk

score provided evidence that an increase in BMI adversely affects risk of depression symptoms

[48] and major depressive disorder [49] while others found little evidence [50,51]. A recent

study in UK Biobank that also used a BMI genetic risk score identified an adverse effect of

higher BMI on wellbeing (defined as a combination of life satisfaction and happiness), but this

was driven by an effect on the ‘satisfaction with health’ component of wellbeing, with little evi-

dence of an effect on happiness [52]. Other studies have used a SNP in the FTO gene as a

genetic instrument for BMI and identified potential effects of higher BMI on lower psychologi-

cal distress [53] and a combined depression anxiety symptoms score [54]. However, FTO may

be an invalid instrument for BMI for mental health outcomes due to horizontal pleiotropy

[50,51], and this is consistent with the differences we observed between causal estimates using

FTO and 96 SNP genetic risk scores for two of our nervousness outcomes. It has been shown

that the mechanism through which BMI-associated genetic variants affect risk of obesity may

involve regions of the brain such as the basal ganglia [55], which are plausibly involved in emo-

tional processes [56]. While instrumental variable studies assessing potential mechanisms are

lacking, one recent MR study, in addition to replicating the adverse effect of higher BMI on

depression in UK Biobank, explored the pathways through which this effect may be acting
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[57]. They found evidence of a causal effect of BMI on depression via non-metabolic pathways.

An effect of BMI on our identified worry/nervousness phenotypes may act through physiologi-

cal or psychological pathways, and further work is needed to investigate this.

The associations we identified with self-reported nervousness should be further investigated

and replicated in an independent sample, although at present we are not aware of a study with

sufficient sample size and data available to do this. These associations may reflect a true causal

effect of BMI. Alternative explanations for these results include chance, or because some vari-

ants in the BMI genetic score have horizontal pleiotropic effects and are thus invalid instru-

ments for BMI. We ‘discovered’ and ‘replicated’ our identified associations in separate

subsamples of UK Biobank suggesting our results are not due to chance. We assessed the possi-

bility that our instrument is invalid by comparing the estimates of two independent genetic

instruments (i.e. FTO SNP versus the remaining genetic variants), and using alternative

approaches that estimate the causal effects under differing assumptions of instrument validity—

MR-Egger, weighted median and MBE. Our two-sample results were broadly consistent with

the results of our main (one sample) analyses, although these approaches (apart from IVW)

lacked power and confidence intervals included the null. While we found little evidence of

directional pleiotropy, we did find evidence of non-directional pleiotropy for the ‘being a wor-

rier’ and being tense/“highly strung” outcomes, indicated by different estimates using the 96

SNP score versus FTO SNP, and also different estimates using IV probit regression compared

to the weighted MBE for the former only. Instrument validity is likely to be consistent in our

discovery and replication subsamples of UK Biobank as they are likely to have similar con-

founding structures, but may be different in other populations such that replicating in other

large cohorts may be informative. Furthermore, studies assessing the effect of BMI on nervous-

ness using other study designs (e.g. randomized controlled trials of a weight loss intervention or

within-sibship studies) with different sources of potential bias would be beneficial to strengthen

evidence through triangulation [58].

UK Biobank is a highly-selected sample of the UK population, having a response rate of

5.5% [59], that is not representative of the UK general population [60]. For example, UK Bio-

bank participants have, on average, a lower BMI, and fewer self-reported health conditions,

compared with the general population [60]. Hence, our estimates may be biased if selection

into the sample is affected by BMI [61]. Also, if selection is additionally dependent on a given

outcome (e.g. self-reported nervousness), associations may be biased by a particular form of

collider bias—selection induced collider bias [62]. In general, collider bias may occur when

two variables (A and B) independently affect a third variable (C) and variable C is conditioned

upon in analyses. Selection induced collider bias may occur when variable C represents

whether a person is selected into the sample, i.e. variables A and B both independently affect

participation in the study. Hence, estimates of association between two phenotypes—such as

our BMI genetic score and a given outcome in our study—can be biased, if inclusion in the

study is affected by both phenotypes.

We found that our BMI genetic score was associated with assessment centre, even after

adjustment for the first 40 principal components. This may indicate that the genetic principal

components are not fully accounting for genetic population differences. However, this may

also be due to selection induced collider bias, because both BMI and location are related to

selection into the sample [60]. If both BMI and assessment centre affect participation in the

study, then an association may be induced between the BMI genetic score and assessment

centre. For example, the South West region had the highest participation rate of the regions

sampled, such that living in this region is associated with a higher chance of participating com-

pared to the other regions [60]. Since BMI is negatively associated with participation in UK

Biobank, we would expect (under most realistic assumptions about the association between
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BMI, location and participation in UK Biobank) to see a positive association between the BMI

genetic risk score, and participating in the South West region compared to other regions if col-

lider bias is the cause, and (using attendance at the Bristol assessment centre as a proxy for

region of residence) this is indeed what we see. Furthermore, the West Scotland region has the

lowest participation rate, and attending the Glasgow assessment centre compared to other cen-

tres is associated with a lower BMI genetic risk score, which is expected if this relationship is

due to selection induced collider bias.

We now discuss some further limitations of this work. PHESANT uses a rule-based method

to automatically determine how to test each outcome, and it is possible that this may deal with

some variables inappropriately. Also, PHESANT tests the linear association of the genetic

score with the set of outcomes, and it is possible that non-linear associations may exist. For

instance, it is possible that BMI has a non-linear effect on nervousness/anxiety (for example

low and high BMI may cause higher levels of anxiety compared with those in the normal

range) and in follow-up analyses this should be investigated. Ranking the associations means

that we should expect the true strength of the associations to be less than we reported due to

the winner’s curse. We used stringent P value thresholds, which, although reducing the type I

error rate, is likely to also increase the type II error rate. We used BMI as a surrogate measure

for adiposity, but the effect of adiposity estimated using observational data is not the true effect

of an intervention that modifies BMI, because this will depend on the particular intervention

used. The causal effects we have estimated may be the result of changes of other aspects of BMI

in addition to or instead of changes in adiposity (e.g. changes in lean mass versus fat mass)

[63]. Similarly, our BMI genetic score is an instrument for life-long BMI, hence we cannot say

that it is BMI at a specific age (e.g. the age of the UK Biobank cohort) that affects an outcome.

However, searching for potential causal effects using MR is useful to identify outcomes that

may be modified through interventions on modifiable determinants of adiposity (e.g. diet or

physical activity) [63].

PHESANT is the first tool to perform comprehensive phenome scans, where previously the

set of outcomes tested would be restricted to a homogeneous subset [27]. In this study, we

have presented the first comprehensive phenome scan, using the PHESANT tool to search for

the causal effects of BMI. While our previous MR-pheWAS of BMI in the Avon Longitudinal

Study of Parents and Children (ALSPAC) [26] searched across 172 phenotypes measured pre-

dominantly in childhood, this current study searched across over 22,000 potential outcomes

recorded in later adulthood. The current study also builds on an initial BMI MR-pheWAS we

conducted in UK Biobank which illustrated how the PHESANT tool can be used as part of a

“Software Application Profile” [27]. While our “Software Application Profile” MR-pheWAS

searched across circa 10,000 phenotypes in a non-random subsample of UK Biobank, our for-

mal MR-pheWAS study presented here searched across more than twice the number of pheno-

types and using circa three times as many participants. We confirmed several established

effects of BMI, and replicated findings such as a potential causal effect of BMI on feelings of

nervousness (initially identified in our “Software Application Profile” MR-pheWAS [27]). We

performed comprehensive follow-up analyses to investigate violations of instrumental variable

assumptions. Our previous ALSPAC MR-pheWAS also identified a novel potential effect of

BMI on a psychosocial outcome; a genetic predisposition to a higher BMI was associated with

higher feelings of self-worth. In ALSPAC, only a very weak negative correlation (Pearson’s

rho = -0.07 [26]) is seen between feelings of self-worth and feelings of worry, suggesting that

our results for worry/nervousness and self-worth pertain to different aspects of personality.

Our MR-pheWAS in ALSPAC and UK Biobank demonstrate how multiple hypothesis-free

studies in different populations can build a picture of the landscape of causal effects across

both the phenome and the life course.
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This work demonstrates how MR-pheWAS can be applied in UK Biobank and can serve as

a model for future studies. There is much potential to use MR-pheWAS to search for the causal

effects of phenotypes where, compared to BMI, we have much weaker priors regarding their

causal effects. Phenome-wide scans are a hypothesis generation approach and hence identified

associations should be followed-up in an independent sample and using other study designs

with different assumptions and potential biases.

Materials and methods

Study population

UK Biobank sampled 503 325 men and women in the UK aged between 37–73 years (99.5%

were between 40 and 69 years) [64]. This cohort includes a large and diverse range of data

from blood, urine and saliva samples and health and lifestyle questionnaires [30]. UK Biobank

has received ethics approval from the UK National Health Service’s National Research Ethics

Service (ref 11/NW/0382).

Of the 487 406 participants with genetic data, we removed 373 with genetic sex different to

reported sex, and 471 with sex chromosome aneuploidy (identified as putatively carrying sex

chromosome configurations that are not either XX or XY). We found no outliers in heterozy-

gosity and missing rates, which would indicate poor quality of the genotypes. We removed 78

309 participants not of white British ancestry [65]. We removed 73 277 participants who were

identified as being related, having a kinship coefficient denoting a third degree (or closer)

relatedness [65]. We removed 8 individuals with withdrawn consent, giving a sample of 334

968 participants (of which 86 134 were in our initial PHESANT sample and 26 119 were

related to our initial PHESANT sample—see Venn diagram in Fig A in S1 Text [27]). A partic-

ipant flow diagram is given in Fig 4. All analyses except where stated otherwise use this ‘full’

sample of 334,968 participants.

BMI allele score

We created an allele score from 97 genetic variants previously found to be associated with

BMI, in a recent GWAS meta-analysis by the GIANT consortium [66]. The score was calcu-

lated as a sum of the number of BMI-increasing alleles, weighted by the effect size as reported

in the GIANT GWAS (reported as a SD change of BMI per dosage increase; see Table A in S1

Text) [66], such that a higher allele score corresponds to a higher BMI, and was standardized

to have a mean of zero and SD of 1.

Outcomes

The Biobank data showcase allows researchers to identify variables based on the field type

(http://biobank.ctsu.ox.ac.uk/showcase/list.cgi). At the time of data download (dataset 21753

in application 16729) there were 2761 fields of the following types: integer, continuous, cate-

gorical (single) and categorical (multiple). These fields pertain to a diverse range of phenotypes

from blood and saliva assays, clinical assessments (anthropometry, cognitive function, hearing,

arterial stiffness, hand grip strength, spirometry, ECG, carotid ultrasound, abdominal, brain

and heart MRI scans, DXA scans), record linkage (cancer and death registries and hospital epi-

sodes) and health and lifestyle questionnaires (medical conditions, operations, mental health,

sociodemographic factors, lifestyle, family history, psychosocial factors, dietary intake).

We excluded 74 fields a priori, given in Table B in S1 Text, for the following reasons. We

removed one field denoting the assessment centre. We removed 2 fields described by UK Bio-

bank as ‘polymorphic’, containing values with mixed data types. We removed 7 fields that,
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although listed in the data showcase, were not currently available. We removed 17 genetic

descriptor fields, 1 sex field and 4 age fields, 17 fields describing the assessment centre environ-

ment, 4 data processing indicators, and 21 categorical (single) fields with more than one value

recorded per person.

Fig 4. Participant flow diagram.

https://doi.org/10.1371/journal.pgen.1007951.g004
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We assigned 92 outcomes that denote adiposity or some aspect of weight, fat mass or height

as ‘exposure phenotypes’, identified within three field categories; “Body composition by DXA”

(field category ID = 124), “Body size measures” (field category ID = 100010) and “Impedance

measures” (field category ID = 100009). These are included in our MR-pheWAS analysis so

that we can assess the strength of outcome associations in relation to these, while this a priori

assignment means they will not contribute to the multiple testing burden (see Table C in S1

Text).

This resulted in a set of 2595 UK Biobank fields (320 integer, 1333 continuous, 830 categor-

ical (single) and 112 categorical (multiple)), referred to hereafter as the outcome dataset

(because they are tested as an outcome irrespective of whether this is biologically plausible).

Observed BMI

Weight and height were measured at the initial UK Biobank assessment centre—weight in

light clothing and unshod was measured using Tanita BC418MA body composition analyser

to the nearest 100g, and height to the nearest cm using at Seca 202 device. These were used to

calculate BMI (kg/m2).

Covariates

We include age and sex as covariates in our models to reduce the variation in our outcomes.

Age when participants attended the UK Biobank assessment centre was derived from their

date of birth and the date of their assessment centre visit. Sex was self-reported during the

touchscreen questionnaire (and validated using the genome-wide data). We adjust for the first

10 genetic principal components to control for confounding via population stratification.

Genetic variants are set at conception, and after conception they cannot be affected by tradi-

tional confounding factors, therefore we did not adjust for any further covariates.

Statistical methods

PHESANT MR-pheWAS. We test the direct association of the BMI genetic score with

each of the outcome variables using the PHESANT package (version 0.17). A description of

PHESANT’s automated rule-based method is given in detail elsewhere [27]. In brief, all fields

are processed and analyzed separately and the decision rules start with the variable field type

and use rules to categorize each variable as one of four data types: continuous, ordered categor-

ical, unordered categorical or binary. Variables with the continuous and integer field types are

usually assigned to the continuous data type, but some are assigned to ordered categorical if,

for instance, there are only a few distinct values. Variables of the categorical (single) field type

are assigned to either the binary, ordered categorical or unordered categorical, depending on

whether the field has two distinct values, or has been specified as ordered or unordered in the

PHESANT setup files. Variables of the categorical (multiple) field type are converted to a set of

binary variables, one for each value in the categorical (multiple) fields. For instance, interna-

tional classification of disease (ICD) codes of hospital inpatient primary and secondary diag-

noses are two separate fields hence are analyzed separately by PHESANT. These ICD fields are

of the categorical (multiple) field type, hence are converted to a set of binary variables denoting

the prevalence of each ICD code using all data available at or after baseline, such that preva-

lence prior to the initial linkage to these data is combined with prospective events that

occurred after the start of the study. Example fields and how they are processed by PHESANT

are given in Section S1 in S1 Text, and further details are provided in our “Software Applica-

tion Profile” [27].
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PHESANT estimates the bivariate association of the BMI genetic score with each outcome

variable. The BMI genetic score and outcome variables are the independent (exposure) and

dependent (outcome) variables in the regression model, respectively. Outcome variables with

continuous, binary, ordered categorical and unordered categorical data types, are tested using

linear, logistic, ordered logistic, and multinomial logistic regression, respectively. Prior to test-

ing, an inverse normal rank transform is applied to variables of the continuous data type, to

ensure they are normally distributed. All analyses are adjusted for covariates as described

above.

We assess the strength of the evidence of our results accounting for multiple testing using

three alternative approaches. First, we calculate a stringent Bonferroni corrected P-value

threshold, by dividing 0.05 by the number of tests performed, which controls the family-wise

error rate (the probability of one or more type 1 errors) and assumes each test is independent.

Second, we generate a P value threshold that also controls the family-wise error rate but uses

an estimate of the effective number of independent phenotypes across our outcome dataset,

hence is less conservative. We run PHESANT with the ‘save’ option to derive the set of 22,922

phenotypes that are tested in our phenome scan. We generate a correlation matrix for the sub-

set of 22,879 continuous, ordered and binary phenotypes using Spearman’s rank correlations

(excluding 43 unordered phenotypes for which correlations could not be calculated). We esti-

mate the number of independent tests T among these 22,879 phenotypes using spectral

decomposition, conducted using the PhenoSpD package [67]. We calculate the P value thresh-

old as 0.05/(T+43), where 43 is the number of unordered categorical phenotypes for which

correlations cannot be computed, and refer to this threshold as the correlation-based P value

threshold. Third, we control for the expected proportion of false positive results among ‘hits’.

After ranking the results by P value, we identify the largest rank position with a P value

less than Pthreshold = 0.05 × rank/n, where n is the total number of tests in the phenome scan.

Pthreshold is the P value threshold resulting in a FDR of 5% [68].

Results visualization with PHESANT-viz. We use PHESANT-viz, a D3 Javascript visual-

ization tool included in the PHESANT package, to visualize our results as a graph, using the

Biobank assigned category structure (http://biobank.ctsu.ox.ac.uk/showcase/label.cgi). This

enables interpretation of the identified associations in the context of the results for related vari-

ables. For example, the estimated effects of BMI on depression are grouped with the results of

other psychosocial phenotypes.

PHESANT sensitivity analysis. We re-run our phenome scan to assess residual con-

founding, additionally adjusting for both assessment centre and genetic batch to assess

whether results may be biased by residual population stratification or batch effects. We include

these as a sensitivity analysis only as these additional adjustments may increase bias if, for

instance, genetic batch (which is known to associate with smoking in UK Biobank) or location

are affected by both the genetic risk score and an outcome (collider bias [62]), or are mediators

between our genetic risk score and an outcome.

Testing for residual population stratification. We test the extent that genetic principal

components account for genetic differences across the population. We test the association of

assessment centre with the BMI genetic score (as the independent and dependent variables,

respectively), adjusting for:

1. Age and sex.

2. Age, sex and the first 10 genetic principal components.

3. Age, sex and the first 40 genetic principal components.
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We use a likelihood ratio test to determine the strength of the association of the assessment

centres collectively, with the genetic score. An association between assessment centre and the

BMI genetic score, after adjusting for the genetic principal components, may indicate that the

genetic principal components are not fully accounting for population stratification.

Follow-up analysis of identified associations. We identified associations with a related

set of psychosocial traits that are part of the 12-item Neuroticism scale of the Eysenck Person-

ality Questionnaire-Revised (EPQ-R) [35,36]. We generate a QQ-plot restricting to the psy-

chosocial UK Biobank category only (category ID = 100059), to determine whether these

results have an association stronger than expected by chance, given the results of related phe-

notypes. We perform a formal instrumental variable analysis for a set of binary outcomes,

using two-stage IV probit regression (the Stata ivprobit command, with conditional maxi-

mum-likelihood estimation), adjusting for age, sex and the first 10 genetic principal compo-

nents. We also adjust for age, sex and the first 40 genetic principal components, as a sensitivity

analysis. We take the exponent of 1.6 times the estimates, to approximate the association in

terms of the change of odds [69]. Our four identified nervousness phenotypes were previously

identified as a homogenous set of ‘neuroticism’ items of the EPQ-R, denoting a ‘worry’ facet of

the neuroticism personality trait, and used to construct a ‘worry’ score [35]. We generate this

‘worry’ score as the number of ‘yes’ responses for these four nervousness phenotypes such that

the cluster scores range from zero to four, and estimate the association of this score on the

BMI genetic risk score with ordered logistic regression (the Stata ologit command). We

also test the observational association of BMI with each nervousness phenotype using logistic

regression (Stata logistic command).

We identified the same set of psychosocial traits as in our preliminary “Software Applica-

tion Profile” MR-pheWAS, which was conducted on a non-random subsample with genetic

data available at that time [27]. We refer to the 114,863 sample used in our presentation of

PHESANT [27] as the discovery sample (see Fig A in S1 Text). We compare estimates using

this discovery sample with estimates using the additional participants used in this present

study, as a replication. We remove all participants from our replication sample who were iden-

tified as being related to a participant in the discovery sample, having a kinship coefficient

denoting a third degree (or closer) relatedness, giving a replication sample of 222 715 partici-

pants (see Fig A in S1 Text).

Follow-up sensitivity analyses. We performed sensitivity analyses to investigate whether

our genetic score, and its constituent genetic variants, may be invalid instruments for BMI.

First, we compared the effect estimates using two independent instrumental variables: 1) SNP

rs1558902 (the SNP most strongly associated with BMI, at the FTO locus), and 2) the remain-

ing 96 genetic variants.

Second, we also estimated causal effects using three alternative MR approaches—MR-Egger

[70], weighted median [71] and MBE [72]. These methods estimate effects consistent with the

true causal effect under more relaxed assumptions of instrument validity, compared with IV

probit regression where for example, including just one genetic variant with pleiotropic effects

could bias estimates. These methods are performed using two sample MR, using estimates of

association of each genetic variant on BMI, and estimates of association of each genetic variant

on a given outcome, respectively, estimated in different populations. We use the SNP-BMI

estimates from the GIANT GWAS [66] (that did not include UK Biobank), and estimate the

SNP-outcome associations on our UK Biobank sample, adjusting for age, sex and the first 10

genetic principal components.

The MR-Egger, weighted median and MBE approaches are complementary, each depend-

ing on distinct assumptions about instrument validity [73]. Estimates from MR-Egger are not

biased by horizontal pleiotropy, where a genetic variant affects several traits through separate
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pathways, under the assumption that the association of each genetic variant with the exposure

is independent of any horizontal pleiotropic effect—referred to as the InSIDE (Instrument

Strength Independent of Direct Effects) assumption [70]. This approach can test for direc-

tional pleiotropy, which is when the horizontal pleiotropic effects of the genetic variants are

not balanced about the null [70]. Directional pleiotropy is identified where the intercept esti-

mate is not consistent with the null. MR-Egger assumes that the SNP-exposure associations

are measured without error, known as the NOME assumption [74]. We determine the degree

to which the NOME assumption is violated, using the I2
GX statistic, which is an adaption of the

I2 statistic used in the field of meta-analysis [74]. The I2
GX statistic ranges between 0 and 1, and

captures the uncertainty in the estimated SNP-exposure associations relative to the heteroge-

neity across the true underlying SNP-exposure associations. It is recommended that results of

MR-Egger should be treated with caution when I2
GX < 0:9 [70]. Furthermore, we performed an

MR-Egger analysis with bias adjustment using SIMEX, to estimate the causal effect when the

NOME assumption is violated [74]. In brief, SIMEX works by learning models with increasing

violations of the NOME assumption (i.e. increasing error in the SNP-exposure associations).

The estimates from these models are then treated as a set of data points and a model is learnt

across these. This ‘meta’ model is then used to extrapolate back to the estimate that would have

occurred if the NOME assumption was satisfied.

The weighted median approach estimates a consistent causal effect under the assumption

that less than 50% of the genetic variants are invalid instruments [71]. The simple version of

MBE assumes that the mode of the smoothed empirical density function of SNP estimates is

consistent with the true causal effect, even if the majority of the SNP estimates are not consis-

tent—known as the ZEro Mode Pleiotropy Assumption (ZEMPA) [72]. We also test using a

weighted version of the MBE, which instead assumes that the mode of the inverse-variance

weighted empirical density function is consistent with the true causal effect. The MBE method

uses a bandwidth parameter ϕ, which determines the amount of smoothing of the empirical

density. We generate the smoothed empirical density using a range of ϕ values, and choose a ϕ
value that provides an appropriate amount of smoothing (a degree of smoothing that allows

multi-modal distributions to be identified while not overfitting to the estimated values). We

test the simple and weighted versions of the MBE using our chosen ϕ value.

Analyses are performed in R version 3.2.4 ATLAS, Matlab r2015a or Stata version 14, and

code is available at [https://github.com/MRCIEU/PHESANT-MR-pheWAS-BMI]. Git tag v0.5

corresponds to the version presented here.
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